
Generic Sign Board Detection in Images
Hua Shen

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong

hshen1@ie.cuhk.edu.hk

Xiaoou Tang
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong

xtang@ie.cuhk.edu.hk

ABSTRACT
Sign board detection is important for such computer vision
applications as video surveillance and content based visual
information retrieval. Previous researches on this topic focus
mainly on application specific sign board such as car plates and
traffic signs. Many special properties including special color, size,
shape, and symmetry have to be used to detect these special sign
boards. In this paper, we develop a system to detect generic sign
board in an image or video. The only assumption we made is that
the sign has to be a polygon formed by straight boundaries. Using
a new set of straight line and polygon geometry analysis
techniques, we can accurately locate a sign in a cluttered image
efficiently. Experiments on over one hundred images clearly
demonstrate the efficacy of the new algorithms.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Object recognition, Shape.

General Terms
Algorithm, Design, Experimentation.

Keywords
Hough transform, Image analysis, Line verification, Sign board
detection.

1. INTRODUCTION
Sign board detection is important for such computer vision
applications as video surveillance and content based visual
information retrieval. Previous researches on this topic focus
mainly on application specific sign board such as car plates and
traffic signs [1-7]. Color segmentation, gradient analysis, and
Hough transform are generally used [1-5]. Some papers also used
neural network or symmetry transform [6-7]. However, these
methods are all limited by some application specific conditions,
such as the shape of the car plates and the color of traffic signs.

In this paper, we present a system that can detect generic signs.
The signs can be any polygon, not necessarily restricted to traffic

signs or car plates. They can also be posters, name plates on
doors, advertising board etc. The only assumption we made is that
the sign has to be formed by straight boundaries. The system uses
a gradient based Hough transform [8-10] to detect the boundary
lines. We then develop a fast close circuit detection algorithm and
a redundant line deletion technique to locate the sign board in the
image. The algorithm is tested on over one hundred images.

2. PRE-PROCESSING
The pictures taken in outdoor environment are usually very
cluttered. Fig. 1(a) shows such an example. So pre-processing is
necessary to simplify the image before further processing. We
propose three preprocessing steps for this purpose: edge detection,
corner detection, and small segments deletion. For the first step,
we use Canny edge detection algorithm. Figure 1 (b) shows the
image after Canny edge detection.

 (a) (b)

After edge detection, there are usually a large number of edges in
a natural image, as shown in Fig. 2 (a). The signs are assumed to
have relatively straight long boundaries. Other natural objects on
the background may have randomly oriented interconnecting
segments or curves as shown in Fig. 2 (a). We use a corner
detection algorithm [11] to detect all the corners in the edge map,
and then remove the corner points to break the interconnecting
long edges into small segments. Since the corners do not affect
long straight lines, we can therefore remove all the short segments
broken by the corner points, as shown in Fig. 2 (b). Now the
number of edges are much smaller thus enable a faster processing
in the following steps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MIR ’03, November 7, 2003, Berkeley, California, USA.
Copyright 2003 ACM 1-58113-778-8/03/00011…$5.00.

Figure 1. Original image and edges.

144

3. GRADIENT BASED HOUGH

 TRANSFORM
Hough transform is an often used method to detect straight lines
in an image [12]. But the main disadvantage of Hough transform
is the large time and memory consumption, which is an important
issue we consider for this application. So we use a significantly
faster gradient based Hough transform instead [13].

 (a) (b)

 y
 θ

 d
 p

 x

For Hough transform, a line function passes through an edge point
p is determined by an angle θ and distance d:

dyx =+ θθ sincos , as shown in Fig. 3. Hough transform

specifies all possible angles θ to the points, and calculates the
corresponding distance d. By using an accumulator A for all d
andθ , the peaks in A are the most probable lines in the image.
As mentioned above, Hough transform is very time consuming.
So we use gradient based Hough transform instead. Notice that
points are most likely to be on the line that has the same gradient
as the point itself. So each point is calculated only for one angle
θ and one distance d according to the gradient of the point.
Although this algorithm is sometimes not very accurate due to the
gradient computation error, it is still often used because of the
great amount of time it saves. For the standard Hough transform,
we need to consider the range of θ for 0°-180° and 270°-

360. Suppose the angle quantization interval is 5°. Then there
will be 270/5=54 angles for one point that we need to calculate
the distance d. But if we use gradient information, we only need
to calculate the distance once. The lines detected are shown in
Fig. 4(b). The points in Fig. 4(a) are the edge points with the same
gradient and distance as the lines in Fig. 4(b). They contribute to
the peaks in the accumulator.

4. LINE VERIFICATION
After Hough transform, we get all the possible lines in the image.
In order to find out the two ending points of each boundary
segment, we compute the intersection points of all the lines first.
Then the lines are cut into small segments by these intersections.
And the corners of the signs should be among these intersections.

 (a) (b)

(a) (b)

(a) (b) (c)

Figure 2. Illustration of cutting short segments.

Figure 3. Parameters d and θ in Hough.

Figure 4. Lines detected and corresponding
density points.

Figure 5. Intersection point that is occluded.

Figure 6. Lines before and after density checking.

145

If the segment is indeed the boundary, there should be many
points with the same gradient and distance lying on that line. So
we check the point’s density on the segment then the segments
with a density over a threshold are kept, and other segments are
removed. For example, the points in Fig. 6(b) all belong to the
segment in Fig. 6(a). Because of the high point density, this
segment is kept as a boundary segment. Figure 6(c) shows the
segments selected for lines in Fig. 4(b). The boundaries of the
sign board are believed to be among these segments. Some more
complicated results are shown in Fig. 7.

 (a) (b)

Figure 7. Line segment extraction results after checking point

density.

4.1 Find Close Circuits
Now the candidate segments are found. We still need to decide
which segments eventually form the boundaries of the sign. Since
sign boundaries usually form a close circuit, we first detect all the
close circuits among the line segments. Some of the segments
may not be connected due to the noise, even though in fact they
should be connected. So we first merge some intersections that
are close enough. Examples of a set of closed segments are shown
in Fig. 8(a).

 (a) (b) (c) (d) (e) (f)

Figure 8. Steps of finding closed circuit.

Depth-first search is a popular method to find closed circuits [14].
If we want to find out every possible closed circuits, depth-first
search need to be used for every points. The method is too time
consuming for our application.

We propose a fast algorithm that first only finds one closed circuit
in a connected graph. Then, each path with its two ends connected
to that circuit is treated as an additional part of that closed circuit.

Repeat the process until the entire closed circuit is found. Using
the example in Fig. 8(a), we illustrate the algorithm as follows.

First, delete the points with only one segment connected to it, like
point 9 in Fig. 8(a). “Delete” here means delete the point and all
the segments that end at this point. Double check until every point
is connected with more than 1 segment.

Starting from the smallest number point (1) to find the first loop
starts and ends at it. Number the loop as loop No.1, as shown by
the dotted segments in Fig. 8(b). Put the loop’s points (1,4,8) into
a point set P. Put the path’s segments (1-4, 4-8, 8-1) into a
segment set S.

Then, try to find a path that starts and ends at the points in P, but
the segments cannot be the ones in S. For example, path 1-5-8
satisfies this condition. Because its two ends 1 and 8 all belong to
loop No.1, the path 1-5-8 also belong to path No.1, as shown by
dotted segments in Fig. 8(c). Put the corresponding points (5) and
segments (1-5, 5-8) into P and S.

Find every possible segment that can be added to the closed
circuit No.1. Then start from the smallest point that is not in S. In
this case, it is point (2). Again, try to find a closed loop. In the
example, the loop is shown in bold dotted segments in Fig. 8(d).
Because it is independent of loop No.1, number it as loop No.2.
Also, put the points (2,3,6,7) into P and segments (2-3, 3-6, 6-7,
7-2) into S.

For the new points in P, we can find a path (7-8) that starts and
ends at the points in P. But points 7 and 8 belong to different loop
(No.1 and No.2). So we combine loop No. 2 into loop No. 1. Thus
the loop No.1 becomes Fig. 8(e). Continue until all the points are
checked. The final result is shown in Fig. 8(f).

(a) (b) (c)

 (d) (e) (f)

Figure 9. Examples of finding closed circuit.

The segment (7-8) seems redundant in Fig. 8. However, it should
not be removed in the searching process. Because removing this
type of segments may cause losing some loops, as shown by the
example in Fig. 9. The dotted segments in Fig. 9(b) are the closed

146

loops we found. If we delete the path that ends at different loops,
the path (3-9-6) will be removed, and the result would become
Fig. 9 (f). That is definitely not the result we want. If those paths
are kept, the result will be Fig. 9 (c). All the possible closed
circuits are included in Fig. 9 (c), though there are some
redundant segments. These redundant lines can be removed after
the close circuit detection step. Some image results are shown by
dotted segments in Fig. 10(a) & (b).

 (a) (b) (c)

5. REMOVE REDUDANT LINES
Although the closed loops are detected, there exist some
redundant segments, like segment 7-8 in Fig. 8(f). Some typical
redundant segments are shown in Fig. 11. The middle line in (a),
the smaller rectangle in (b), and the connecting segment in (c), are
segments that should be removed. We design a fast algorithm to
remove these lines.

 (a) (b) (c)

The algorithm tries to color the background pixels that surround
the outer most close circuit. Then the line pixels with these
colored pixels around are the pixels we want. “Colored” means
the value of the point is set to 2 in the following example. The
searching order is from left to right, and top to bottom. We use the
image in Fig. 11(a) as an example to illustrate algorithm.

1. Assume the line points are 0, the backgrounds are 1.
Then the original image is shown as matrix C in Fig.
12(a).

2. Find the neighbors of the line points. That is to expand
the lines using a 3×3 zero kernel. The result is D in Fig.
12(b).

3. In the line’s neighborhood points, find the first
uncolored background pixel in C. That means C(x,y)=1
and D(x,y)=0. Color it into 2. In the example, this pixel
is at point (5,5), which is bracketed in Fig. 12(a)(b).

4. Color the background pixels in the neighbor area with
point (5,5). Scan the pixels to its right side and on the
same row until we find a pixel which do not satisfy the
following conditions: C(m,n)=1 & D(m,n) = 0. Color all
these pixels into 2. Then the same coloring procedure is
used for the left, up, and down directions of pixel (5,5).
Then D is shown in Fig. 12(c).

C =

1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111100000000000011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111101111101111011111
1111100000000000011111
11111111111111111]1[1111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111

 (a)

D =

1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111000000000000001111
1111000000000000001111
1111000000000000001111
1111000111000110001111
1111000111000110001111
1111000111000110001111
1111000111000110001111
1111000111000110001111
1111000111000110001111
1111000000000000001111
1111000000000000001111
11110000000000000]0[1111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111

(b)

Figure 11. Three examples of redundant segments.

Figure 10. Results of close circuits detection.

147

D =

1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111000000000000021111
1111000000000000021111
1111000000000000021111
1111000111000110021111
1111000111000110021111
1111000111000110021111
1111000111000110021111
1111000111000110021111
1111000111000110021111
1111000000000000021111
1111]0[00000000000021111
1111222222222222221111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111

(c)

D =

1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111222222222222221111
1111200000000000021111
1111200000000000021111
1111200111000110021111
1111200111000110021111
1111200111000110021111
1111200111000110021111
1111200111000110021111
1111200111000110021111
1111200000000000021111
1111200000000000021111
1111222222222222221111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111

(d)

C =

1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111100000000000011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111101111111111011111
1111100000000000011111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111
1111111111111111111111

(e)

5. Find the next non-colored pixel (x,y) at the line neighbor.
In addition, it should satisfy the condition that at least one of its 4-
neighbours is colored. Such pixel is bracketed, as shown in Fig.

12(c). If no such pixel is found, go to step 6. Otherwise, go to
step 4.

6. Now, D becomes the matrix in Fig. 12(d). Check for the
line pixels (C(x,y)=0). If the colors of all its neighbors are the
same in D, then this pixel is redundant, and need to be removed.
The final result is shown in Fig. 12(e).

Thus, we can remove the redundant lines successfully.
Figure 13 shows the result for Fig. 11. An image example is
shown in Fig. 10(c).

This method can identify the redundant lines efficiently. The
neighbors of the inner segments (Fig. 11(a,b)) are all 0. The
neighbors of the connecting segments (Fig. 11(c)) are all 2 or 0.
And the neighbors of the pixels on the lines that we really want
are 1 and 2. Also, this method is very fast. Because only the
neighbors of the line points are considered.

6. EXPERIMENTS
In the experiment, we test the system on 104 images. The results
are listed in Table 1. The successful rate is over 93%. Some
detection results are shown by dotted segments in Fig. 14. The
background is quite cluttered. The signs are correctly detected. In
addition, the algorithm can also detect a sign that is covered
partly, as shown in Fig. 15. Of course, the covered part should not
be too large.

Table 1. Performance of the system.

Total images Success Fail Success Ratio
104 97 7 93.3%

The reasons that cause the failure are listed below. It is possible
that more than one of these reasons may cause a failure:

• The boundaries are too blurry. Thus it fails at the edge
detection step.

• The boundaries are cut into segments thus can’t create a
peak in the accumulator. Then the boundary segments are
removed at the pre-processing step.

• Gradient error that causes the distances of the boundary
vary greatly thus cannot create a peak cell in the
accumulator.

Figure 12. Illustrations of removing redundant
segments.

Figure 13. Results of Fig. 11 with redundant
segments are removed.

148

7. CONCLUSION
In this paper, we present a method to detect sign boards in image
and video. The sign can be any polygon shape, and is not limited
to rectangles or triangles. In our system, gradient based Hough
transform is used. After the Hough transform, we compute all the
line segments candidates by checking the point density of each
segment. Then using a fast closed circuit detection algorithm and
an efficient redundant line deletion method, the signs can be
correctly detected. Experimental results on over one hundred
images demonstrate the efficacy of the algorithm. In the future
study, we intend to add texture information to the system. Since
texture right inside the sign boundary tend to be smooth.

8. ACKNOWLEDGMENTS
The work described in this paper was fully supported by grants
from the Research Grants Council of the Hong Kong SAR
(Project no. CUHK 4357/02E and AoE/E-01/99).

9. REFERENCES
[1] Eun Ryung Lee, Pyeoung Kee Kim, and Hong Joan Kim,

“Automatic Recognition of A Car License Plate Using Color
Image Processing”.

[2] N. Kehtarnavaz and A. Ahmad, “Traffic Sign Recognition in
Noisy Outdoor Scenes”.

[3] Arturo de la Escalera, Miguel Angel Salichs, “Road Traffice
Sign Detection and Classification”, IEEE transactions on
Industrial Electronics, Vol. 44, No. 6.

[4] Paolo Comelli, Palo Ferragina, Mario Notturno Granieri, and
Flavio Stabile, “Optical Recognition of Motor Vehicle

License Plates”, IEEE transactions on Vehicular
Technology, Vol. 44, No. 4, November 1995.

[5] Ming G. He, Alan L. Harvey, Thurai Vinay, “Hough
Transform In Car Number Plate Skew Detection”, ISSPA,
1996.

[6] Yuji Aoyagi and Toshiyuki Asakura, “A Study on Traffic
Sign Recognition in Scene Inage Using Genetic Algorithms
and Neural Networks.”

[7] Dong-Su Kim, Sung-II Chien, “Automatic Car License Plate
Extraction Using Modified Generalized Symmetry
Transform and Image Warping”, ISIE 2001, Pusan, KOREA.

[8] Heikki Kalviainen, Petri Hirvonen, Lei Xu and Erkki Oja,
“Probabilistic and Non-probabilistic Hough Transforms:
Overview and Comparisons”, Image and Vision Computing
Volume 13 Number 4 May 1995.

[9] C. Galambos, J. Kittler and J. Matas, “Gradient Based
Progressive Probabilistic Hough Transform”, IEEE Proc. –
Vis. Image Signal Process., Vol. 148, No. 3, June 2001.

[10] J. Song, M. Cai, M.R.Lyu, S. Cai, “A New Approach for
Line Recognition in Large-size Images Using Hough
Transform”, ICPR 2002.

[11] Emanuele Trucco, Alessandro Verri, Introductory
Techniques For 3-D Computer Vision, p82-85, Prentice Hall.

[12] Hough, P. V. C., “A Method and Means for Recognizing
Complex Patterns,” U.S. Patent No. 3,069,654, 1962.

[13] Robert M. Haralick, Linda G. Shapiro, Computer and Robot
Vision, p578-582, Addison-Wesley Publishing Company,
Inc. 1992.

[14] William Ford, William Topp, Data Structures With C++,
p748-751, Prentice Hall, 1996.

Figure 14. Some example results.

Figure 15. Signs with corners covered in the
image.

149

