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ABSTRACT 
Sign board detection is important for such computer vision 
applications as video surveillance and content based visual 
information retrieval. Previous researches on this topic focus 
mainly on application specific sign board such as car plates and 
traffic signs. Many special properties including special color, size, 
shape, and symmetry have to be used to detect these special sign 
boards. In this paper, we develop a system to detect generic sign 
board in an image or video. The only assumption we made is that 
the sign has to be a polygon formed by straight boundaries. Using 
a new set of straight line and polygon geometry analysis 
techniques, we can accurately locate a sign in a cluttered image 
efficiently. Experiments on over one hundred images clearly 
demonstrate the efficacy of the new algorithms. 

Categories and Subject Descriptors 
I.4.8 [Scene Analysis]: Object recognition, Shape.  

General Terms 
Algorithm, Design, Experimentation. 

Keywords 
Hough transform, Image analysis, Line verification, Sign board 
detection. 

1. INTRODUCTION 
Sign board detection is important for such computer vision 
applications as video surveillance and content based visual 
information retrieval. Previous researches on this topic focus 
mainly on application specific sign board such as car plates and 
traffic signs [1-7]. Color segmentation, gradient analysis, and 
Hough transform are generally used [1-5]. Some papers also used 
neural network or symmetry transform [6-7]. However, these 
methods are all limited by some application specific conditions, 
such as the shape of the car plates and the color of traffic signs.  

In this paper, we present a system that can detect generic signs. 
The signs can be any polygon, not necessarily restricted to traffic 

signs or car plates. They can also be posters, name plates on 
doors, advertising board etc. The only assumption we made is that 
the sign has to be formed by straight boundaries. The system uses 
a gradient based Hough transform [8-10] to detect the boundary 
lines. We then develop a fast close circuit detection algorithm and 
a redundant line deletion technique to locate the sign board in the 
image. The algorithm is tested on over one hundred images. 

2. PRE-PROCESSING 
The pictures taken in outdoor environment are usually very 
cluttered. Fig. 1(a) shows such an example. So pre-processing is 
necessary to simplify the image before further processing. We 
propose three preprocessing steps for this purpose: edge detection, 
corner detection, and small segments deletion. For the first step, 
we use Canny edge detection algorithm. Figure 1 (b) shows the 
image after Canny edge detection. 

 

 
 (a)    (b) 
 

 
 
After edge detection, there are usually a large number of edges in 
a natural image, as shown in Fig. 2 (a). The signs are assumed to 
have relatively straight long boundaries. Other natural objects on 
the background may have randomly oriented interconnecting 
segments or curves as shown in Fig. 2 (a). We use a corner 
detection algorithm [11] to detect all the corners in the edge map, 
and then remove the corner points to break the interconnecting 
long edges into small segments. Since the corners do not affect 
long straight lines, we can therefore remove all the short segments 
broken by the corner points, as shown in Fig. 2 (b). Now the 
number of edges are much smaller thus enable a faster processing 
in the following steps. 
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Figure 1. Original image and edges. 
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3. GRADIENT BASED HOUGH 

     TRANSFORM 
Hough transform is an often used method to detect straight lines 
in an image [12]. But the main disadvantage of Hough transform 
is the large time and memory consumption, which is an important 
issue we consider for this application. So we use a significantly 
faster gradient based Hough transform instead [13]. 
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For Hough transform, a line function passes through an edge point 
p is determined by an angle θ  and distance d: 

dyx =+ θθ sincos , as shown in Fig. 3. Hough transform 

specifies all possible angles θ  to the points, and calculates the 
corresponding distance d. By using an accumulator A for all d 
andθ , the peaks in A are the most probable lines in the image.  
As mentioned above, Hough transform is very time consuming. 
So we use gradient based Hough transform instead. Notice that 
points are most likely to be on the line that has the same gradient 
as the point itself. So each point is calculated only for one angle 
θ  and one distance d according to the gradient of the point. 
Although this algorithm is sometimes not very accurate due to the 
gradient computation error, it is still often used because of the 
great amount of time it saves. For the standard Hough transform, 
we need to consider the range of θ  for 0°-180° and 270°-

360. Suppose the angle quantization interval is 5°. Then there 
will be 270/5=54 angles for one point that we need to calculate 
the distance d. But if we use gradient information, we only need 
to calculate the distance once. The lines detected are shown in 
Fig. 4(b). The points in Fig. 4(a) are the edge points with the same 
gradient and distance as the lines in Fig. 4(b). They contribute to 
the peaks in the accumulator.  

4. LINE VERIFICATION 
After Hough transform, we get all the possible lines in the image. 
In order to find out the two ending points of each boundary 
segment, we compute the intersection points of all the lines first.  
Then the lines are cut into small segments by these intersections. 
And the corners of the signs should be among these intersections. 
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Figure 2. Illustration of cutting short segments. 

Figure 3. Parameters d and θ  in Hough. 

Figure 4. Lines detected and corresponding 
density points. 

Figure 5. Intersection point that is occluded. 

Figure 6. Lines before and after density checking.
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If the segment is indeed the boundary, there should be many 
points with the same gradient and distance lying on that line. So 
we check the point’s density on the segment then the segments 
with a density over a threshold are kept, and other segments are 
removed. For example, the points in Fig. 6(b) all belong to the 
segment in Fig. 6(a). Because of the high point density, this 
segment is kept as a boundary segment. Figure 6(c) shows the 
segments selected for lines in Fig. 4(b). The boundaries of the 
sign board are believed to be among these segments. Some more 
complicated results are shown in Fig. 7. 

 
 

 
  (a)  (b) 

 
Figure 7. Line segment extraction results after checking point 

density. 
 
 

4.1 Find Close Circuits 
Now the candidate segments are found. We still need to decide 
which segments eventually form the boundaries of the sign. Since 
sign boundaries usually form a close circuit, we first detect all the 
close circuits among the line segments. Some of the segments 
may not be connected due to the noise, even though in fact they 
should be connected. So we first merge some intersections that 
are close enough. Examples of a set of closed segments are shown 
in Fig. 8(a).  

 

 
   (a)      (b)           (c)           (d)         (e)           (f) 

 
 

Figure 8. Steps of finding closed circuit. 
 
 

Depth-first search is a popular method to find closed circuits [14]. 
If we want to find out every possible closed circuits, depth-first 
search need to be used for every points. The method is too time 
consuming for our application.  

We propose a fast algorithm that first only finds one closed circuit 
in a connected graph. Then, each path with its two ends connected 
to that circuit is treated as an additional part of that closed circuit.  

Repeat the process until the entire closed circuit is found. Using 
the example in Fig. 8(a), we illustrate the algorithm as follows. 

First, delete the points with only one segment connected to it, like 
point 9 in Fig. 8(a). “Delete” here means delete the point and all 
the segments that end at this point. Double check until every point 
is connected with more than 1 segment.  

Starting from the smallest number point (1) to find the first loop 
starts and ends at it. Number the loop as loop No.1, as shown by 
the dotted segments in Fig. 8(b). Put the loop’s points (1,4,8) into 
a point set P. Put the path’s segments (1-4, 4-8, 8-1) into a 
segment set S. 

Then, try to find a path that starts and ends at the points in P, but 
the segments cannot be the ones in S. For example, path 1-5-8 
satisfies this condition. Because its two ends 1 and 8 all belong to 
loop No.1, the path 1-5-8  also belong to path No.1, as shown by 
dotted segments in Fig. 8(c). Put the corresponding points (5) and 
segments (1-5, 5-8) into P and S.  

Find every possible segment that can be added to the closed 
circuit No.1. Then start from the smallest point that is not in S. In 
this case, it is point (2). Again, try to find a closed loop. In the 
example, the loop is shown in bold dotted segments in Fig. 8(d). 
Because it is independent of loop No.1, number it as loop No.2. 
Also, put the points (2,3,6,7) into P and segments (2-3, 3-6, 6-7, 
7-2) into S. 

For the new points in P, we can find a path (7-8) that starts and 
ends at the points in P. But points 7 and 8 belong to different loop 
(No.1 and No.2). So we combine loop No. 2 into loop No. 1. Thus 
the loop No.1 becomes Fig. 8(e). Continue until all the points are 
checked. The final result is shown in Fig. 8(f). 

 
 

 
(a) (b)  (c)  

 
 

 
      (d)    (e)  (f) 

 
 

Figure 9. Examples of finding closed circuit. 
 
 

The segment (7-8) seems redundant in Fig. 8. However, it should 
not be removed in the searching process. Because removing this 
type of segments may cause losing some loops, as shown by the 
example in Fig. 9. The dotted segments in Fig. 9(b) are the closed 
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loops we found. If we delete the path that ends at different loops, 
the path (3-9-6) will be removed, and the result   would become  
Fig. 9 (f).  That is definitely not the result we want. If those paths 
are kept, the result will be Fig. 9 (c). All the possible closed 
circuits are included in Fig. 9 (c), though there are some 
redundant segments. These redundant lines can be removed after 
the close circuit detection step. Some image results are shown by 
dotted segments in Fig. 10(a) & (b). 

 
 

 
 (a)  (b)  (c) 

 
 
 

5. REMOVE REDUDANT LINES 
Although the closed loops are detected, there exist some 
redundant segments, like segment 7-8 in Fig. 8(f). Some typical 
redundant segments are shown in Fig. 11. The middle line in (a), 
the smaller rectangle in (b), and the connecting segment in (c), are 
segments that should be removed. We design a fast algorithm to 
remove these lines. 

 

 

 
 (a)  (b)  (c) 

 
 
 
 
 

The algorithm tries to color the background pixels that surround 
the outer most close circuit. Then the line pixels with these 
colored pixels around are the pixels we want. “Colored” means 
the value of the point is set to 2 in the following example. The 
searching order is from left to right, and top to bottom. We use the 
image in Fig. 11(a) as an example to illustrate algorithm. 

 

1. Assume the line points are 0, the backgrounds are 1. 
Then the original image is shown as matrix C in Fig. 
12(a).  

2. Find the neighbors of the line points. That is to expand 
the lines using a 3×3 zero kernel. The result is D in Fig. 
12(b).  

3. In the line’s neighborhood points, find the first 
uncolored background pixel in C. That means C(x,y)=1 
and D(x,y)=0. Color it into 2. In the example, this pixel 
is at point (5,5), which is bracketed in Fig. 12(a)(b). 

4. Color the background pixels in the neighbor area with 
point (5,5). Scan the pixels to its right side and on the 
same row until we find a pixel which do not satisfy the 
following conditions: C(m,n)=1 & D(m,n) = 0. Color all 
these pixels into 2. Then the same coloring procedure is 
used for the left, up, and down directions of pixel (5,5). 
Then D is shown in Fig. 12(c). 
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Figure 11. Three examples of redundant segments. 

Figure 10. Results of close circuits detection. 
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5. Find the next non-colored pixel (x,y) at the line neighbor. 
In addition, it should satisfy the condition that at least one of its 4-
neighbours is colored. Such pixel is bracketed, as shown in Fig. 

12(c).  If no such pixel is found, go to step 6. Otherwise, go to 
step 4.  

6. Now, D becomes the matrix in Fig. 12(d). Check for the 
line pixels (C(x,y)=0). If the colors of all its neighbors are the 
same in D, then this pixel is redundant, and need to be removed. 
The final result is shown in Fig. 12(e). 

Thus, we can remove the redundant lines successfully. 
Figure 13 shows the result for Fig. 11. An image example is 
shown in Fig. 10(c). 

This method can identify the redundant lines efficiently. The 
neighbors of the inner segments (Fig. 11(a,b)) are all 0. The 
neighbors of the connecting segments (Fig. 11(c)) are all 2 or 0. 
And the neighbors of the pixels on the lines that we really want 
are 1 and 2. Also, this method is very fast. Because only the 
neighbors of the line points are considered. 

 
 

 
 
 
 

 
 

6. EXPERIMENTS 
In the experiment, we test the system on 104 images. The results 
are listed in Table 1. The successful rate is over 93%. Some 
detection results are shown by dotted segments in Fig. 14. The 
background is quite cluttered. The signs are correctly detected. In 
addition, the algorithm can also detect a sign that is covered 
partly, as shown in Fig. 15. Of course, the covered part should not 
be too large. 

 

Table 1. Performance of the system. 
 

Total images Success Fail Success Ratio 
104 97 7 93.3% 

 
 

The reasons that cause the failure are listed below. It is possible 
that more than one of these reasons may cause a failure: 

• The boundaries are too blurry. Thus it fails at the edge 
detection step.  

• The boundaries are cut into segments thus can’t create a 
peak in the accumulator. Then the boundary segments are 
removed at the pre-processing step. 

• Gradient error that causes the distances of the boundary 
vary greatly thus cannot create a peak cell in the 
accumulator. 

Figure 12. Illustrations of removing redundant 
segments. 

Figure 13. Results of Fig. 11 with redundant 
segments are removed. 
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7. CONCLUSION 
In this paper, we present a method to detect sign boards in image 
and video. The sign can be any polygon shape, and is not limited 
to rectangles or triangles. In our system, gradient based Hough 
transform is used. After the Hough transform, we compute all the 
line segments candidates by checking the point density of each 
segment. Then using a fast closed circuit detection algorithm and 
an efficient redundant line deletion method, the signs can be 
correctly detected. Experimental results on over one hundred 
images demonstrate the efficacy of the algorithm. In the future 
study, we intend to add texture information to the system. Since 
texture right inside the sign boundary tend to be smooth. 
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Figure 14. Some example results. 

Figure 15. Signs with corners covered in the 
image. 

149




