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Abstract

     Linear Discriminant Analysis (LDA) is a popular 

feature extraction technique for face recognition. 

However, it often suffers from the small sample size 

problem when dealing with the high dimensional face 

data. Some approaches have been proposed to overcome 

this problem, but they are often unstable and have to 

discard some discriminative information. In this paper, a 

dual-space LDA approach for face recognition is 

proposed to take full advantage of the discriminative 

information in the face space. Based on a probabilistic 

visual model, the eigenvalue spectrum in the null space of 

within-class scatter matrix is estimated, and discriminant 

analysis is simultaneously applied in the principal and 

null subspaces of the within-class scatter matrix. The two 

sets of discriminative features are then combined for 

recognition. It outperforms existing LDA approaches. 

1. Introduction 

LDA is a popular face recognition approach. It 

determines a set of projection vectors maximizing the 

between-class scatter matrix ( bS ) while minimizing the 

within-class scatter matrix ( wS ) in the projective feature 

space. However, LDA often suffers from the small 

sample size problem when dealing with the high 

dimensional face data. When there are not enough 

training samples, wS  may become singular, and it is 

difficult to compute the LDA vectors.  

Several approaches have been proposed to address this 

problem. In a two-stage PCA+LDA approach [1], the data 

dimensionality is first reduced by Principal Component 

Analysis (PCA), and LDA is performed in the reduced 

PCA subspace, in which wS  is non-singular. However, 

Chen et al. [2] suggested that the null space spanned by 

the eigenvectors of wS  with zero eigenvalues contains 

the most discriminative information. A LDA method in 

the null space of wS  was proposed. It chooses the 

projection vectors maximizing bS  with the constraint that 

wS  is zero. But this approach discards the discriminative 

information outside the null space of wS . Yu. et al. [3] 

proposed a direct LDA algorithm. It first removes the null 

space of bS , and assumes that no discriminative 

information exists in this space. Unfortunately, we can 

show that this assumption is incorrect. We will 

demonstrate that the optimal discriminant vectors do not 

necessarily lie in the subspace spanned by the class 

centers. A common problem with all these proposed LDA 

approaches is that they all lose some discriminative 

information in the high dimensional face space. 

In this paper, using the probabilistic visual model [4], 

the eigenvalue spectrum in the null space of wS  is 

estimated. We then apply discriminant analysis in both 

the principal and null subspaces of wS . The two parts of 

discriminative features are combined in recognition. This 

dual-space LDA approach successfully resolves the small 

sample size problem. Compared with conventional LDA 

approaches, it is more stable and makes use of all the 

discriminative information in both the principal and null 

space. The experiments on FERET database clearly 

demonstrate its efficacy. 

2. Linear Discriminant Analysis 

2.1. LDA 

LDA method tries to find a set of projection vectors 

W  maximizing the ratio of determinant of bS  to wS ,
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Let the training set contain L classes and each class iX

has in  samples. wS  and bS  are defined as, 
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where m  is the center of the whole training set, im  is the 

center for the class iX , and kx  is the sample belonging 

to class iX . W  can be computed from the eigenvectors 

of bw SS 1 [7]. However, when the small sample size 

problem occurs, wS  becomes singular and it is difficult to 

compute 1
wS . To avoid the singularity of wS , a two-
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stage PCA+LDA approach is used in [1]. PCA is first 

used to project the high dimensional face data into a low 

dimensional feature space. Then LDA is performed in the 

reduced PCA subspace, in which wS  is non-singular. 

Fukunnaga [7] has proved that W  can also be 

computed from simultaneous diagonalization of wS  and 

bS . First wS  is whitened by 

ISw
T 2/12/1 ,  (4) 

where , and  are the eigenvector matrix and 

eigenvalue matrix of wS . To avoid singularity and 

overfitting for noise, only the eigenvectors with non-zero 

and non-trivial eigenvalues are selected in the enhanced 

LDA model proposed by Liu et. al. [6]. Second, apply 

PCA on class centers of the transformed data. To do this, 

the class centers are projected onto 2/1 , and the 

between-class scatter matrix is transformed to bK ,

2/12/1
b

T
b SK .  (5) 

After computing the eigenvector matrix  and 

eigenvalue matrix  of bK , the overall projection 

vectors of LDA can be defined as 
2/1W .   (6) 

2.2. LDA in the Null Space of wS

The LDA approaches described above are all 

performed in the principal subspace of wS , in which 

0WSW w
T . However, the null space of wS , in which 

0WSW w
T , also contains much discriminative 

information, since it is possible to find some projection 

vectors W  satisfying 0WSW w
T  and 0WSW b

T ,

thus the Fisher criteria in Eq. (1) definitely reaches its 

maximum value. A LDA in the null space of wS  was 

proposed by Chen et. al. [2]. First, the null space of wS  is 

computed as, 

0VSV w
T  ( IVV T ).           (7) 

Then bS  is projected to the null space of wS ,

VSVS b
T

b
~

.                            (8) 

Choose the eigenvectors U  of bS
~

 with the largest 

eigenvalues ,

USU b
T ~

.   (9) 

The LDA transformation matrix is defined as VUW .

As the rank of wS  increases, the null space of wS

becomes small, and much discriminative information 

outside the null space is discarded [2]. 

2.3. Direct LDA 

Yu et. al. [3] proposed a direct LDA method. bS  is 

first diagonalized, and the null space of bS  is removed, 

0bb
T DYSY ,  (10) 

where Y  are eigenvectors and bD  are the corresponding 

non-zero eigenvalues of bS . wS  is transformed to 

2/12/1
bw

T
bw YDSYDK . (11) 

wK  is diagonalized by eigenanalysis, 

ww
T DUKU .   (12) 

The LDA transformation matrix for classification is 

defined as, 
2/12/1

wb UDYDW .  (13) 

In direct LDA, the null space of bS  is first removed. 

It is assumed that the null space of bS  contains no 

discriminative information. This assumption is not true. 

In direct LDA, projection vectors are restricted in the 

subspace spanned by class centers. However the optimal 

discriminant vectors do not necessarily lie in the subspace 

spanned by class centers. This point can be clearly 

illustrated in Figure 1. For a binary classification 

problem, using direct LDA, the derived discriminant 

projection vector is constrained to the line passing 

through the two class centers. But according to the Fisher 

criteria, the optimal discriminant vector should be line B.   

2.4. Discussion 

     All these proposed LDA approaches lose some 

discriminative information in the face space. This point 

can be further summarized in Figure 2, where A is the 

principal subspace of wS , and B is the principal subspace 

of bS . Since the total scatter matrix tS  is equal to the 

summarization of wS  and bS  [7], 

bwt SSS ,   (14) 

B

A1m
2m

Class 1 Class 2

Figure 1. Using direct LDA, the discriminant vector is 

constrained to the line A passing through the two class 

centers m1 and m2, but according to the Fisher criteria, 

the optimal discriminant projection should be line B 
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the face space is composed of A and B. When B A as

shown in Figure 2 (a), LDA in the principal subspace of 

wS , contains all the discriminative information in the 

face space. When A B as shown in Figure 2 (b), direct 

LDA, working in subspace B, can keep all the 

discriminative information. When A B =  as shown in 

Figure 2 (c), LDA in the null space of wS  can keep all 

the discriminative information. Finally when A and B are 

only partially overlapped as shown in Figure 2 (d), some 

discriminative information will definitely be lost using 

any of the existing LDA approaches. 

Furthermore, conventional LDA approaches suffer 

from the overfitting problem. Projection vectors are tuned 

to the training set with the existence of noise. As 

suggested in [8], an eigenvector will be very sensitive to 

small perturbation if its eigenvalue is close to another 

eigenvalue of the same matrix, so the eigenvectors of wS

with very small eigenvalues are unstable. In Eq. (6) and 

(13), LDA in the principal subspace of wS  and direct 

LDA all need to be whitened using the inverse of 

eigenvalues of wS . Since the trivial eigenvalues sensitive 

to noise are not well estimated because of the small 

sample size problem, they can substantially change the 

projection vectors. If data vector is whitened on noisy 

eigenvectors, overfitting will happen.  

For LDA in the null space of wS , the rank of wS ,

wSr , is bounded by NLM ,min , where M is the 

total training sample number, L is the class number, and N

is the dimensionality of the face data. wSr  is almost 

equal to this bound because of the existence of noise. As 

shown by experiments in [2], when the training sample 

number is large, the null space of wS  becomes small, so 

much discriminative information outside it will be lost. 

3. Dual-Space LDA 

3.1. Probabilistic model 

In LDA, the main difficulty for the small sample size 

problem is that wS , especially the eigenvalue spectrum in 

the null space of wS , is not well estimated. In order to 

estimate the eigenvalue spectrum in the null space of wS ,

we use the probabilistic visual model proposed in [4]. In 

classification, the likelihood of an input vector x

belonging to class jX  is often estimated with a Gaussian 

density, 

jj
T

j

j
Nj mxmxXxP 1

2/ 2

1
exp

2

1 , (15) 

where j  is the covariance matrix for jX , and N is the 

dimensionality of the face vector. When there are not 

enough samples in each class, j  is replaced by wS [5], 

jw
T

j

w
Nj mxSmx

S
XxP 1

2/ 2

1
exp

2

1 . (16) 

It is called Mahalanobis likelihood [5], characterized by a 

Mahalanobis distance, 

xSxxd w
T ~~ 1 ,   (17) 

where jmxx~ . wS  can be diagonalized as, 

TN
w

TS

0

0

0

0

1

, (18) 

where N,,1  are the eigenvector matrix of wS .

The Mahalanobis distance can be estimated as the sum of 

two independent parts, “distance-in-feature-space” 

(DIFS) and “distance-from-feature space” (DFFS), 

corresponding to the principal subspace 
K
iiF 1 ,

spanned by the K eigenvectors with the largest 

eigenvalues, and its orthogonal complement 
N

KiiF 1 ,

xd
xyK

i i

i
~2

1

2

,     (19) 

where iy  is the component projecting x~  to the ith 

eigenvector, and i  is the corresponding eigenvalue in F.

x~2  is the PCA reconstruction error of x~  in F . The 

eigenvalues in F  are not well estimated and have zero 

values. As suggested in [4], they are simply the estimated 

noise spectrum, and tend to be the “flattest” portion of 

eigenvalue spectrum. So they can be estimated by a single 

value ,

N

Ki
i

KN 1

*1
.  (20) 

The unknown *
i  in F  are estimated by fitting a 

nonlinear function to the available portion of the 

eigenvalue spectrum in F.

Now the within-class scatter matrix can be estimated 

as,
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wŜ  is now non-singular. 

3.2. Discriminant Analysis in Dual Space 

    Both LDA and the Mahalanobis distance in (19) 

evaluate the distance from the input pattern to the class 

center after projecting to the subspace. Recall that LDA 

in the principal subspace of wS  can be divided into two 

steps. In the first whitening step, face data is projected 

onto  and normalized by 2/1 . Most of the within-

class variation concentrates on several largest 

eigenvectors in . Since  represents the energy 

distribution of within-class variation, the whitening 

process effectively reduces the within-class variation. 

This process is essentially the same as the Mahalanobis 

distance in F . Then, PCA is applied on the whitened 

class centers to find the dominant direction that best 

separates the class centers. This process further reduces 

the noise and compacts the discriminative features onto a 

small number of principal components. 

It is also easy to see that the null space of wS  is 

identical to F . LDA in the null space of wS  essentially 

extracts the discriminative features in F . F  has 

removed most of the within-class variation, and LDA 

further separates the class centers by PCA. 

The relationship between the Mahalanobis distance 

and LDA implies that LDA can be simultaneously applied 

to the principal and null subspaces of wS , and the two 

parts of discriminative features can be combined to make 

full use of the discriminative information in the face 

space. Based on this observation, we develop a dual-

space LDA algorithm: 

At training stage, 

1. Compute wS  and bS  from the training set. 

2. Apply PCA to wS , and compute the principal 

subspace F , with K eigenvectors KV ,,1 ,

and its complementary subspace F . Estimate the 

average eigenvalue  in F .

3. All of the class centers are projected to F  and 

normalized by the K eigenvalues. bS  is transformed to 

2/12/1 VSVK b
TP

b ,   (22) 

where  is the eigenvalue matrix for F . Apply PCA 

to P
bK , and compute Pl eigenvectors P  with the 

largest eigenvalues. The Pl  discriminative vectors in 

F  are defined as 

PP VW 2/1 .  (23) 

4. Project all the class centers to F  and compute the 

reconstruction difference as 

AVVAA T
r AVVI T         (24) 

where LmmA ,,1  is the class centers matrix. In 

fact, rA is the projection of A into F . In F , bS  is 

transformed to 

Figure 2. A is the principal subspace of wS , B is the principal subspace of bS , and A B is the whole face space.  In 

case (a), B  A, LDA in the principal space of wS  can keep all the discriminative information. In case (b), A B, direct

LDA can keep all the discriminative information. In case (c), A B = , LDA in the null space of wS  can keep all the 

discriminative information. In case (d), A and B are only partially intersect, and so discriminative information in data 

space will definitely be lost in conventional LDA approaches.

 B 

A

(a)

A

B

(b)

A  B 

       B 

A

(d)

A

B

(c)
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T
b

TC
b VVISVVIK .               (25) 

Compute Cl  eigenvectors C  of C
bK  with the largest 

eigenvalues.  The Cl  discriminative vectors in the F

are defined as 

C
T

C VVIW .         (26) 

At the recognition stage, 

1. All the face class centers jm  in the gallery and the 

probe face data tx  are projected to the discriminant 

vectors in F  and F  to get, 

j
T
P

P
j mWa ,        (27) 

j
T
C

C
j mWa .         (28) 

t
T
P

P
t xWa ,         (29) 

t
T
C

C
t xWa .   (30) 

2. Class is found to minimize the distance measure 

/
22

C
t

C
j

P
t

P
j aaaad . (31) 

This dual-space LDA algorithm has several advantages 

over conventional LDA algorithms. First, it takes 

advantage of all the discriminative information in the full 

face space while other LDA approaches all lose some 

discriminative information one way or the other. In the 

principal and null subspaces of wS , LDA vectors can be 

computed using different criterions, 

0

maxarg

Pw
T
P

Pw
T
P

Pb
T
P

P

WSW

WSW

WSW
W

,  (32) 

0

maxarg

Cw
T
C

Cb
T
CC

WSW

WSWW
.  (33) 

Both of the two sets of features contain discriminative 

information for recognition. However, the two subspaces 

have different metric scales. The principal subspace of 

wS  has been whitened, so projection vectors in PW  are 

not orthornormal. It is not suitable, at least not optimal, to 

combine the distances in the two subspaces directly. In 

dual-space LDA, the null space of wS  is also whitened 

by the average eigenvalues. In Eq.(34), 
2

P
t

P
j aa and

/
2

C
t

C
j aa  are computed under the same metric 

scale measure, and the distances in the two subspaces are 

similarly whitened by the eigenvalue spectrum of wS .

The second advantage of the new algorithm is that it is 

more stable and insensitive to noise than existing LDA 

approaches. Since eigenvectors of wS  with very small 

eigenvalues are unstable and sensitive to small 

perturbation, we avoid computing these unstable 

eigenvectors by grouping them into F . In addition, the 

eigenvalue spectrum of wS  is better estimated, thus it 

avoids whitening with very small eigenvalues. 

Finally, this approach can be viewed as an 

improvement to the Mahalanobis likelihood computed 

from the subspace estimation. It is more effective for 

classification and more efficient in computation. Besides 

effective reducing the within-class variation like the 

Mahalanobis distance, it further distances class centers, 

and removes some noise disturbance by compacting the 

discriminative features. It is also much faster than the 

Mahalanobis distance. Computing the reconstruction 

error x2  in Eq. (20) is expensive. Its computational 

cost is comparable to the correlation between the two 

original high dimensional face data vectors. Our approach 

only needs to compute the distances between vectors of 

CP ll  dimensions. 

4. Experiment 

In this section, we apply the dual-space LDA to face 

recognition and compare with conventional approaches. 

by experiments on the data sets from the FERET face 

database [9]. The high dimensional image intensity vector 

is used as input pattern for classification. All the 1195 

people from the FERET Fa/Fb data set are used in the 

experiment. There are two face images for each person. 

495 people are used for training, and the remaining 700 

people are used for testing. For each testing people, one 

face image is in the gallery and the other is for probe.  

First, we compare the dual-space LDA with the 

Mahalanobis distance estimated by the probabilistic 

visual model. Figure 3 reports their Top 1 recognition 

accuracies with different feature numbers. The feature 

number for the dual-space LDA is the summation of 

discriminant feature numbers in F and F . The feature 

number for the Mahalanobis distance is the 

dimensionality (K) of F . Three distance measures, DIFS, 

DFFS and DIFS+DFFS, for the Mahalanobis distance, are 

evaluated. Notice that only for DIFS. the feature number 

relates to computation cost. Even for a small K, the 

computation cost of DFFS and DIFS+DFFS are very 

high, since they need to compute the reconstruction error 
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x2 . Dual-space LDA outperforms DIFS significantly 

at the same computational cost. It achieves over 96% 

recognition accuracy. The best performance for the three 

Mahalanobis distance measures is about 93%. This is 

over 40% reduction in recognition error rate.  

The dual-space LDA also outperforms conventional 

LDA approaches. Figure 4 reports the accumulative 

matching scores comparing the Dual-Space LDA with 

Fisherface, which uses two stage PCA+LDA, LDA in the 

null space of wS , and direct LDA. The novel method has 

reduced 50% error rate than conventional approaches.  

5. Conclusion 

In this paper, a dual-space LDA approach for high 

dimensional data classification is proposed. Compared 

with existing LDA approaches, it is more stable and 

makes use of all the discriminative information in the face 

space. Experiments on the FERET face database have 

shown that the method is much more effective that 

existing LDA methods. In future study, we will 

investigate the application of this dual-space approach to 

the unified subspace analysis [10] and face sketch 

recognition [11], and further compare with the random 

sampling LDA, which combine the two LDA subspaces 

at the decision level [12]. 
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