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To develop a noise-insensitive texture classification algorithm for both optical
and underwater sidescan sonar images, we study the multichannel texture classifi-
cation algorithm that uses the wavelet packet transform and Fourier transform. The
approach uses a multilevel dominant eigenvector estimation algorithm and statisti-
cal distance measures to combine and select frequency channel features of greater
discriminatory power. Consistently better performance of the higher level wavelet
packet decompositions over those of lower levels suggests that the Fourier transform
features, which may be considered as one of the highest possible levels of multichan-
nel decomposition, may contain more texture information for classification than the
wavelet transform features. Classification performance comparisons using a set of
sixteen Vistex texture images with several level of white noise added and two sets of
sidescan sonar images support this conclusion. The new dominant Fourier transform
features are also shown to perform much better than the traditional power spectrum
method. c© 2000 Academic Press

1. INTRODUCTION

Sidescan sonar has been an important tool for seafloor survey over the past few decades.
Due to the highly textured appearance of sonar images, texture analysis techniques become
natural choices for sidescan sonar image analysis.

Texture analysis of sidescan sonar imagery can be applied to various geological fea-
ture recognitions. Pace and Dyer applied the co-occurrence features to distinguish the
physical properties of sedimentary bottoms using sidescan sonar [23]. Reutet al. con-
ducted an analysis of one-dimensional image spectra for the classification of six classes of
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homogeneous sediment type, including mud, clay, sand, gravel, cobbles, and boulders [26].
Pace and Gao continued this work and developed an alternative approach by extracting 1-D
spectral features from sidescan data [24]. Reed and Hussong reported an application of the
co-occurrence features to the classification of submarine lava flows, as well as the segmenta-
tion of lithified and nonlithified sedimentary formations [25]. Stewartet al.applied a neural
network classifier to several traditional statistical texture features for the classification of
terrain types of seafloor [27].

In this paper, we use two sidescan sonar data sets for texture classification experiments.
They are the Arctic under-ice canopy data and the seafloor data. The first dataset is a sidescan
sonar survey of an Arctic under-ice canopy. As the geophysical and economic importance
of the polar seas becomes more widely recognized, the need for intensive study of these
regions becomes more apparent. The underwater sidescan sonar imagery offers a unique
perspective on the morphology of the under side of the ice, which is important to the study
of frictional coupling between the ice cover and water and to research on the scattering of
low-frequency acoustic energy by an ice canopy in an underwater communication channel.

Since thermal processes tend to level out rough elements much more slowly on the under-
ice surface than on the top, the under-ice canopy tends to preserve many more features for
the analysis of ice floe, ridge, and crack formation than the upper surface. Figure 1 shows
a sidescan sonar image where ice cracks and ridges are clearly shown. This image is part

FIG. 1. Sidescan sonar image of an Arctic under-ice canopy.



OPTICAL/SONAR IMAGE CLASSIFICATION: WAVELET VS. FT 27

of a novel set of sidescan sonar imagery of the Arctic under-ice canopy, obtained by an
upward-looking sidescan sonar aboard a navy submarine. Using navigation data, several
tracks of sonar data are mosaiced together to form the image. In this work, we study the
classification of three types of ice textures in the image: first-year young ice (thin ice);
multiyear undeformed ice (thick ice); and multiyear deformed ice (ice ridge and crack).

The second dataset is a sidescan sonar survey of the seafloor of a midocean ridge area. The
region is characterized by hydrothermal venting and black smokers, geologic structures that
vent extremely hot water and dissolved particulates from the seabed into the water column.
In particular, our classification experiment focuses on three distinct geoacoustic provinces
within the general area: a flat sediment pond, a lightly sedimented, constant-slope ridge
flank, and an axial-valley segment.

Most research on texture analysis of sonar images use traditional statistical texture fea-
tures directly. Recent development of the more efficient multichannel texture features has
not been considered. Since sonar images tend to be noisier than optical images, we focus on
the multichannel texture analysis approach, which is less sensitive to noise. Especially, we
study methods using wavelet packet transformations and eventually arrive at a more straight-
forward method of feature extraction from the texture Fourier power spectrum, which is
shown to be more efficient for both optical and sonar texture images.

Advances in wavelet theory [4, 7, 18–20] provide a good framework for multichannel
texture analysis. The texture research community has devoted considerable effort to wavelet
applications in texture analysis. An early study of a wavelet transform for texture analysis
was described by Mallat [18]. Later, Henke-Reed and Cheng [12] applied a wavelet trans-
form to texture images, using the energy ratios between frequency channels as features.
Gabor filters have been used to extract texture features by Bigunet al.[2], du Bufet al.[8],
and Jainet al.[13]. Chang and Kuo [3] developed a tree-structured wavelet transform algo-
rithm for texture classification, which is similar to the wavelet-packet best-basis-selection
algorithm of Coifman and Wickerhauser [4]. Laine and Fan [15] used both the standard
wavelet and the wavelet-packet energy measures directly as texture features in their texture
classification work.

These researchers have demonstrated that the wavelet transform is a valuable tool for
texture analysis. However, a common problem with these approaches is that they are direct
applications of existing wavelet processing algorithms, which were originally developed
for signal representation or compression instead of signal classification. To fully utilize
the power of a wavelet-packet transform, techniques tailored for extracting features of
greater discriminatory ability must be considered. In this paper we demonstrate the use
of the multilevel dominant eigenvector estimation algorithm and statistical distance mea-
sures to combine and select frequency-channel features that give improved classification
performance.

Since the Fourier transform can be considered as one of the highest possible levels of
multichannel decomposition, it is reasonable to apply the same feature selection algorithm
to the Fourier transform spectrum. Just as the ideal tool for nonstationary signal analysis
is a wavelet transform, the ideal tool for stationary signal analysis is a Fourier transform.
Because texture signals are mostly stationary, we suspect that the Fourier transform features
may generate better results.

In this study, we also compare the new Fourier features with the traditional power spec-
trum method (PSM), first studied by Bajcsy [1], Weszkaet al. [31], and Jerniganet al.
[14]. Historically, the texture classification performance of the PSM has been ranked fairly
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low among most texture analysis techniques [5, 31], resulting in limited application of this
approach. Criticism of the PSM have been of the Fourier transform rather than of the way
that texture features are computed from the power spectrum [31]. In this paper, we show that
by using appropriate feature extraction algorithms, the discriminatory power of the Fourier
transform features can be significantly improved.

Section 2 of this paper describes the texture feature extraction techniques, including the
computation of wavelet features, the Fourier transform features, and the traditional PSM
features. The texture classification experimental results on optical and sonar texture images
are presented in Section 3. We summarize the conclusions in Section 4.

2. TEXTURE FEATURE EXTRACTION

2.1. Wavelet and Wavelet-Packet Transforms

For simplicity, a one-dimensional discrete signalf (k) of length n= 2n0, wheren0 is
an integer, is used for discussion in this section. The standard wavelet transform can be
thought of as a smooth partition of the signal frequency axis. First, a lowpass filterh(m)
and a highpass filterg(m), both of lengthM , are used to decompose the signal into two
subbands, which are then downsampled by a factor of 2. LetH andG be the convolution-
downsampling operators defined as

H f (k) =
M−1∑
m=0

h(m) f (2k+m), (1)

G f (k) =
M−1∑
m=0

g(m) f (2k+m). (2)

H andG are called perfect reconstruction quadrature mirror filters (QMFs) if they satisfy
the orthogonality conditions

HG∗ = G H∗ = 0, (3)

H∗H + G∗G = I , (4)

whereH ∗ andG∗ are the adjoint (i.e., upsampling-anticonvolution) operators ofH andG,
respectively, andI is the identity operator.

This filtering and downsampling process is applied iteratively to the low-frequency sub-
bands. At each level of the process, the high-frequency subband is preserved. When the
process reaches the highest decomposition level, both the low- and high-frequency bands are
kept. If the maximum processing level isL, the discrete wavelet coefficients of signalf (k)
are then{G f,G H f,G H2 f, . . . ,G HL f, H L+1 f } with the same lengthn as the original
signal. Because of the orthogonality conditions ofH andG, each level of transformation
can be considered as a decomposition of the vector space into two mutually orthogonal
subspaces. LetV0,0 denote the original vector spaceRn, andV1,0 and V1,1 be the mutu-
ally orthogonal subspaces generated by applyingH andG to V0,0. Then, thel th level of
decomposition can be written as

Vl ,0 = Vl+1,0⊕Vl+1,1, (5)
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FIG. 2. Standard wavelet transform binary tree.

for l = 0, 1, . . . , L. Figure 2 shows such a decomposition process. Each subspaceVl ,b

with b= 0 or 1 is spanned by 2n0−1 wavelet basis vectors{ψl ,b,c}2n0−l−1
c=0 , which can be

derived fromH , G, and their adjoint operators. From the above iterative filtering oper-
ations, we can see that the wavelet transform partitions the frequency axis finely toward
the lower frequency region. This is appropriate for a smooth signal containing primarily
low-frequency energy but not necessarily so for other more general types of signals, such as
textures.

A more generalized form of the standard wavelet transform is the wavelet packet trans-
form, which decomposes both the high- and low-frequency bands at each iteration. As with
the wavelet transform, two subbands,H f andG f , are generated at the first level of decom-
position. However, the second-level process generates four subbands,H2 f , G H f , HG f ,
andG2 f , instead of two bands,H2 f andG H f , as in the wavelet transform. If the process
is repeatedL times,Ln wavelet packet coefficients are obtained. In orthogonal subspace
representation, thel th level of decomposition is

Vl ,b = Vl+1,2b⊕Vl+1,2b+1, (6)

wherel = 0, 1, . . . , L is the level index andb= 0, . . . ,2l − 1 is the channel block index
in each level. Figure 3 illustrates the wavelet packet decomposition of the original vector

FIG. 3. Wavelet packet transform binary tree.



30 TANG AND STEWART

spaceV0,0. Again, each subspaceVl ,b is spanned by 2n0−l basis vectors{Wl ,b,c}2n0−l−1
c=0 . For

b= 0 and 1,W can be identified withψ .
For two-dimensional images, the wavelet or wavelet packet basis function can be ex-

pressed as the tensor product of two one-dimensional basis functions in the horizontal and
vertical directions. The corresponding 2-D filters are thus

hH H (m, n) = h(m)h(n), (7)

hHG(m, n) = h(m)g(n), (8)

hG H(m, n) = g(m)h(n), (9)

hGG(m, n) = g(m)g(n). (10)

In Fig. 4, we show three sample textures and their Daubechies minimum-support least
asymmetric wavelet packet coefficients for levels 1–4.

FIG. 4. Three sample textures (row 1) and their Daubechies minimum-support least asymmetric wavelet
packet coefficients at decomposition levels 1, 2, 3, and 4 (rows 2–5).
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2.2. Wavelet Texture Feature Extraction

After the wavelet packet coefficients are computed, we develop the algorithm by address-
ing the three main issues of multichannel texture classification: feature extraction within
each channel, channel selection, and feature combination among channels.

Since the wavelet coefficients are shift variant, they are not suitable for direct use as
texture features, which must be shift-invariant. We compute the shift-invariant measures

µe = 1

M N

M∑
i=1

N∑
j=1

e(i, j ), (11)

MNTk = 1

M N

M∑
i=1

N∑
j=1

(e(i, j )− µe)
k, (12)

ENT= −
M∑

i=1

N∑
j=1

e(i, j )2

‖e‖22
log

(
e(i, j )2

‖e‖22

)
, (13)

wheree(i, j ) denotes an element of the wavelet packet coefficient matrixe in each channel,
µe is the mean of the matrix elements in the channel, andM andN represent the vertical and
horizontal size of the matrixe whose norm is‖e‖2. To make our algorithm less vulnerable
to the nonuniform illumination of images, the texture sample mean is removed before a
feature vector is computed. Thus, the mean feature in Eq. (11) becomes zero. The four
features we use in the experiment are (1) variance feature VAR withk= 2 in (12), (2) the
entropy feature ENT in Eq. (13), (3) the third moment MNT3, and (4) the fourth moment
MNT4.

Because of the orthogonality condition on the wavelet transform, for the variance feature
the following relation holds for any decomposition node and its four child nodes:

VARl ,b = 1

4

3∑
j=0

(VARl+1,4b+ j ). (14)

The effect of this linear relationship on the classification accuracy of overcomplete wavelet
packet features can be seen in later experiments.

After the features are computed within each channel, the second issue is how to select
good features among channels. One possible approach is to apply a statistical distance
measure to each feature and to select those features with large distance measures. However,
there are two drawbacks with this approach. The first is that neighborhood channel features
tend to correlate with each other; thus, they contain similar information. If one has a large
distance measure, the other will also, and both will be selected. Therefore, similar features
will usually be selected. The second problem is that for some very small energy channels,
a small amount of unexpected noise may cause the distance measure to be large and the
channel to be selected. To avoid these problems, we combine the channel selection step
with the channel combination step in one feature selection step, using principal component
analysis and statistical distance measures.

The widely used Karhunen–Loeve transform (KLT) is an appropriate feature reduction
and selection procedure for our algorithm [10, 29]. The KLT decorrelates neighborhood
channel features, and its energy-packing property removes noisy channels and compacts
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useful information into a few dominant features. However, for a large feature vector, such
as a vector comprising features of a higher level wavelet packet decomposition or a Fourier
transform, the computation of the eigenvectors of the covariance matrix can be prohibitively
expensive. We use the multilevel dominant eigenvector estimation (MDEE) method [28] to
overcome this problem. The following is a brief description of the MDEE method.

To compute the Karhunen–Loeve transform, letxi be a feature vector sample and form
ann by m matrix,

A =


x1(1) x2(1) . . . xm(1)

x1(2) x2(2) . . . xm(2)
. . . . . . . . . . . .

x1(n) x2(n) . . . xm(n)

 , (15)

wheren is the feature vector length andm is the number of training samples. The sample
covariance matrix is computed by

W = 1

m

m∑
i=1

(xi − µ)(xi − µ)T = 1

m
AAT , (16)

whereµ is the mean vector. For the standard KLT, the eigenvalues and eigenvectors are
computed directly fromW. However, with the feature vector formed by the higher level
wavelet-packet decomposition features or the scan-line vectorized Fourier transform matrix,
n is a large number. For a neighborhood of 64× 64, n can reach a maximum of 4096,
resulting in a covariance matrix of size 4096× 4096. Direct computation of the eigenvalues
and eigenvectors becomes impractical.

To alleviate this problem, we use the multilevel dominant eigenvector estimation method.
After breaking the long feature vector intog= n/k groups of small feature vectors of
lengthk,

A =



B1


 x1(1)

. . .

x1(k)

x2(1)
. . .

x2(k)

. . .

. . .

. . .

. . .

. . .

. . .

xm(1)
. . .

xm(k)


B2


 x1(k+ 1)

. . .

x1(2k)

x2(k+ 1)
. . .

x2(2k)

. . .

. . .

. . .

. . .

. . .

. . .

xm(k+ 1)
. . .

xm(2k)


. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Bg


 x1((g− 1)k+ 1)

. . .

x1(n)

x2((g− 1)k+ 1)
. . .

x2(n)

. . .

. . .

. . .

. . .

. . .

. . .

xm((g− 1)k+ 1)
. . .

xm(n)




(17)

we apply the KLT to each of theggroup short feature vector setBi .Then a new feature vector
is constructed by the first few dominant eigenfeatures of each group. The final eigenvectors
are computed by applying the KLT to this new feature vector.

The difference between the KLT and MDEE is the information that is thrown away in the
second step, where only the dominant eigenfeatures in each group are kept. The discarded
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information is contained in three groups of covariance matrices. They are the covariance
matrices of the removed small eigenfeatures within each group, the cross-covarianace ma-
trices between the removed small eigenfeatures of each group, and the cross-covariance
matrices between the small eigenfeatures in one group and the dominant eigenfeatures in
another group. Because of the energy packing property of KLT, the information in the first
two types of matrices should be negligibly small.

We can also argue that the information in the third type of matrices cannot be large either.
If two feature groups are fairly uncorrelated with each other, then any cross-covariance
matrices between the two groups will be very small. On the other hand, if the two groups
are strongly correlated with each other, the dominant eigenfeatures of the two group will
be very similar. Therefore the matrix of cross-covariance between the dominant features in
one group and the minor features in another group will be similar to the matrix of cross-
covariance between the dominant features and the minor features within the same group,
which is zero due to the decorrelation property of the first step KLT transform. Since all
three types of matrix are small, we conclude that the information that is discarded in the
second step of MDEE is insignificant. The experiments also confirm that the MDEE method
is indeed a close approximation of the standard KLT.

Significant reduction of computational time over the standard KLT can be achieved by the
MDEE. For example, if a feature vector of lengthn= 1000 is broken into 10 vector groups
of length 100, and 10% of the eigenfeatures in each group are saved for the second-level
eigenvalue computation, the computational complexity for the MDEE is 11(n/10)3, which
is nearly two orders of magnitude faster than the KLT’s complexity ofn3. Furthermore,
the algorithm offers a structure for parallel computation. If all individual group KLTs are
computed in parallel, a near three-order-of-magnitude speed increase can be achieved for
this example.

However, as optimal representation features, the KLT selected features may not be the
best for classification. Additional feature class separability measures are needed to rank the
discriminatory ability of KLT decorrelated features. We use the Bhattacharyya distance in
this study, because it has a direct relation with the error bound of the Gaussian classifier and
has a simple form for features with normal distributions. As shown in [10], for a two-class
problem we have

ε(c1,c2) ≤ [ P(c1)P(c2)]1/2 exp[−βd(c1,c2)], (18)

whereP(ci ) is the prior probability of classci , ε is the probability of error for a Gaussian
classifier, andβd is the Bhattacharyya distance. Because its inverse gives the upper bound
on the probability of error,βd can be an effective measure of class separability. For a normal
distribution,βd has the analytical form

βd(c1,c2) = 1

8
(µ1− µ2)T

(
W1+W2

2

)−1

(µ1− µ2)+ 1

2
ln

∣∣ 1
2(W1+W2)

∣∣
|W1|1/2|W2|1/2 . (19)

whereµ1, µ2 andW1, W2 are the mean vectors and covariance matrices of the two class
distributions. The many possible combinations of multiple features and the possibility of
covariance matrix singularity make it impractical to compute the Bhattacharyya distance for
multiple features at the same time. The one-at-a-time method is adopted instead. The formula
is the same as Eq. (19), only with the covariance matrixW replaced by the variance and the
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mean vectorµ replaced by the class mean. Apparently, a large difference in mean values be-
tween two clusters results in a large value for the first term of Eq. (19). When the two clusters
differentiate in variances, the large value of the second term of Eq. (19) gives a large output
of βd. In the situation that both means and variances are different for the two classes,βd is
at its largest. In all three cases, a Gaussian classifier is expected to give good performance.

For multiclass problems, the overall probability of error can be bounded by

ε ≤
K∑

i> j

K∑
j=1

ε(ci ,cj ), (20)

whereε andε(ci ,cj ) (i, j = 1, 2, . . . , K ) are the probability of overall error and the pairwise
error between classi and j , respectively. From Eqs. (18) and (20) we select features ac-
cording to the minimum total upper error bound. Because the test data size is the same for
all classes in the experiment, the prior probabilitiesP(ci ) are equal for all classes. Thus,
we select features with small values of

Sb =
K∑

i> j

K∑
j=1

exp[−βd(ci ,cj )]. (21)

Throughout the experiment, we select the first 30 features with largest eigenvalues, rank
these MDEE-decorrelated features by theirSb values, and use the firstn features with the
smallestSb for classification. We run the feature lengthn from 1 to 30 to select the one
that gives the best performance as the final feature vector length. This is apparently not an
optimal searching approach, since a combination of the firstn best individual features may
not be the best lengthn feature vector. However, the experimental results suggest it to be a
close approximation. Since all features are first decorrelated by the MDEE transform, as we
increase the feature length each additional feature brings in new uncorrelated information
and noise. When theirSb values increase to a certain point, the new features start to bring
in more noise than information, suggesting that a suboptimal feature length is reached. The
experiments show that most best feature lengths are from 10 to 20.

In the experiment, we test our algorithms on the following group of wavelet packet
features: (1) Level 1: VAR, ENT, MNT3, MNT4, ALL, (2) Level 2: VAR, ENT, MNT3,
MNT4, ALL, (3) Level 3: VAR, ENT, MNT3, MNT4, ALL, (4) Level 4: VAR, ALL,
(5) Level 1&2: VAR, ALL, (6) Level 1&2&3: VAR, ALL, (7) Level 1&2&3&4: VAR,
(8) Standard Wavelet: VAR, ALL, where “ALL” represents the combination of all the four
types of features. Our goals are to test the discriminatory power of each feature type in each
individual level, the effects of overcomplete representation, and the classification power of
the standard wavelet transform.

Another important experiment compares the texture classification performance of dif-
ferent wavelet filter designs and filter lengths. Most previous texture analysis studies have
only tested one particular type of wavelet filter design without any specific justification
[3, 15]. In this paper, we demonstrate experimentally that the wavelet filter types and
lengths do not significantly affect texture classification performance.

2.3. Fourier Transform Features

If we consider the Fourier transform as the highest possible level of multichannel de-
composition, we can treat each Fourier frequency component as a frequency channel.
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Accordingly, we can treat the Fourier transform magnitude as an energy feature. Instead of
painstakingly designing various multichannel filters, we can take the maximum number of
filter channels that can be obtained and then let the MDEE transform and the Bhattacharyya
distance measure determine which channels to keep and how much of the energy in those
channels to keep. The resulting coefficients, which represent the magnitude of each fre-
quency channel’s contribution, form a designed filter. We call this approach the dominant
spectrum method (DSM). Only half the spectrum matrix is used because of the symmetric
property of the Fourier transform of real functions. Since most texture images are generally
stationary processes, which decompose canonically into a linear combination of sine and co-
sine waves in the same way that nonstationary signals decompose into linear combinations
of wavelets, we expect DSM features to perform at least as well as the wavelet features.

Our Fourier transform DSM features should not be confused with the traditional power
spectrum method (PSM). Early studies of PSM by Bajcsy [1] and Weszkaet al. [31]
concentrate on features computed by the summed spectral energy within circular or wedge-
shaped frequency regions. In smooth images, for example, features of the form

PSMr =
∑

r 2
l ≤u2+v2<r 2

2

P(u, v) (22)

have high values for smallr because the smooth images have more energy at lower frequen-
cies, whereP(u, v) is the power spectrum. For a rough texture, the high-frequency energy
dominates, resulting in high PSMr for larger . For the same reason, features of the form

PSMθ =
∑

θ1≤atan(v/u)<θ2

P(u, v) (23)

give a good measure of directional information. In general, the PSM has been shown to be
much less efficient than most other texture analysis methods [5, 31]. Although Jerniganet al.
[14, 17] propose to use entropy, peak, and shape measures to extract more texture features
from the power spectrum, the performance improvement is limited, and the method is not
widely accepted as an efficient texture analysis algorithm. Liu and Jernigan [17] gave an
extensive summary of features that can be extracted by the PSM. In this paper, we compare
20 features defined in [17].

Criticisms of the PSM have focused on the use of the Fourier transform rather than on
the way that texture features are computed from the power spectrum [31]. We believe that
the fundamental problem with the PSM features is that the feature extraction functions
are, for the most part,ad hoc. The features are based on intuitive reasoning through human
observation of the power spectrum shape. Instead of trying to develop moread hocfeatures,
we use the MDEE transform and Bhattacharyya distance as feature extraction algorithms
to compute texture features from the Fourier transform spectrum matrix. All information in
the spectrum is preserved and extracted in an optimal way.

Another problem addressed in this paper is the so-called phase dilemma. In most previous
research pertaining to PSM, researchers have tried to use the rich information contained
in the Fourier transform phase [8, 9, 15, 30]. This is mainly attributed to successes in
the study of image reconstruction from partial Fourier transform information, where the
Fourier phase has been shown to contain more information than the Fourier magnitude [6, 11,
21, 22]. So far, however, all results in texture analysis research seem to show that the textural
content of the phase information is low.
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In fact, the answer to this contradiction is embedded in the basic property of the Fourier
transform. The Fourier transform phase carries vital information representing the relative
position of the harmonic basis functions essential for the image reconstruction. In most
image reconstruction work, the images studied are all natural images with such large,
smooth areas as sky or black background. The general shapes of their Fourier transform
magnitudes are quite similar, with most energy concentrated in the low-frequency area.
When only the phase information is used for reconstruction, usually an average of the
Fourier magnitudes of many other irrelevant images is used as the initial magnitude. Thus,
except for the small differences in the magnitude of some frequency components, most
overall structural information, i.e., the positions of all basis functions, are still there with
small changes in magnitude. So the images can be mostly reconstructed with only gray
scale changes in certain places.

For texture classification, the situation is completely different. Phase information is a
special property of each individual texture sample, as important as that of the natural images
used in reconstruction studies. However, since individual texture samples are delineated by
an arbitrary grid definition within any class of image, statistically, the phase signals for
all texture samples are essentially random regardless of texture classes and thus offer no
discrimination power for texture classification. In fact, the phase signal is exactly the kind
of noise signal we try to remove.

Although the absolute phase values are noise signals, the phase differences between
different frequencies reflect the relative positions of the harmonic functions and thus may
offer useful texture information. However, another important but overlooked property of the
phase signal prevents the extraction of this information. No matter how small the energy of
a frequency component is, its phase value can be anything in a period of 2π . Even though
this phase value may be controlled largely by random noise, it still has a value comparable
with the phase value of the frequency component having the largest energy. This equal value
property essentially renders the phase information useless for natural texture classification,
because it makes the extraction of relative phase information impossible. Only for very
structured synthetic textures may phase information from Gabor filters be extracted [8].

To confirm this analysis experimentally, we extract texture features by applying the
MDEE transform directly on the original texture images. This is equivalent to using both
the Fourier magnitude and phase information while, at the same time, avoiding the problem
of the equal phase value property.

3. CLASSIFICATION EXPERIMENTS

3.1. Classification Algorithm

The classification algorithm used in this study is the Gaussian classifier. There are
two reasons for this choice. First, it agrees with the above error bound defined by the
Bhattacharyya distance. Second, with our focus on feature extraction we choose the sim-
plest classification algorithm available. Let the class mean and covariance matrix of the
feature vectorx for each classi beµi andWi , respectively. The distance measure is defined
as [29]

Di = (x − µi )
T W−1

i (x − µi )+ ln|Wi |, (24)
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where the first term on the right of the equation is actually the Mahalanobis distance. The
decision rule is

x ∈CL whenDL = min{Di }. (25)

3.2. Data Description

In addition to the sonar images, we use another set of standard optical texture data, which
includes 16 types of natural optical images obtained from the MIT Media Lab Vistex texture
data base. They are shown in Fig. 5. The original 512× 512 color images are converted
to the same size gray-scale images. Adaptive histogram equalization is applied so that all
images have similar flattened histograms. We conduct most of the testing on the Vistex
textures because of their large number of classes. Since our main concern for sonar image is
the noise, we test the sensitivity of the algorithms to noise by adding several levels of white
Gaussian noise to the optical data. To save computational time, the first round of extensive
tests is conducted on the first eight image classes, with three levels of noise added to the
images. The signal-to-noise ratios (SNR) are 15 dB, 5 dB, and 1 dB, respectively.

Then relatively more efficient methods selected from the initial comparison are applied
and further compared on all 16 classes of Vistex images and on the sidescan sonar images.

FIG. 5. Sixteen Vistex textures. The eight images in the top two rows are used in the main experiment.
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FIG. 6. Three types of sidescan sonar image samples of an Arctic under-ice canopy: (a) first-year ice,
(b) multiyear underformed ice, and (c) multiyear deformed ice.

The three classes of sidescan sonar images of an Arctic under-ice canopy are shown in Fig. 6.
These are first-year young ice, multiyear undeformed ice, and multiyear deformed ice. The
three classes of seafloor sonar images are shown in Fig. 7. For all data sets except the seafloor
sonar data, each image class is divided into 225 half-overlapping samples of dimension
64× 64, of which 60 samples are used for training. Therefore, the total data sample number
is 1800 for the first eight Vistex images, 3600 for all the sixteen Vistex images, and 675
for the sidescan sonar data set, with 480, 960, and 180 samples for training, respectively.
For the seafloor data, since the textures are fairly distinctive, to increase the difficulty, we
divide each image class into 256 nonoverlapping samples of dimension 32× 32, of which
64 samples are used for training.

3.3. Comparison of Wavelet Features with Fourier Transform Features

Table 1 shows the complete test results from the eight class of Vistex images. It is difficult
to draw conclusions directly from the large table, so we use a couple of figures to illustrate.
Figure 8 shows a comparison of the four types of features and their combinations on the
first three decomposition levels. The MNT3 feature is the worst for all levels and for all
data sets and is apparently not a useful measure. Entropy also gives less satisfactory results

FIG. 7. Three types of seafloor sonar image samples: (a) flat sediment pond; (b) constant-slope ridge flank;
and (c) axial-valley segment.
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FIG. 8. Comparison of the four types of features in the first three individual decomposition levels. The index
of the horizontal axis represents signal-to-noise ratio (SNR) level: (1) original image, (2) SNR 15 dB, (3) SNR
5 dB, (4) SNR 1 dB.

than the variance feature, and the classification accuracy drops sharply for noisy data. The
MNT4 feature seems to give better results than the above two features but is still less
successful than the variance feature. The performance differences between the MNT4 and
the variance are consistent over all data sets and all decomposition levels, because they
are very closely correlated features. The observation that variance features perform better
than other features is consistent with Laws’ [16] experiment with features extracted from
empirical frequency channels. By combining all features together, we get improved results
for the lower decomposition level. Since the feature length is much smaller on these levels,
an added dimension helps more than in the higher level decomposition case.

Now consider in detail the variance measure results shown in Fig. 9. For the individual
levels of Fig. 9a, the general trend is that the higher the decomposition level the better the re-
sult. This is predictable from Eq. (14), which shows that the lower level variance features are
simply the average of their higher level children nodes. A KLT transform will do better than
such a simple average operation in terms of extracting maximum information. To confirm
this point, compare Figs. 9a and 9b, which show that the following pairs of results are almost
identical: level 1&2 vs level 2, level 1&2&3 vs level 3, level 1&2&3&4 vs level 4. This
means that lower level features are only a subset of higher level decomposition features and
that better discriminatory ability is not added by redundancy. Instead, more discriminatory
information is extracted by applying KLT to higher levels of finer channel decomposition,
so the channel nodes are combined in an optimal way instead of by simple averaging.

Continuing this thread of analysis, we should expect that the Fourier transform provides
even more information with more channels. Figure 9c compares the performances of three
levels of wavelet packet decomposition, the standard wavelet transform, and the Fourier
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FIG. 9. Comparison of variance features for individual decomposition levels, overcomplete levels, standard
wavelet, and Fourier transform. The index of the horizontal axis represents the same SNR as in Fig. 8.

transform. The Fourier transform indeed gives consistently better performance than all
other feature groups on all levels of noisy data sets. This result should not be surprising,
since the wavelet transform is optimal for nonstationary transient signal analysis, whereas
the Fourier transform is optimal for stationary signal analysis. Most texture images are
stationary periodic signals. Using the MDEE on the Fourier spectrum is in effect a filter
design method according to signal statistical distribution, which should be better than the
filter channels prefixed by the wavelet transform.

Next, notice in Fig. 9c that the Fourier transform and other higher levels of wavelet packet
decomposition are very insensitive to noise. Noise insensitivity is a particular strength of
multichannel image analysis. Noise usually has a flat spectrum and, when it is divided into
more channels, the noise energy usually stay the same. Yet the energy of signals tends to
concentrate in a few channels. Therefore, even when the total energy of the signal and noise
are almost the same, as in the case of the testing data of SNR 1 dB, the signal-to-noise ratio
is much higher in channels containing the most signal energy. The MDEE tends to condense
the coherent signal channels with high SNR into a compact representation of the data, with
the incoherent noisy channels neglected. This noise insensitivity property is the reason that
we study the multichannel algorithm for sonar image classification, because sonar signals
tend to be noisier than optical images.

3.4. Comparison of Different Wavelet Filter Types and Lengths

The wavelet filter type used in the above experiments is the Daubechies minimum-support
least asymmetric wavelet of filter length 4 [7]. In this section we compare this particular type
and length of wavelet filter with others. The Daubechies minimum-support least asymmetric
wavelet and the Coiflets [7] of various lengths are used for the comparison. Table 2 lists the
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TABLE 2

Comparison of Different Wavelet Filter Types and Lengths for Eight Vistex

Images with SNR 5 dB

Daubechies minimum-support
least asymmetric Coiflets

4 8 16 6 12 18

1 Level 2 VAR 94.0 94.7 95.4 95.7 94.7 95.8
2 Level 3 VAR 95.7 96.7 96.3 96.3 95.7 95.4
3 Level 4 VAR 96.1 95.4 95.3 94.9 94.7 95.9
4 All levels VAR 96.5 95.4 95.6 95.6 95.4 96.3

classification results on the eight Vistex images with noise level of SNR 5 dB. We see that
almost all differences in classification accuracy among the different filter types and lengths
are within 1%. No particular trend can be observed as the filter length increases, and the
overall performance of the two types of filters are almost the same. These results seem to
indicate that the conclusions drawn in the previous section are very likely to be similar for
other types of wavelets.

3.5. Comparison of the KLT and MDEE

Except for some small feature vectors in the above experiments, we use the MDEE
transform in place of the KLT. We did not list the specific grouping parameters in the table

FIG. 10. Comparison of the KLT and MDEE transforms: (a) plot of the top 30 largest eigenvalues, (b) plot
of the correct classification rate against number of features used. In both plots, the square symbol is for the KLT
and the other three are for MDEE:× for n= 20;+ for n= 10; s for n= 5.
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TABLE 3

Comparison of the DSM, PSM, and Texture Features Extracted Directly from Spatial Domain

Images, for Eight Vistex Images with SNR 5 dB

Training data Testing data All data Feature number

1 Original image 97.1 73.0 79.4 23
2 PSM 91.0 85.7 87.1 7
3 DSM 99.0 96.4 97.1 10

of results, because the numerical differences between the standard KLT and the MDEE
transform are negligibly small, as shown in the following experiment.

For this experiment, the data set comprises the original eight images from the previous
experiment. The feature vector is formed by 420 frequency components in the center high-
frequency region of the Fourier transform magnitude matrix. We use a small feature vector
for this experiment so the brute force KLT can be computed within a reasonable time with
reasonable memory requirement. For the MDEE transform, the feature vector is broken into
seven feature vectors of length 60 each. Then, the firstn= 20, 10, and 5 dominant features
in each group are selected to form the new feature vector of length 7· n, from which the final
dominant eigenvalues and eigenvectors are computed. Figure 10a shows the results of the
top 30 eigenvalues of the standard KLT and the MDEE transforms with the three values of
n. We see that when 20 features are kept after the first step eigenvalue computation, the final
MDEE eigenvalues are almost the same as the standard KLT. When only 10 or 5 features
are kept, the first 15 eigenvalues are still similar to KLT; the remaining eigenvalues start
to lose a very small amount of energy. However this does not affect the final classification
results at all. Figure 10b shows the classification accuracies using the KLT and the MDEE
plotted against the number of features used. All four groups of results overlap with each
other almost completely, with the maximum classification accuracy difference being less
than 0.5%.

3.6. Comparison of the DSM Features with the PSM Features

A comparison of the DSM features with the PSM [17] features is conducted on the eight
Vistex images with noise level of SNR 5 dB. Results are given in Table 3, where the DSM
features show nearly 10% better performance than the PSM features. The performance

TABLE 4

Classification Results of the 16 Vistex Images

Original 16 Vistex images 16 Vistex images of SNR 5 dB

Feature Feature
Training Testing All data num. Training Testing All data num.

1 Level 3 VAR 97.6 97.3 97.4 8 97.2 94.0 94.8 11
2 Level 4 VAR 97.8 97.2 97.3 10 99.1 92.8 94.5 19
3 All levels VAR 98.3 97.3 97.6 10 98.9 93.1 94.6 19
4 PSM 83.5 81.4 81.9 5 72.9 71.6 71.9 4
5 DSM 99.1 96.8 97.4 13 99.2 95.8 96.7 16
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TABLE 5

Classification Results of the Sidescan Sonar Images

Seafloor sidescan sonar images Arctic sidescan sonar images

Feature Feature
Training Testing All data num. Training Testing All data num.

1 Level 3 VAR 99.4 99.4 99.4 6 93.3 83.2 85.9 12
2 Level 4 VAR 100 98.8 99.1 13 96.1 81.4 85.3 20
3 All levels VAR 100 98.9 99.2 14 98.3 85.3 88.7 23
4 PSM 98.4 93.4 94.6 16 93.9 89.1 90.4 8
5 DSM 100 99.8 99.9 22 98.9 92.5 94.2 9

discrepancy is further widened when tested on a larger data set, as described in the next
section. This demonstrates that the optimal feature selection approach using MDEE and
Bhattacharyya distance is better than anad hocfeature extraction method. The first row in the
table gives the results of using the original image directly as the feature vector. The poor per-
formance confirms that the phase information is only a noise signal for texture classification.

3.7. Experiments on the Sonar Imagery

Finally, we apply the algorithms on the classification of a larger data set of 16 Vistex
images and the sidescan sonar images. Only the feature groups that perform best in the above
experiment are used. Table 4 shows the classification results on the Vistex images, which
are consistent with the above results. An interesting observation is that the DSM method is
very insensitive to noise. With SNR 5 dB noise added to the 16 images, the classification
accuracy drops less than 1%. This is exactly the kind of property that is important for the
noisy sonar image classification.

For the sidescan sonar images, although the image class number is smaller, each class
of images is noisy and nonuniform. From results in Table 5, it is interesting to see that
the wavelet features perform better than the PSM features on the seafloor data, while they
give worse results on the Arctic ice canopy data. This shows that both methods rely on the
combination of frequency channel features through ad hoc linear or nonlinear operations
and thus produce unstable results for different data. We can see from both datasets that
the DSM texture features are very effective in classification of sidescan sonar images. This
again demonstrates that given proper feature extraction approach, more effective texture
features can be extracted from the Fourier transformation than from the more complex
wavelet transformation.

4. CONCLUSIONS

Based on the above experiments, the following conclusions are drawn:

(1) Variance (energy) measures are much better than entropy and higher order moments.
For variance features, overcomplete representation does not add more information than
individual level features. Higher levels of decomposition perform better than lower levels.
This leads to the conclusion that the Fourier transform magnitude features are better than
the more complicated wavelet packet features.
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(2) The MDEE is a close approximation of the KLT. The MDEE plus the Bhattacharyya
distance measure is shown to be very effective in extracting texture features from both
wavelet packet transforms and the Fourier transform.

(3) The Fourier phase information is a noise signal for texture classification. However,
the superior performance of DSM over the conventional PSM shows that the Fourier trans-
form magnitudes contain enough texture information for classification, if the right feature
extraction algorithm is used.

(4) Multichannel features are insensitive to noise. Features from higher levels are less
sensitive than the lower level features. Dominant Fourier transform features are the best
in terms of noise insensitivity and are clearly very effective features for both optical and
sidescan sonar image classification.
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