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Abstract. In video surveillance, the faces of interest are often of small size. Im-
age resolution is an important factor affecting face recognition by human and 
computer. In this paper, we study the face recognition performance using dif-
ferent image resolutions. For automatic face recognition, a low resolution 
bound is found through experiments. We use an eigentransformation based hal-
lucination method to improve the image resolution. The hallucinated face im-
ages are not only much helpful for recognition by human, but also make the 
automatic recognition procedure easier, since they emphasize the face differ-
ence by adding some high frequency details.   

1   Introduction 

In video surveillance, the faces of interest are often of small size because of the great 
distance between the camera and the objects. Image resolution is a potential factor 
affecting face recognition performance. In the low-resolution face images, many de-
tailed facial features are lost and faces are indiscernible to human. We also notice that 
in many automatic face recognition systems, face images are down sampled to small 
size, and also achieve satisfied performance. But how will the image resolution affect 
recognition accuracy is still open to discussion. 
    Several algorithms have been proposed to render a high-resolution face image from 
the low-resolution one. This technique is called hallucination [4]. Since face images 
are well structured and have similar appearance, they span a small subset in the high 
dimensional image space [3]. This implies that the high frequency detail can be in-
ferred from the low frequency components, utilizing the face structural similarity. 

The simplest way to increase resolution is direct interpolation of input images with 
such algorithms as nearest neighbour, cubic spline. But its performance is poor if the  
image size is too small. Baker and Kanade [4] develop a hallucination method based 
on the property of face image. It infers the high frequency component from a parent 
structure by recognizing the local features from the training set. Liu et. al. [1] develop 
a two-step statistical modeling approach integrating global and local parameter mod-
els. Hallucination has effectively improved the resolution of face images thus makes it 
much easier for a human being to recognize a face. However, how much information 
has been extracted from the low-resolution image by the hallucination process and its 
contribution to automatic face recognition has not been studied in previous works. 



    In this paper, we study the face recognition performance using different image reso-
lutions. We use a novel hallucination method based on eigentransformation [6]. It is 
closely related to the work in [5], in which an eigentransformation approach was de-
veloped for sketch recognition. In our method, PCA is applied to the low-resolution 
face image. In the PCA space, different frequency components are independent. By 
selecting the number of eigenfaces, we could extract the maximum amount of facial 
information from the low-resolution face image and remove the noise. The new hallu-
cinated face image is rendered by mapping between the low- and high- resolution 
training pairs. We also study the effect of hallucination on automatic face recognition. 
Since hallucination emphasizes the face difference by adding some high frequency 
details, it may help the automatic recognition process. Experiments are conducted on a 
database containing images of 188 people and the XM2VTS face database [2]. 

2   Multiresolution Analysis  

Viewing a 2D image as a vector, the process of getting a low-resolution face image 
from the high-resolution face image can be formulated as 
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Here, hI
�

 and lI
�

 represent the high- and low-resolution face image vectors respec-
tively. H is the transformation matrix involving blurring and downsampling process, 
and n�  is the noise perturbation to the low-resolution face image captured by camera. 
    As shown in Figure 1, a process of iterative smoothing and downsampling decom-
poses the face image into different bands, KBB ,,0 � . In this decomposition, different 
frequency bands are not independent. Some components of the high-frequency bands, 

KBB ,,1 l , can be inferred from the low frequency band 0B .  This is a starting point 
for hallucination. Many super-resolution algorithms assume the dependency as homo-
geneous Markov Random Fields (MRFs), i.e. the pixel only relies on the pixels in its 
neighborhood. This is an assumption for general images. It is not optimal for the face 
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Figure 1. Multi-resolution analysis in spatial domain. g is the smoothing function, and 
KBB ,,0 l , are different frequency bands 
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class without considering face structural similarity. A better way to address the de-
pendency is using PCA, in which different frequency components are independent.  

3 Hallucination and Recognition 

Face image can be reconstructed from some eigenfaces in the PCA representation. 
PCA also decomposes face image into different frequency components, but encoding 
facial information in a more compact way, since it takes into account of the face dis-
tribution. Our algorithm first employs PCA to extract as much useful information from 
low-resolution face image as possible, and then renders a high-resolution face image 
by eigentransformation. A detailed description for eigentransformation can be found 
in [5]. 

3.1   Principle Component Analysis 

We represent a set of face images by a N by M matrix, [ ]Mll
�

l

�

,1 , where il
�

 is the 
image vector, N is the number of image pixel, and M is the number of the training 
samples ( MN >> ). In PCA, a set of eigenvectors [ ]Kl eeE ,,1 h= , also called eigen-
faces, are computed from the ensemble covariance matrix,  
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where lm�  is the mean face computed from the sample set, and L  is the sample ma-
trix, 
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For a face image lx� , a weight vector is computed by projecting it onto eigenfaces, 
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T
ll mxEw ��� −= .                         (4) 

Noise 

Eigenfaces 

Information on 
facial feature 

K
Figure 3. Extract facial information in the 
PCA space of low-resolution face images.  
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Figure 2. Eigenfaces sorted by eigen-
values. ie  is the ith eigenface. 



This is a face representation based on eigenfaces. A face can be reconstructed from 
the K eigenfaces, 

llll mwEr ��� += .              (5) 

Figure. 2 shows some eigenfaces sorted by eigenvalues. Eigenfaces with large eigen-
values are “face-like”, and characterize low frequency components. Eigenfaces with 
small eigenvalues are “noise-like”, and characterize high frequency details.  

3.2   Eigentransformation 

Given the low-resolution sample set L, according to singular value decomposition 
theorem, lE  also can be computed from, 

2/1−Λ= lll LVE ,    (6) 

where lV  and lΛ  are the eigenvector and eigenvalue matrix for LLT . From (5) and 
(6), the reconstructed face image can be represented by 
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This shows that the input low-resolution face image can be reconstructed from the 
optimal linear combination of the M low-resolution training face images. Replacing 
each low-resolution image il '

�

 by its high-resolution sample ih '
�

, and replacing lm�  
with the high-resolution mean face hm� , we get hx� , which is expected to be an ap-
proximation to the real high-resolution face image. 

3.3 Recognition 

In our algorithm, the hallucinated face image is synthesized by the linear combination 
of high-resolution training images and the coefficients come from the low-resolution 
face images using the PCA method. Because of the structural similarity among face 
images, in multiresolution analysis, there exists strong correlation between the high 
frequency band and low frequency band. For high-resolution face images, PCA can 
compact these correlated information onto a small number of principle components. 
Then, in the eigentransformation process, these principle components can be inferred 
from those of the low-resolution face image by mapping between the high- and low-
resolution training pairs. Therefore, some information in the high frequency band 
bands are partially recovered. 

In practice, the low-resolution image is often disturbed by noise which has a flat 
distribution on all the axes. For low-resolution face images, the energy on small ei-



genvectors is small, thus is overwhelmed by noise. By selecting an optimal eigenface 
number K, we can extract the facial information and remove the noise. The informa-
tion on these noisy components (eigenfaces after K in Fig. 3) is lost, and cannot be 
recovered since the components on different eigenvectors are independent in PCA 
space. In this sense, our hallucination method has extracted the maximum amount of 
facial information exists in the low-resolution face images. 

Given the significant improvement of the face appearance by the hallucination 
process, it is interesting to investigate whether the hallucination helps automatic rec-
ognition. Since more high frequency details are recovered, we expect the ballucination 
process to help the recognition performance. 

4   Experiment 

4.1   Hallucination Experiment 

Our hallucination experiment is conducted on a data set containing 188 individuals 
with one face image for each individual. Using the “leave-one-out” methodology, at 
each time, one image is selected for testing and the remaining are used for training. In 
preprocessing, the face images are aligned by the two eyes. The distance between the 
eye centers is fixed at 50 pixels, and the image size is fixed at 125117× . Images are 
blurred by averaging neighbour pixels and down sampled to low-resolution images. 
Here, we use the eye center distance de  to measure the face resolution. 

Some hallucination results are shown in Fig. 4. The input face images are down 
sampled to 2523× , with de  equal to 10. Compared with the Cubic B-Spline interpo-
lation result, the hallucinated face images have much clearer detail features. They are 
good approximation to the original high-resolution images. 
    Figure 5 reports the hallucination performance for different input resolutions. The 
eye center distance is down sampled to 20, 10, 7, and 5. Figure 6 repots the average 
RMS error per pixel in intensity for the 188 face images. Under a very low resolution, 
the low-resolution and direct interpolated face images are almost indiscernible, and 
the RMS error of Cubic B-spline interpolation increases quickly. The performance of 
hallucination by eigentransformation is much better. When de  is down sampled to 10, 
the result of eigentransformation is still satisfactory. For further lower resolutions, 
there are some distortions on the eyes and mouth. 
     As discussed in Section 3, some high frequency detail is lost in the process of blur 
and downsampling, or is overwhelmed by noise.  Selecting the eigenface number in 
eigentransformation, we could control the detail level by keeping maximum facial 
information while removing the noise. This point can be illustrated in the experiment 
reported by Figure 7. We add zero mean, white Gaussian noise with five different 
standard deviations (σ ) to the low-resolution face image, and then use different ei-
genface number (K) for hallucination. The optimal eigenface number decreases as the 
increase of noise. Using 180 eigenfaces, the hallucinated face images are noisy and 
distorted for all the five levels of noise. When K is reduced to 100, face images under 



small noise ( 05.0,03.0=σ ) are well hallucinated. but results under more noise 
( 12.0,1.0,07.0=σ ) have a larger distortion. Using 50 eigenfaces, all of the images 
show little noise effect. So eigenface number can control the detail level to make the 
hallucinated face images robust to noise. 

4.2   Recognition Experiment 

We study the recognition performance using low-resolution face images and halluci-
nated face images. Two hundred and ninety five individuals from the XM2VTS face 
database are selected, with two face images in different sessions for each individual. 
One image is used as reference, and the other is used for testing. We use direct corre-
lation for recognition, which is perhaps the simplest face recognition algorithm. The 
recognition accuracies over different resolutions are plotted in Figure 8. When de  is 
reduced from 50 to 10, there is only slight fluctuation on recognition accuracy using 
low-resolution face images. When de  is further reduced to 7 and 5, the recognition 
accuracy for low-resolution face images drops greatly. Resolution with de  equal to 10 
is perhaps a lower bound for recognition. Below this level there may not be enough 
information for recognition. This is also consistent with the hallucination experiment 
in 4.1. Satisfactory hallucination results can be obtained when de  is larger than 10.  
     We also try to explore whether hallucination can contribute to automatic face rec-
ognition. We expect hallucination make the recognition procedure easier, since it 
emphasizes the face difference by adding some high frequency details. In this experi-
ment, the low-resolution testing image is hallucinated by reference face images, but 
the face image of the testing individual is excluded from the training set. As shown in 
Figure 8, the hallucination improved the recognition accuracy when the input face 
images have very low resolutions. 

             

             
                  (a) input 2523×      (b) Cubic B-Spline       (c) Hallucinated     (d) Original 125117 ×  

Figure 4. Hallucinated face images by eigentransformation. 



5   Conclusion 

Our hallucination method based on eigentransformation could extract the maximum 
facial information from the low-resolution face images and render some high fre-
quency facial feature to make the face image more discernible. It also makes the 
automatic face recognition more easier. We also study the face recognition perform-
ance over different resolutions. A low resolution bound for recognition is found in the 
experiment. This is only a preliminary study. The results need to be further confirmed 
using more face recognition algorithms and data sets.  
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(b) The first row is the input face images, for which de is 20, 10, 7, 5 re-
spectively; the second row is the hallucinated face images. 

Figure 5. Hallucinated face images using input images of different resolutions. 
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                                                          (b) 
Figure 7. Hallucinating face with additive Gaussian noise. (a): Low-resolution face images 
with noise, (b) Hallucinated faces. K is the eigenface number, and σ  is the standard deviation 
of Gaussian noise (Image intensity is between 0 and 1). The original high-resolution face im-
age is referred to Fig. 7 (a). 

Figure 8. Recognition accuracy using low-
resolution face images and hallucinated face 
images based on XM2VTS database.  

Figure 6. RMS error per pixel in intensity 
using Cubic-spline interpolation and halluci-
nation by eigentransformation. The intensity 
is between 0 and 1. 


