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AbstractÐThe faces in a 2D line drawing of an object provide important information for the reconstruction of its 3D geometry. In this

paper, a graph-based optimization method is proposed for identifying the faces in a line drawing. The face identification is formulated

as a maximum weight clique problem. This formulation is proven to be equivalent to the formulation proposed by Shpitalni and Lipson

in [1]. The advantage of our formulation is that it enables us to develop a much faster algorithm to find the faces in a drawing. The

significant improvement in speed is derived from two algorithms provided in this paper: The depth-first graph search for quickly

generating possible faces from a drawing and the maximum weight clique finding for obtaining the optimal face configurations of the

drawing. The experimental results show that our algorithm generates the same results of face identification as Shpitalni and Lipson's,

but is much faster when dealing with objects of more than 20 faces.

Index TermsÐ3D object reconstruction, depth-first search, face identification, graph algorithms, line drawing interpretation, maximum

weight clique problem.

æ

1 INTRODUCTION

AN important research area in computer vision is
developing algorithms that can interpret a single

2D line drawing of an object as humans do and can
reconstruct its 3D geometry. One application of such
research is in CAD, where it is highly desirable to convert
a design sketch into a 3D model. An object consists of faces.
If the face configuration of an object is known before
reconstructing it, the complexity of the reconstruction
problem will be reduced significantly [1], [2], [3]. Our work
in this paper is to find the faces in a 2D wireframe drawing
which are the ones humans would most likely identify.
Here, a line drawing should be able to be represented by a
single edge-vertex graph and is a 2D projection of an object
from a general viewpoint that reveals all the edges and
vertices of the object (no edges or vertices coincide). Fig. 1
shows two such line drawings together with their indivi-
dual faces. The object in Fig. 1a has six faces, while that in
Fig. 1c has three.

In recent years, several papers addressed 3D reconstruc-

tion from 2D single wireframe drawings. Marill [4]
presented a very simple optimization approach that can

duplicate human perception in recovering the 3D shape of a
simple 2D line drawing. Leclerc and Fischler [3] improved
Marill's results significantly by first finding the face

configuration of a wireframe object and then combining a
planarity constraint into Marill's objective function, but

Leclerc and Fischler's method of finding the planar faces of
a drawing is only suitable for simple objects (such as those

without holes) and cannot deal with multisolution cases.
Shpitalni and Lipson took the work further and presented
impressive results in face identification from wireframe
objects [1] and in reconstruction of 3D objects from line
drawings based on the face configurations found [2]. Their
method can handle a large range of objects that may be
manifold or nonmanifold. However, their algorithm for face
identification is inefficient. In our experiments, when
dealing with an object consisting of more than 20 faces,
Shpitalni and Lipson's algorithm requires such a long time
(for example, more than one hour on a Pentium II PC for an
object with 27 faces) that it cannot be applied in practice
because of the exponentially increasing combinatorial
search. In this paper, we revisit the problem tackled by
Shpitalni and Lipson in [1] proposing, for face identifica-
tion, a graph-based optimization method that is different
from, but equivalent to, Shpitalni and Lipson's method. Our
formulation allows us to develop a more efficient algorithm
to find the faces of a wireframe object.

The rest of this paper is organized as follows: In Section 2,
we briefly describe Shpitalni and Lipson's method and
point out why it is so time-consuming. We present our
method in Section 3. The equivalence between these two
methods is proven in Section 4. Section 5 provides two
separate algorithms that carry out the main computation in
our method: Depth-first graph search for quickly generating
the minimal set of potential faces of a drawing and
maximum weight clique finding for choosing the best face
configurations from these potential faces. Section 6 presents
the experimental results and the comparisons of computa-
tional time between our and Shpitalni and Lipson's
algorithms. Finally, our conclusions are given in Section 7.

2 SHPITALNI AND LIPSON's METHOD

Shpitalni and Lipson's work in [1] is closely related to our
work in this paper: finding faces in a single 2D drawing.
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They proposed two methods of face identification, respec-

tively, for manifold objects of genus zero and for general

objects. Their first method is simple and efficient, but only

suitable for a limited type of objects. For general manifold

or nonmanifold objects, face identification becomes much

more difficult. Shpitalni and Lipson's main effort is in

developing the second method. This method can success-

fully find the faces of a general object despite the

inefficiency of their algorithms when dealing with objects

of many faces. Here, our work is to develop a more efficient

method for face identification for general objects. Below, we

briefly describe some terms (also used in this paper) and

Shpitalni and Lipson's method for general objects. Recall

that a line drawing is represented by an edge-vertex graph.

. d�v�: The degree of a vertex v denoting the number of
edges meeting at v.

. R�v�: The rank of a vertex v denoting the number of
faces with boundaries passing through v.

. R�e�: The rank of an edge e denoting the number of
faces with boundaries passing through e.

. A circuit: A closed trail (in a graph) where all its
vertices except the end vertices are distinct.

. A non-self-intersecting circuit: A circuit without
edges intersecting.

. A potential face: A non-self-intersecting circuit.

. A minimal potential face: A potential face without a
smooth (noncreased) edge (in the drawing) connect-
ing two of its nonadjacent vertices.

Fig. 2 shows a simple drawing and all its potential faces,

among which the last four are minimal potential faces.

Circuit �1; 2; 3; 7; 6; 4; 1� is not a minimal potential face

because there exists an edge connecting vertices 3 and 4 in

the drawing. The last three circuits are real faces.
Shpitalni and Lipson's face identification method for

general objects is built upon a basic theorem, the face

adjacency theorem, which states that two adjacent planar

faces may coexist in the same object if and only if their

common edges are collinear. This theorem can be expanded

to allow nonplanar, smooth faces. The expanded one states

that two adjacent smooth faces may coexist in the same

object if and only if their common edges are smooth [1].
Their method can be summarized in these steps:

1. Find all the potential faces from a given wireframe
line drawing using the circuit space method.

2. Obtain a smaller set of minimal potential faces from
the set of the potential faces.

3. For n minimal potential faces, calculate the binary
matrix B � �bij�n�n according to the face adjacency
theorem, where bij � 1 denotes that faces i and j can
coexist in the same object, whereas bij � 0 denotes
that they cannot.

4. Calculate the upper bounds of the ranks (also called
the maximum ranks) of all the edges and vertices
from the drawing through an iterative procedure.

5. Use the A* algorithm to search for the optimal
solutions of this optimization problem:1

minimize: g�x� �
X
�R��e� ÿR�e���X
�R��v� ÿR�v�� �1�

subject to: R�e� � R��e�; 8e �2�
R�v� � R��v�; 8v �3�
bij � 1; i 6� j; i; j 2 x; �4�

where x is a subset of the minimal potential faces,
R�e� and R�v� are the respective actual edge and
vertex ranks corresponding to x, and R��e� and
R��v� are the respective upper bounds of edge and
vertex ranks of the drawing (see Section 4.1 for how
to derive R��e� and R��v�).

6. When there is more than one solution, use image
regularities [1] to select the most plausible one.

The kernel of the method is the formulation of face
identification presented in (1), (2), (3), and (4). This Shpitalni
and Lipson's optimization problem is called SLOP in what
follows. Steps 1 and 2 generate the input of the A* algorithm
for solving SLOP and Steps 3 and 4 are used to obtain
R��e�, R��v�, and B for building SLOP. The algorithms in
Steps 1 and 5 consume most of the computation time and
are inefficient. The reasons for the inefficiency are given
below. First, we consider the algorithm in Step 1.

A wireframe line drawing such as that shown in Fig. 3
can be represented as a connected undirected graph. Let
G � �V ;E� be such a graph where V and E are the sets of
vertices and edges of G, respectively. Let T � �V ;E0� be a
spanning tree of G, where E0 is the edge set of T . Any edge
in E ÿ E0 constructs one circuit when added to T . Such a
circuit is called a fundamental circuit. All the fundamental
circuits of G, with respect to T , form a basis for the circuit
space of G [5]. Every spanning tree of G contains
jV j ÿ 1 edges, so there are � � jEj ÿ jV j � 1 fundamental
circuits with respect to any spanning tree of G. An efficient
O
ÿjV j3� algorithm producing the set of fundamental circuits

for G can be found in [5].
Any circuit of G can be expressed as a linear combination

(called ring-sum) of the fundamental circuits. Thus, all the
circuits of G can be generated using ring-sums with the
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1. In [1], Shpitalni and Lipson presented the objective function in this
form g�x� �P jR��e� ÿR�e�j �P jR��v� ÿR�v�j: The two absolute signs
are removed in (1) because of the two constraints in (2) and (3).

Fig. 1. (a) A drawing and (b) its six faces. (c) Another drawing and (d) its

three faces.



circuit basis. Enumerating all possible ring-sums (excluding
the null element), we obtain 2� ÿ 1 vectors, each of which is
a circuit or an edge-disjoint union of circuits [6]. Because
not every vector is a circuit, a test is required to delete the
edge-disjoint unions of circuits. In general, only a small
fraction of 2� ÿ 1 vectors are circuits. The best time bound
of a circuit space algorithm for producing all the circuits of
a graph is O�� � 2�� [6]. For face identification, circuits with
intersecting edges do not correspond to the faces of an
object and can be deleted, leaving behind the potential
faces. In fact, the potential faces are also a small fraction of
the circuits. Further, the number of potential faces is
reduced in Step 2 to obtain a set of minimal potential faces.

For the object in Fig. 3, we have � � 15 and
2� ÿ 1 � 32; 767. There are only 3,185 circuits among
these 32,767 vectors and 734 non-self-intersecting circuits
out of the 3,185 circuits. Among the 734 potential faces,
there are only 54 minimal potential faces. The number of
vectors generally increases exponentially with increase in
the number of faces of an object. The circuit space
method needs to enumerate a large pool of vectors before
obtaining a much smaller set of minimal potential faces.
Obviously, this method is inefficient.

The A* algorithm in Step 5 is also very time consuming;
it is used to search for the optimal solutions of SLOP. A* is a
state space search approach utilizing certain domain-
dependent heuristic information to focus the search for
the optimal path. Its efficiency depends critically on how
precise the estimate of the heuristic function is and, in
general, precise estimates are quite difficult to obtain [7],
[8]. Shpitalni and Lipson also employed a heuristic function
to help A* speed up its search. The information is the total
edge number of the minimal potential faces that have not
been assigned and do not conflict with the already assigned
minimal potential faces. Note that, when an object has many
faces (say, 20), the minimal potential faces (the input of A*)
are many more than the actual faces of the object. For the
states, except those at deep levels (near the end of the search

paths), there are many minimal potential faces that remain
to be tested and do not conflict with the already assigned
faces. These minimal potential faces, most of which are not
actual faces, make the estimate inaccurate. In addition, A*
needs to search for possible multiple solutions. Even if it
has found an optimal solution with the minimum value of
the objective function g�x� � 0, it cannot be stopped.
Therefore, the heuristic information in Shpitalni and
Lipson's A* algorithm is insignificant in improving the
search. Instead, the constraints in (2), (3), and (4) play a
more important role in pruning the size of the huge search
tree. However, our experimental results, given in Section 6,
show that the A* algorithm with pruning by the constraints
still consumes a large amount of search time.

3 FORMULATION OF FACE IDENTIFICATION

For a wireframe drawing with all the edges visible, a
human tends to choose a face configuration in which there
are as many edges as possible. This is the criterion for our
solution to the face identification problem (it is also the
criterion for building SLOP in [1]). Besides, the faces
selected must not violate the constraint imposed by the
face adjacency theorem. With these two points, we define
the problem as follows:

Definition 1. Let w�i� be the number of edges of a face i. Given
an edge-vertex graph of an object and the set, denoted by
SMPF , of the minimal potential faces generated from the
graph, the objective of face identification is to find all the sets
x1; x2; . . . ; xs, where s is the number of sets and xk �
SMPF; 1 � k � s; such that, for every xk, the sum of w�i�;
i 2 xk; is maximal and the faces in xk satisfy the face
adjacency theorem. In short, the problem is:

maximize : f�x� �
X
i2x

w�i�; x � SMPF �5�

subject to : bij � 1; i 6� j; i; j 2 x: �6�

In Definition 1, more than one solution is found when
s > 1: Comparing this optimization problem with SLOP, we
can see that our representation is simpler and does not contain
any ranks. Actually, we will prove in the next section that
these two representations are equivalent. Now, we show that
the problem presented in (5) and (6) corresponds to the
maximum weight clique problem (MWCP).

MWCP is an extension of the maximum clique problem
(MCP) in graph theory. A clique of a graph G 2 is a complete
subgraph of G, a subgraph in which any two vertices are
adjacent. A maximum clique of G is the largest complete
subgraph of G. MCP is to find the maximum clique of G. If
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2. Here, G may not be an edge-vertex graph of an wireframe object.

Fig. 2. A drawing and its potential faces.

Fig. 3. A graph of 23 vertices and 37 edges.



the vertices of G are associated with weights (which should
not all be the same), G is called a weighted graph. The
weight of a clique is the sum of all the weights of the
vertices of the clique. MWCP is the problem of finding a
clique of greatest weight in a weighted graph. To see how
the problem in Definition 1 corresponds to MWCP, we can
create a weighted graph in which a minimal potential face is
represented by a vertex with the number of edges of the
face being its weight and vertex i and vertex j are adjacent if
bij � 1. It is obvious that the problem in Definition 1 is
actually MWCP if the objective of MWCP is to find all the
cliques of greatest weight. This is the case in our present
problem. Thus, we will be solving MWCP.

Now, we give an example in Fig. 4 to illustrate MWCP

for face identification more clearly. All the minimal

potential faces of the drawing in Fig. 4a are shown in

Fig. 4b. The weighted graph is created using these faces and

the binary matrix B � �bij�9�9 (Recall that B is obtained

according to the face adjacency theorem). Vertices 1 and 2

are two isolated ones due to b1x � 0; x � 2; 3; . . . ; 9 and

b2y � 0; y � 1; 3; 4; . . . ; 9. The two maximum weight cliques

corresponding to two possible solutions are shown in

Fig. 4d. In Section 5, we will provide an algorithm for

finding all the maximum weight cliques of a weighted

graph.

4 PROOF OF EQUIVALENCE

In this section, we prove that MWCP is equivalent to SLOP.
But, first, we point out that the iterative procedure in Step 4
of Shpitalni and Lipson's method for finding the maximum
ranks [1] is not necessary. Actually, they can be calculated

directly with two equations, which leads to the reduction of
SLOP to MWCP.

4.1 Calculation of Maximum Ranks

The so-called ranks play a very important role in Shpitalni
and Lipson's method of face identification. The maximum
edge and vertex ranks calculated from a given drawing
impose two of the three constraints on the faces found by A*
when searching (see (2) and (3)). For simplicity, the
maximum edge and vertex ranks are denoted, respectively,
in this section by R�e� and R�v�, instead of R��e� and R��v�.

Based on the face adjacency theorem, when no two edges
meeting at a vertex are collinear, Shpitalni and Lipson gave
the following three inequalities and an equation for finding
the maximum edge and vertex ranks of a graph:

R�v� � fd�v��d�v� ÿ 1�g=2 �7�
R�e� � minfd�v1�; d�v2�g ÿ 1 �8�
R�v� � b

X
R�e�

h i
=2c; for all edges meeting at vertex v �9�

R�e� � minfR�v1�; R�v2�g; �10�
where v1 and v2 are two end-vertices of edge e in (8) and
(10), bac denotes the largest integer � a, all the ranks are
integers. These relations are derived from the local analysis
of a general edge and its two end-vertices. Since a face
boundary passing through vertex v must pass through two
edges meeting at v, the largest number of faces passing
through v cannot exceed C2

d�v�, the possible edge pair
combinations at v, which leads to (7). Similarly, because a
face passing through edge e also passes through one of the
other edges meeting at its end-vertices v1 or v2, we have
R�e� � d�v1� ÿ 1 and R�e� � d�v2� ÿ 1; thus, (8) follows.
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Fig. 4. MWCP for face identification. (a) A drawing of five faces. (b) Nine minimal potential faces of the drawing. (c) The weighted graph

corresponding to the minimal potential faces, where the two digits inside a circle (vertex) denote the label and the weight of the vertex, respectively.

(d) Two possible solutions with the maximum clique weight 21.



After the ranks of all the edges meeting at vertex v have
been obtained, (9) follows from the fact that a face passing

through v also passes through two of these edges. Since a
face passing through an edge e also passes through its
two end-vertices v1 and v2, we have R�e� � R�v1� and

R�e� � R�v2�, which lead to (10). Shpitalni and Lipson used
(7) and (8) to compute the preliminary estimation of the

maximum edge and vertex ranks and then applied (9) and
(10) iteratively until all the ranks satisfy (7), (8), (9), and (10).

In the following, we prove that this iterative procedure in

Shpitalni and Lipson's method is not necessary in order to
find the maximum ranks in a graph. We assume that the
degree of any vertex in a graph is larger than one. If there

are some vertices with their degrees equal to one, there will
be edge subsets that form parasitic trees, as shown in Fig. 5.

Obviously, no faces pass through edges e1 through e5 and
very simple algorithms can be developed to remove these

edges. Note that the degree of v2 is not equal to one at first,
but becomes one after e4 and e5 are removed, after which e3

is also removed.
Now, we show that if we use this equation

R�e� � minfd�v1�; d�v2�g ÿ 1 �11�
to compute R�e� and then (9) to calculate R�v�; all the edge
and vertex ranks will satisfy (7), (8), (9), and (10). In the

following proofs, it is implied that d�v� � 2 for any vertex v
in a graph; ba�aÿ 1�=2c � a�aÿ 1�=2 if a is an integer;
ba=2c � a=2 if a is even; ba=2c � �aÿ 1�=2 if a is odd.

Theorem 1. If R�v� is obtained by (11) and (9), then

R�v� � fd�v��d�v� ÿ 1�g=2.

Proof. Suppose there are n (� d�v�) edges meeting at vertex
v (see Fig. 6). From (11), we have R�ei� � d�v� ÿ 1,
i � 1; 2; . . . ; n. Thus,

R�v� �Xn
i�1

R�ei�
" #

=2

$ %
� bfn�d�v� ÿ 1�g=2c � fd�v��d�v� ÿ 1�g=2:ut

Lemma 1. In a graph, if d�v� � 2, 8v, then R�e� � 1, 8e, where

R�e� is obtained by (11).

This lemma comes directly from (11).

Theorem 2. If the edge and vertex ranks are obtained by (11) and

(9), then R�e� � minfR�v1�; R�v2�g for any edge e and its

two end-vertices v1 and v2.

Proof. Let the edges meeting at v1 be e1; e2; . . . ; en and the

edges meeting at v2 be e1; e
0
2; . . . ; e0m, as shown in Fig. 7.

Then, d�v1� � n and d�v2� � m. Without loss of general-

ity, suppose

d�v1� � d�v2�: �12�
Then,

R�e1� � minfd�v1�; d�v2�g ÿ 1 � d�v1� ÿ 1 � nÿ 1: �13�
We consider two cases.

Case 1. Suppose R�v1� � R�v2�. We now show
R�e1� � R�v1�.

Case 1.1. If
Pn

i�1 R�ei� is even, then

R�v1� �
h
R�e1� �

Xn
i�2

R�ei�
i
=2:

By Lemma 1, it is easy to see that

Xn
i�2

R�ei� � nÿ 1 � R�e1�:

Thus, R�e1� � R�v1�.
Case 1.2. If

Pn
i�1 R�ei� is odd, then

R�v1� �
h
R�e1� �

Xn
i�2

R�ei� ÿ 1
i
=2:

By Lemma 1, we know R�ei� � 1, i � 2; 3; . . . ; n, but

we claim that it is impossible here that R�ei� � 1,

i � 2; 3; . . . ; n. Assume, to the contrary, that

R�e2� � R�e3� � � � � � R�en� � 1:

Then,

R�v1� � �R�e1� � nÿ 2�=2 � R�e1� ÿ 1=2;

which indicates that R�v1� is not an integer and, thus,

produces a contradiction. Therefore, there is at least one

R�ek�, 2 � k � n, such that R�ek� � 2, which results inPn
i�2 R�ei� � n. Thus, it follows that

R�v1� � �R�e1� � nÿ 1�=2 � R�e1�:
Case 2. Suppose R�v1� > R�v2�: We now verify

R�e1� � R�v2�.
Case 2.1. If R�e1� �

Pm
i�2 R�e0i� is even, we have, by

Lemma 1,

R�v2� �
h
R�e1� �

Xm
i�2

R�e0i�
i
=2 � �R�e1� � d�v2� ÿ 1�=2:

From (12) and (13), it follows that R�v2� � R�e1�.
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Fig. 5. A graph with two parasitic trees.

Fig. 6. n edges meeting at vertex v.

Fig. 7. Edges and vertices in the proof of Theorem 2.



Case 2.2. If R�e1� �
Pm

i�2 R�e0i� is odd, then

R�v2� � �R�e1� �
Xm
i�2

R�e0i� ÿ 1�=2:

From (12) and (13), we haveh1 � d�v2� ÿR�e1� � 1 and, by
Lemma 1, hi � R�e0i� � 1, i � 2; 3; . . . ;m. However, we
claim that it is impossible that hi � 1; i � 1; 2; . . . ;m.
Assume, to the contrary, that h1 � h2 � � � � � hm � 1.
Then, we have

R�v2� �
�R�e1� �mÿ 2�=2 � �R�e1� � d�v2� ÿ 2�=2 � R�e1� ÿ 1=2;

which indicates that R�v2� is not an integer and produces
a contradiction. Therefore, there exists at least one hk,
1 � k � m, such that hk � 2. Then,

R�v2� �
h
R�e1� ÿ 1�

Xm
i�2

hi

i
=2

�
h
R�e1� ÿ 1ÿ h1 �

Xm
i�1

hi

i
=2

�
h
R�e1� ÿ 1ÿ h1 �m� 1

i
=2

�
h
R�e1� ÿ d�v2� �R�e1� �m

i
=2 � R�e1�;

which completes the proof. tu
Theorems 1 and 2 show that the edge and vertex ranks

calculated by (11) and (9) satisfy conditions (7), (8), (9), and
(10) and, thus, they are the maximum ranks. We do not
need the iterative procedure in [1] to obtain them.

When two edges meeting at a vertex are collinear in a
graph, there may be two or more faces sharing the two
edges in a smooth entity chain, as the smooth entity chain
�1; 2; 3; 4� in Fig. 8, where three faces pass through
edge �2; 3�. In this case, Shpitalni and Lipson extended (8) to

R�e� � min
X

d�vL� ÿ 2nL;
X

d�vR� ÿ 2nR

n o
� 1; �14�

where nL (nR) is the number of vertices on the left (right) of
edge e and vL (vR) denote all the nL (nR) vertices along the
smooth entity chain on the left (right) of edge e. Then, (14) is
used to replace (8) in order to find the maximum edge and
vertex ranks in the iterative procedure. Here, we follow
Shpitalni and Lipson, using ªleftº and ªrightº to denote the
two directions along a smooth entity chain.

We can also prove that the iterative procedure is
unnecessary in this case if we use this equation

R�e� � min
X

d�vL� ÿ 2nL;
X

d�vR� ÿ 2nR

n o
� 1 �15�

to compute R�e� and then use (9) to calculate R�v�.

Theorem 3. If the edge and vertex ranks are obtained by (15) and

(9), then R�e� � minfR�v1�; R�v2�g for any edge e and its

two end-vertices v1 and v2.

The proof of Theorem 3 is similar to that of Theorem 2. We

do not present it here because of space constraints. The

interested reader can find the proof in our technical report [9].
Theorem 3 indicates that the edge and vertex ranks

calculated by (15) and (9) are the maximum ranks and, thus,

Shpitalni and Lipson's iterative procedure to find them is

not necessary. More importantly, the theorems in this

section allow us to reduce SLOP to MWCP.

4.2 Reduction of SLOP to MWCP

In this section, the maximum edge and vertex ranks

calculated from a graph G are denoted by R��e� and

R��v�, respectively, and the edge and vertex ranks

computed from some subset x of minimal potential faces

are denoted by R�e� and R�v�, respectively. Now, we show

that SLOP presented in (1), (2), (3), and (4) is redundant and

can be replaced by MWCP.

Lemma 2. Let x be a subset of the minimal potential faces of a

graph. If the faces in x satisfy the constraint in (4), then

1) R�e� � R��e�; 8e and 2) R�v� � R��v�; 8v.

Proof.

1. Both the constraint in (4) and the inequality in (14)
stem from the face adjacency theorem. Shpitalni
and Lipson defined the general maximum edge
rank inequality in (14) and used the right side of it
to be the initial value in their iterative procedure
for finding R��e� and R��v�: However, we have
proven that the iterative procedure cannot reduce
this initial value. Therefore, it is equal to R��e�,
which is the upper bound for allowing the most
faces to pass through edge e according to the face
adjacency theorem. Therefore, if the constraint in
(4) is satisfied by the faces in x, it is impossible
that more than R��e� faces in x pass through e. So,
R�e� � R��e�; 8e.

2. Let all the edges meeting at vertex v be

e1; e2; . . . ; em: Since a face in x passing through v

also passes through two of these edges, we obtain

2R�v� �Pm
i�1 R�ei�: From the result in 1, we have

R�ei� � R��ei�, i � 1; 2; . . . ;m: Thus,

2R�v� �
Xm
i�1

R��ei�: �16�

If
Pm

i�1 R
��ei� is even, then from (9),

2R��v� �
Xm
i�1

R��ei�:

So, R�v� � R��v�: If
Pm

i�1 R
��ei� is odd, again

from (9), we have

2R��v� �
Xm
i�1

R��ei� ÿ 1:
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Fig. 8. A smooth entity chain �1; 2; 3; 4�, where three faces pass through

edge �2; 3�.



Since 2R�v� is even, it follows from (16) that
2R�v� �Pm

i�1 R
��ei� ÿ 1. Hence, R�v� � R��v�. tu

Theorem 4. SLOP in (1), (2), (3), and (4) is equivalent to
MWCP in (5) and (6).

Proof. Let x be a subset of the minimal potential faces of a
graph G. By Lemma 2 and the definitions of the
constraints in SLOP and MWCP, we can see that, for
the same x, the constraints in SLOP are satisfied if and
only if the constraint in MWCP is satisfied.

Since no two vertices of a face are the same, the edge
number and the vertex number of any face are equal.
Thus, for some x,

P
R�e� �PR�v�; and g�x� in (1) can

be rewritten as g�x� �PR��e� �PR��v� ÿ 2
P
R�e�.

Here,
P
R��e� �PR��v� is a constant for G andP

R�e� � f�x� �Pi2x w�i�. It is easy to see that g�x� is
minimum if and only if f�x� is maximum. Therefore,
SLOP and MWCP are equivalent. tu

The constraint in (4), coming from the face adjacency
theorem, implies the constraints in (2) and (3) by Lemma 2.
However, that the faces in x satisfy (2) and (3) does not
mean that they must satisfy the constraint in (4) too. Fig. 9
gives such an example. The drawing in Fig. 4a with its
maximum vertex and edge ranks is shown in Fig. 9a. A
subset, x � f3; 6; 7; 8; 9g, of the minimal potential faces in
Fig. 4b are illustrated in Fig. 9b. It can be seen that, for x, the
constraints in (2) and (3) are satisfied, but the constraint in
(4) is not because b36 � b37 � 0.

5 TWO ALGORITHMS IN THE FACE IDENTIFICATION

PROBLEM

We provide two algorithms in this section for two key steps
in the face identification problem. The first is a depth-first
search algorithm for generating the set of minimal potential
faces of a drawing. The second is a maximum weight clique
finding algorithm for choosing the best face configurations
from these minimal potential faces.

5.1 A Depth-First Search Algorithm

Depth-first search on a graph can generate all the circuits of
the graph and several such algorithms are available [6].
However, from the example (Fig. 3) given in Section 2, we
have seen that the minimal potential faces of interest are

much fewer than the circuits. An algorithm enumerating all
the circuits first and then finding the minimal potential
faces is not efficient for face identification. In this section,
we present a depth-first search algorithm with two pruning
operations derived from two conditions of being a minimal
potential face: a circuit without self-intersecting edges and
without any other edge in a drawing which connects any
two nonadjacent vertices of the circuit [1].

For a circuit with an edge connecting its two nonadjacent
vertices, such as the circuit c1 � �12; 15; 18; 20; 19; 21; 12� and
the edge �15; 19� in Fig. 3, c1 cannot coexist in the same object
with the two enclosed smaller circuits c2 � �12; 15; 19; 21; 12�
and c3 � �15; 18; 20; 19; 15� according to the face adjacency
theorem, but c2 and c3 can since they only have one common
edge. Because the number of edges of c2 and c3 is larger than
that of c1, the optimization process in Step 5 of Shpitalni and
Lipson's method will tend to select c2 and c3 as the object's
faces and discard c1. It is worth noting that not every circuit
that encloses two others can be deleted, as in the case shown in
Fig. 10, where the circuit c1 � �1; 2; 3; 4; 5; 6; 9; 10; 1� encloses
circuits c2 � �3; 4; 5; 6; 8; 7; 3� and c3 � �1; 2; 3; 7; 8; 6; 9; 10; 1�.
Though c1 cannot coexist with c2 and c3, c2 and c3 cannot
coexist with each other either. So, all three of them need to be
kept in the set of minimal potential faces.

Now, let us see why it is beneficial to combine the two
conditions of being a minimal potential face into depth-first
search on a graph. For the graph in Fig. 3, consider the
circuits starting from and ending at vertex 1:

�1; 7; 6; 4; 3; 5; 8; v1; v2; . . . ; vm; 9; 2; 1�;
where v1; v2; . . . ; vm 2 f10; 11; . . . ; 23g. Obviously, there are
many different circuits obtainable by the permutations of
some of the vertices v1; v2; . . . ; vm. However, with the first
condition, all these circuits are not potential faces because
edges �1; 7� and �4; 3� intersect. Thus, we can stop the search
algorithm when this fact is established. For the second
condition, consider the circuits

�1; 4; 6; 7; 8; v01; v02; . . . ; v0n; 9; 2; 1�;
where v01; v

0
2; . . . ; v0n 2 f10; 11; . . . ; 23g. Since there exists an

edge �1; 7� connecting the two nonadjacent vertices 1 and 7
in these circuits, they can be eliminated when the algorithm
reaches vertex 7. Our algorithm for finding the set of
minimal potential faces is provided below.

Algorithm 1. (Depth-first search with two pruning
operations)

[To find the set of the minimal potential faces of a graph
G � �V ;E� with the vertices numbered from 1 to jV j, given
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Fig. 9. (a) A drawing with its maximum ranks shown, where the
maximum vertex ranks are denoted by underlined numbers and the
maximum edge ranks by the other numbers. (b) A subset of the minimal
potential faces of the graph in (a).

Fig. 10. A wireframe object where circuit �1; 2; 3; 4; 5; 6; 9; 10; 1� encloses

circuits �3; 4; 5; 6; 8; 7; 3� and �1; 2; 3; 7; 8; 6; 9; 10; 1�, but cannot be

deleted.



the adjacency lists of G, AdjList�v�, v � 1; 2; . . . ; jV j, the

adjacency matrix of G, and the intersecting matrix denoting

whether any two edges of G intersect.]

1. index 0

2. for i � 1 to jV j do Label�i�  0

3. for i � 1 to jV j ÿ 2 do

begin

4. start � i
5. CIRCUIT�i�
6. Update the adjacency lists AdjList�v�,

v � i� 1; i� 2; . . . ; jV j
by deleting vertex i from them

end

7. procedure CIRCUIT�v�
begin

8. index index� 1

9. Label�v�  1

10. Path�index�  v

11. for u 2 AdjList�v� do

12. if u � start and index � 3 then

begin

13. if edge �u; v� intersects any edge in
the current path then goto 17

14. if Path�2� < Path�index� then

output the circuit consisting of
the vertices in Path followed
by u and goto 17

end

else

15. if Label�u� � 0 and edge �u; v� does not
intersect any edge in the current
path and there is no edge in G

connecting any two nonadjacent
vertices in the current path,
then extend the path by calling

16. CIRCUIT�u�
17. index indexÿ 1

18. Label�v�  0

19. end of CIRCUIT

Now, we explain the above algorithm. An array Path is

used to keep the vertices in the current search path. Line 1

initializes a global variable index, the value of which gives the

position of the last-added vertex in Path during the search.

Line 2 initializes a label Label�v� for each vertex v. Label�v� �
1 indicates that vertex v is inPath and 0 otherwise. In Lines 3,

4, 5, and 6, always beginning from the smallest numbered

vertex i, the algorithm searches graph G for the minimal

potential faces that start and end at that vertex. A global

variable start �� i� is used to let the recursive procedure

CIRCUIT know whether a circuit is found. After all such

circuits are found, the adjacency lists of G are updated by

deleting vertex i and then the search continues.
The main part of the algorithm is the recursive procedure

CIRCUIT. In Line 12, the condition index � 3 guarantees a

circuit consisting of at least three edges. The two pruning

operations are presented in Lines 13 and 15. Whether an

edge intersects any edges in the current path can be

determined from the input intersecting matrix and the
adjacency matrix of G can be employed to determine if
there is an edge in G connecting any two nonadjacent
vertices in the path. Note that if we ignore the condition
Path�2� < Path�index� in Line 14, we will obtain double the
circuits, each of which exists twice in reverse orders, such as
the circuits �1; 2; 3; 4; 1� and �1; 4; 3; 2; 1� in Fig. 3.

The above algorithm cannot be directly applied to a
special kind of drawings in which there exist ªparallelº
edges that join pairs of vertices, as shown in Fig. 11. An
adjacency matrix is not suitable for representing such a
graph. However, the algorithm works well when we add a
new vertex at the middle of the curved edge before search.
The efficiency of this algorithm over the circuit space
method will be demonstrated in Section 6.

5.2 A Maximum Weight Clique Finding Algorithm

As we have mentioned in Section 3, MWCP is an extension
of MCP, the well-known maximum clique problem in graph
theory. Unfortunately, MCP is NP-complete, meaning that
there are no polynomial algorithms for it so far [10]. If all
the weights of the vertices of a weighted graph are equal to
one, MWCP reduces to MCP. This indicates that MWCP is
also NP-complete. However, for face identification, it is still
possible to develop much faster algorithms for MWCP than
the A* algorithm for SLOP.

Many algorithms for MWCP have been proposed in the
literature. Bomze et al. provided a comprehensive survey of
these algorithms in [11]. We have not tested the perfor-
mance of these algorithms against ours presented in the
following. However, our algorithm is easy to understand
and implement, can give all the maximum weight cliques
when multiple solutions exist in a weighted graph, and is
much faster for MWCP than the A* algorithm for SLOP.

Carraghan and Pardalos [12] proposed an exact algo-
rithm for MCP, using ªpartial enumeration.º Their compu-
tational results show that the algorithm can solve very large
MCP. In addition, they claimed that their algorithm was
faster than any previously known method for MCP when
tackling randomly generated graphs. Carraghan and
Pardalos's algorithm cannot be applied to MWCP, but their
scheme of partial enumeration is helpful for our developing
an algorithm for MWCP.

Now, we describe how our algorithm works through an
example: finding the maximum weight cliques of the
weighted graph in Fig. 4c. We emphasize again that in face
identification, all the cliques with the maximum weight are
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Fig. 11. (a) A drawing with parallel edges. (b) The drawing without

parallel edges generated by adding to the left drawing a new vertex at

the middle of the curved edge.



required to be found. Here are several variables used in
Table 1 for the description of the algorithm:

. W�i�: The weight of vertex i.

. ns: The number of solutions.

. CMWC�i�: An array to store the ith current
maximum weight clique found so far.

. cmw: The current maximum weight of a clique.

. ccw: The weight of the current clique.

. pvw: The sum of the weights of the vertices that can
be added into the current clique (see the following
explanation).

At first, cmw is set to 0 and the vertices are listed in the
order of increasing degrees. We have observed in our
experiments that this ordering makes the algorithm run
faster. In the middle column of Table 1, each list of vertices
corresponds to a ªlevel.º At level 1, the set S1 �
fv1; v2; . . . ; vng of all the n vertices are listed. The algorithm
first finds all the maximum weight cliques containing v1

and then, from the set S2 � S1 ÿ fv1g, tries to find all the
maximum weight cliques that contain v2 and have larger
weights than the cliques found previously, etc. The bold
number (vertex) on the list at level 1 indicates that this
vertex and those after it will be examined for possible better
cliques (ones with larger weights). The list of vertices at
level i (i > 1) are the vertices adjacent to and listed after the
bold vertex at level iÿ 1.

Now, suppose the algorithm reaches level k. This means
that it has found a clique of k vertices that are located from
level 1 to level k and are marked bold in the table. As defined
above, ccw is equal to the sum of weights of these vertices, and
pvw is the sum of the weights of the vertices listed after the
bold vertex (say, vj) at level k: For example, at level 3 of Step 4
in Table 1, we have vj � 7, ccw �W�4� �W�6� �W�7�, and
pvw �W�8� �W �9�. If ccw� pvw < cmw, the cliques, found
by further adding the vertices adjacent to and listed after vj at
level k, will not have larger weights than the current
maximum weight clique. In this case, we can stop the
algorithm doing such an invalid search. Note that the value
of cmw becomes larger when a better clique is found,
providing a higher threshold for the algorithm to prune the
search. This pruning scheme can save a large amount of
computational time when dealing with a large weighted
graph. For the example in Table 1, at level 5 of Step 4, the
algorithm finds the first maximum weight clique and then the
second at level 5 of Step 5. These two cliques are the two
solutions to the MWCP.

The algorithm is shown in Algorithm 2 in which, besides
the variables defined above, l denotes the current level the
algorithm is at; first�l� and last�l� are two indexes,
denoting the first�l�th and last�l�th vertices at level l,
respectively (the former corresponds to the bold one and
the latter to the last one at some level in Table 1).

Algorithm 2. (Maximum weight clique finding)
[To find all the maximum weight cliques of a weighted

graph G � �V ;E� with the vertices numbered from 1 to jV j]
1. Initialization: cmw 0 and l 1 and first�l�  0

and last�l�  jV j
2. first�l�  first�l� � 1

3. Calculate ccw and pvw

4. if ccw� pvw < cmw then

5. if l � 1 then output ns cliques CMWC�i�,
1 � i � ns and stop

6. else l lÿ 1 and goto 2
7. if among the vertices listed after the first�l�th one at

level l, there exist m �> 0� vertices that are adjacent
to the first�l�th one in G then list these vertices at
level l� 1 and first�l� 1�  0 and last�l� 1�  m

and l l� 1 and goto 2
8. if ccw > cmw then cmw ccw and ns 1 and put the

first�1�th, first�2�th, � � � , first�l�th vertices in
CMWC�ns�

9. if ccw � cmw then ns ns� 1 and put the first�1�th,
first�2�th, � � � , first�l�th vertices in CMWC�ns�

10. if l > 1 and first�l� � last�l� then l lÿ 1

11. goto 2

Before proceeding to the next section, we summarize our
face identification method in the following four steps:

1. Find all the minimal potential faces from a drawing
using the depth-first search algorithm.

2. Calculate the binary matrix B according to the face
adjacency theorem, with the minimal potential faces.

3. Construct the weighted graph, and search for all the
maximum weight cliques in this graph using the
maximum weight clique finding algorithm.

4. Use image regularities to select the most plausible
one if there is more than one solution.

Here, Steps 2 and 4 are, respectively, the same as Steps 3

and 6 in Shpitalni and Lipson's method presented in Section

2. These two steps can be implemented easily. The reader

can find more details in [1].

6 EXPERIMENTAL RESULTS

In this section, we present a set of examples to illustrate and

compare the face identification by our method and Shpitalni

and Lipson's method. As expected, for every drawing, the

faces found by the two methods are the same because of the

equivalence between these two methods. However, our

algorithm runs much faster when dealing with objects of

many faces. The comparisons of computational efficiency

between the two algorithms are emphasized here.
Shpitalni and Lipson's method consists of six steps,

while ours consists of four. Each step in either method is

carried out by a separate algorithm. The majority of

computational time in Shpitalni and Lipson's method is

consumed by the algorithms for generating the minimal

potential faces and the A* algorithm. Thus, for each

drawing, we give three times taken in generating the

minimal potential faces, finding the optimal face configura-

tions, and carrying out all the steps in each method. For

conciseness, the algorithms to perform Steps 1 and 2 in

Shpitalni and Lipson's method are called ªCircuitSpaceº

and ªA*º stands for the A* algorithm in Step 5. The whole

algorithm to implement Steps 1, 2, 3, 4, 5, and 6 is called

ªS&L.º Similarly, ªDFS,º ªMWCF,º and ªL&Lº are short,

respectively, for the depth-first search algorithm, the

maximum weight clique finding algorithm, and the whole
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algorithm to carry out Steps 1, 2, 3, and 4 in our method. All

the algorithms are implemented using Visual C++, running

on a 300 MHz Pentium II PC.
Fig. 12 shows six objects, each together with the faces

found by L&L or S&L. Obviously, the faces found accord

with human interpretation of the drawings. Each object

except the first one in the sequence has two more faces than

its previous one. The experiments on these objects can

reflect how the computational times taken by the two

methods vary with the number of faces of an object.
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TABLE 1
The Steps and Explanation of Our Algorithm for Finding the Maximum Weight Cliques of the Weighted Graph in Fig. 4c



Table 2 gives the results for the six objects in Fig. 12.
From it, we can see that the number of circuits �nc�
grows exponentially with the number of faces �nf�
selected finally. Examining the data in the table, we can
derive an approximate relation between nc and nf :
nc � 3185� 3:3�nfÿ17�=2. Fortunately, the increase in the
number of minimal potential faces is much slower. In
Shpitalni and Lipson's method, when the time taken by
CircuitSpace or A* is more than 10 seconds for an object,
the time consumed in Steps 3, 4, and 6, if less than
1 second, is ignored. It is shown in the table that both
CircuitSpace and A* are time-consuming. For Building 6,
S&L requires more than 1 hour, while L&L only takes
less than 1 second. It is clear that our algorithm runs
much faster.

Fig. 13 shows another three objects and the faces found
by L&L or S&L. All three objects have more than 20 faces.
Note that ªSolid objectº has two curved faces. The
computational results are presented in Table 3. Again, we
can see that our algorithms are much more efficient than
Shpitalni and Lipson's.

We also tested the algorithms on all the objects given in

Shpitalni and Lipson's experiments in [1]. The results are

summarized in Table 4. For three of the objects, MWCF or

A* gives more than one solution, but the last step in L&L or

S&L selects one face configuration for each object. The faces

found accord with human interpretation of the drawings.

The drawings and the face configurations selected finally

can be found in [1]. From Table 4, we can see that Shpitalni

and Lipson's algorithms do not require much time for

objects with less than 20 faces.

Comparing Table 4 with Table 1 in [1], the reader may

notice that Shpitalni and Lipson's gave fewer potential faces

and minimal potential faces for all the objects except the last

two. For example, for the object BWP (building with

parking), Shpitalni and Lipson gave 194 potential faces

and 53 minimal potential faces, while we obtain 3,057 po-

tential faces and 102 minimal potential faces. We believe

that Shpitalni and Lipson missed some of them. It is

possible that different numbers of potential faces

and minimal potential faces are obtained from different
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Fig. 12. Six objects each with the faces found by L&L or S&L. One solution is obtained for each object after MWCP or SLOP is solved.



projections of a 3D object because of different intersections

between edges of the projections. However, in our experi-

ments, we made sure that our drawings are as similar to

Shpitalni and Lipson's as possible. Consider the object BWP

again. If the part ªparkingº in BWP (see [1]) is added into

the lowest vertex in Building 3 in Fig. 12, Building 3 with

the parking will present the same edge intersections as

BWP. But, we obtain 3,056 potential faces and 101 minimal

potential faces from Building 3 (without the parking). In

the Appendix, we list all the minimal potential faces of

Building 1 for verification. Building 3 has more vertices and

edges than Building 1 and is an extension of Building 1. We

can see that there are 54 minimal potential faces even in

Building 1.

7 CONCLUSIONS

A graph-based method for face identification from single

2D line drawings has been presented. The method is proven

to be equivalent to Shpitalni and Lipson's method. How-

ever, our formulation of the face identification enables us to

develop a much faster algorithm, L&L, for obtaining faces

from drawings. Two separate algorithms, DFS and MWCF

contained in L&L, are provided to generate all the minimal

potential faces in a line drawing and find the optimal face

configurations from it, respectively. DFS uses two pruning

operations to speed up the search and is problem-

dependent, but MWCF can be applied to any maximum

weight clique finding problem.
All the drawings in Shpitalni and Lipson's experiments

and some new drawings are used to compare our and

Shpitalni and Lipson's algorithms. For every drawing, the
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TABLE 2
Results for the Objects in Fig. 12

The CPU time (seconds) taken by each algorithm is shown in the last six rows.

Fig. 13. Three objects and their faces found by L&L or S&L. One solution

is obtained for each object after MWCP or SLOP is solved.

TABLE 3
Results for the Objects in Fig. 13

The CPU time (seconds) taken by each algorithm is shown in the last six
rows.



two methods can find the same faces that accord with

human interpretation of the drawing, but our algorithm

runs much faster when handling an object of more than

20 faces.
The complexities of DFS and MWCF are not polynomial.

As the faces of an object increases to a large number

(e.g., 50), a nonpolynomial algorithm will suffer from too

much computation time. To alleviate this problem, a

possible solution is to find an approach that can divide

the large graph of an object into several small ones, to each

of which our algorithms can be applied efficiently.
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TABLE 4
Results for the Objects in Shpitalni and Lipson's Experiments

Here, the object names BWP, CWPH, SMPWH, NTCM, SMP, AM, and OM are short, respectively, for building with parking, cube with piercing hole,
sheet metal product with holes, nontrihedral concave manifold, sheet metal product, ambiguent manifold, and orthogonal manifold in [1]. The CPU
time (seconds, on a 300 MHz Pentium II PC) taken by each algorithm is shown in the last six rows.

TABLE 5
All the Minimal Potential Faces in the Object Building 1



APPENDIX

ALL THE MINIMAL POTENTIAL FACES IN THE Object
BUILDING 1

The object Building 1 in Fig. 12 is the same as the object in
Fig. 3, where the label of every vertex is given. In Table 5,
the numbers are vertex labels and each list is a closed loop
of vertices that form a minimal potential face. None of the
faces contains any other two faces that share only one
common edge. The faces found by L&L or S&L are
highlighted in bold.
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