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Abstract 

Relevance feedback (RF) schemes based on support 

vector machine (SVM) have been widely used in 

content-based image retrieval. However, the perfor-
mance of SVM based RF is often poor when the 

number of labeled positive feedback samples is small. 

This is mainly due to three reasons: 1. SVM classifier 

is unstable on small size training set; 2. SVM’s optimal 
hyper-plane may be biased when the positive feedback 

samples are much less than the negative feedback 

samples; 3. overfitting due to that the feature 

dimension is much higher than the size of the training 
set. In this paper, we try to use random sampling 

techniques to overcome these problems. To address the 

first two problems, we propose an asymmetric bagging 

based SVM. For the third problem, we combine the 
random subspace method (RSM) and SVM for RF. 

Finally, by integrating bagging and RSM, we solve all 

the three problems and further improve the RF 

performance. 

1. Introduction 

Relevance feedback (RF) [1] is an important tool to 

improve the performance of content-based image 

retrieval (CBIR) [2]. In a RF process, the user first 

labels a number of relevant retrieval results as positive 

feedbacks and some irrelevant retrieval results as 

negative feedbacks. Then the system refines all 

retrieval results based on these feedbacks. The two 

steps are carried out iteratively to improve the 

performance of image retrieval system by gradually 

learning the user’s perception. 

Many RF methods have been developed in recent 

years. One approach [1] adjusts the weights of various 

features to adapt to the user’s perception. Another 

approach [3] estimates the density of the positive 

feedback examples. Discriminant learning has also 

been used as a feature selection method for RF [4]. 

These methods all have certain limitations. The method 

in [1] is only heuristic based. The density estimation 

method in [3] loses information contained in negative 

samples. The discriminant learning in [4] often suffers 

from the matrix singular problem. 

Recently, classification-based RF [5-7] becomes a 

popular technique in CBIR and the Support Vector 

Machine (SVM) based RF (SVMRF) has shown 

promising results owing to its good generalization 

ability. However, when the number of positive 

feedbacks is small, the performance of SVMRF 

becomes poor. This is mainly due to the following 

reasons. 

First, SVM classifier is unstable for small size 

training set, i.e. the optimal hyper-plane of SVM is 

sensitive to the training samples when the size of the 

training set is small. In SVM RF, the optimal hyper-

plane is determined by the feedbacks. However, more 

often than not the users would only label a few images 

and cannot label each feedback accurately all the time. 

Hence the performance of the system may be poor with 

the inexactly labeled samples. 

Second, in the RF process there are usually much 

more negative feedback samples than positive ones. 

Because of the imbalance of the training samples for 

the two classes, SVM’s optimal hyper-plane will be 

biased toward the negative feedback samples. 

Consequently, SVMRF may mistake many query 

irrelevant images as relevant. 

Finally, in RF, the size of the training set is much 

smaller than the dimension of the feature vector, thus 

may cause the over fitting problem. Because of the 

existence of noise, some features can only discriminant 

the positive and negative feedbacks but cannot 

discriminant the relevant or irrelevant images in the 

database. So the learned SVM classifier cannot work 

well for the remaining images in the database. 

In order to overcome these problems, we design 

several new algorithms to improve the SVM based RF 

for CBIR. The key idea comes from the Classifier 

Committee Learning (CCL) [8-10]. Since each 

classifier has its own unique ability to classify relevant 

and irrelevant samples, the CCL can pool a number of 

weak classifiers to improve the recognition 

performance. We use bagging and random subspace 

method to improve the SVM since they are especially 

effective when the original classifier is not very stable.  
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2. SVM in CBIR RF 

SVM [11,12] is a very effective binary classification 

algorithm. Consider a linearly separable binary 

classification problem: 

1{( , )}N

i i ix y =  and { }1,1 −+=iy ,    (1) 

where ix  is an n-dimension vector and iy is the label 

of the class that the vector belongs to. SVM separates 

the two classes of points by a hyper-plane, 

0=+ bxwT ,   (2) 

where x is an input vector, w is an adaptive weight 

vector, and b is a bias. SVM finds the parameters 

w and b for the optimal hyper-plane to maximize the 

geometric margin 2 w , subject to 

           ( ) 1T

i iy b+ ≥ +w x .           (3) 

The solution can be found through a Wolfe dual 

problem with Lagrangian multiplie
i

α :

     
1 , 1

( ) ( ) 2
m m

i i j i j i j
i i j

Q y yα α α α
= =

= − ⋅x x ,           (4) 

subject to 0
i

α ≥  and 
1

0
m

i i
i

yα
=

= .

In the dual format, the data points only appear in the 

inner product. To get a potentially better representation 

of the data, the data points are mapped into the Hilbert 

Inner Product space through a replacement: 

     ( ) ( ) ( , )i j i j i jKφ φ⋅ → ⋅ =x x x x x x ,           (5) 

where ( ).K is a kernel function. We then get the kernel 

version of the Wolfe dual problem: 

     
1 , 1

( ) ( ) 2
m m

i i j i j i j
i i j

Q d d Kα α α α
= =

= − ⋅x x .        (6) 

Thus for a given kernel function, the SVM classifier 

is given by 

      ( ) ( )( )sgnF f=x x ,          (7) 

where ( ) ( )
1

,
l

i i i
i

f y K bα
=

= +x x x  is the output hyper-

plane decision function of the SVM.  

In general, when ( )f x  for a given pattern is high, 

the corresponding prediction confidence will be high. 

On the contrary, a low ( )f x  of a given pattern means 

the pattern is close to the decision boundary and its 

corresponding prediction confidence will be low. 

Consequently, the output of SVM, ( )f x  has been used 

to measure the dissimilarity [5,6] between a given 

pattern and the query image, in traditional SVM based 

CBIR RF. 

3. CCL for SVMs 

To address the three problems of SVM RF described 

in the introduction, we propose three algorithms in this 

section. 

3.1. Asymmetric Bagging SVM 

Bagging [8] strategy incorporates the benefits of 

bootstrapping and aggregation. Multiple classifiers can 

be generated by training on multiple sets of samples 

that are produced by bootstrapping, i.e. random 

sampling with replacement on the training samples. 

Aggregation of the generated classifiers can then be 

implemented by majority voting rule (MVR) [10]. 

Experimental and theoretical results have shown that 

bagging can improve a good but unstable classifier 

significantly [8]. This is exactly the case of the first 

problem of SVM based RF. However, directly using 

Bagging in SVM RF is not appropriate since we have 

only a very small number of positive feedback samples. 

To overcome this problem we develop a novel 

asymmetric Bagging strategy. The bootstrapping is 

executed only on the negative feedbacks, since there 

are far more negative feedbacks than the positive 

feedbacks. This way each generated classifier will be 

trained on a balanced number of positive and negative 

samples, thus solving the second problem as well. The 

Asymmetric Bagging SVM (ABSVM) algorithm is 

described in Table 1. 

Table 1: Algorithm of Asymmetric Bagging SVM. 

Input: positive training set +S , negative training set −S ,

weak classifier I (SVM), integer T  (number of 

generated classifiers), x  is the test sample.  

1. For 1=i  to T  { 

2.
i

− =S bootstrap sample from −S , with  i

− +=S S .

3. ( ),i iC I − += S S

4.  } 

5. ( ) { }* ( , , ),1i iC aggregation C i T− += ≤ ≤x x S S .

Output: classifier *C .

In ABSVM, the aggregation is implemented by 

Majority Voting Rule (MVR). The asymmetric 

Bagging strategy solves the classifier unstable problem 

and the training set unbalance problem. However, it 

cannot solve the small sample size problem. We will 

solve it by the Random Subspace Method (RSM) in the 

next section. 
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3.2. Random Subspace Method SVM 

Similar to Bagging, RSM [9] also benefits from the 

bootstrapping and aggregation. However, unlike 

Bagging that bootstrapping training samples, RSM 

performs the bootstrapping in the feature space.  

For SVM based RF, over fitting happens when the 

training set is relatively small compared to the high 

dimensionality of the feature vector. In order to avoid 

over fitting, we sample a small subset of features to 

reduce the discrepancy between the training data size 

and the feature vector length. Using such a random 

sampling method, we construct a multiple number of 

SVMs free of over fitting problem. We then combine 

these SVMs to construct a more powerful classifier. 

Thus the over fitting problem is solved. The RSM 

based SVM (RSVM) algorithm is described in Table 2. 

Table 2: Algorithm of RSM SVM. 

Input: feature set F , weak classifier I (SVM), integer 

T  (number of generated classifiers), x  is the test 

sample. 

1. For 1=i  to T  { 

2. =iF bootstrap feature from F .

3. ( )ii IC F=
4.   } 

5. ( ) { }* ( , ),1i iC aggregation C i T= ≤ ≤x x F .

Output: classifier *C .

3.3. Asymmetric Bagging RSM SVM 

Since the asymmetric Bagging method can 

overcome the first two problems of SVMRF and the 

RSM can overcome the third problem of the SVMRF, 

we should be able to integrate the two methods to solve 

all the three problems together. So we propose an 

Asymmetric Bagging RSM SVM (ABRSVM) to 

combine the two. The algorithm is described in Table 3. 

In order to explain why Bagging RSM strategy 

works, we derive the proof following a similar 

discussion on Bagging in [8]. 

Let ( ),y x  be a data sample in the training set L

with  feature vector F , where y is the class label of the 

sample x. L  is drawn from the probability distribution 

P . Suppose ( ), ,L Fϕ x  is the simple predictor 

(classifier) constructed by the Bagging RSM strategy, 

and the aggregated predictor is 

( ) ( ), , ,A F LP E E L Fϕ ϕ=x x .

Let random variables ( ),Y X  be drawn from the 

distribution P  independent of the training set L . The 

average predictor error, estimated by ( ), ,L Fϕ x , is 

( )( )2

, , ,a F L Ye E E E Y L Fϕ= −
X

X . The corresponding error 

estimated by the aggregated predictor is 

( )( )2

, ,A Y Ae E Y Pϕ= −
X

X .                                 (8) 

Using the inequality ( )
2

2

1 1 1 1

1 1 1 1M N M N

ij ij
j i j i

z z
M N M N= = = =

≥ ,

we have:  

( ) ( )( )2
2 , , , ,F L F LE E L F E E L Fϕ ϕ≥X X                 (9) 

( ) ( )2 2

, ,
, , ,Y X F L Y X AE E E L F E Pϕ ϕ≥X X                 (10) 

Thus, 

( )
( )

2 2

, , ,

2

,

2 , ,

   

a Y X Y X A Y X F L

Y X A A

e E Y E Y E E E L F

E Y e

ϕ ϕ

ϕ

= − +

≥ − =

X
.    (11) 

Therefore, the predicted error of the aggregated 

method is reduced. From the inequality, we can see 

that the more diverse is the ( ), ,L Fϕ x , the more 

accurate is the aggregated predictor. In CBIR RF, the 

SVM classifier is unstable both for the training features 

and the training samples. Consequently, the Bagging 

RSM strategy can improve the performance. 

Here we made an assumption that the average 

performance of all the individual classifier ( ), ,L Fϕ x ,

trained on a subset of feature and training set replica is 

similar to a classifier, which use the full feature set and 

the whole subset training set. This can be true when the 

size of feature and training data subset is adequate to 

approximate the full set distribution. Even when this is 

not true, the drop of accuracy for each simple classifier 

may be well compensated in the aggregation process. 

Table 3: Algorithm of Asymmetric Bagging RSM SVM. 

Input: positive training set +S , negative training set 
−S , feature set F , weak classifier I (SVM), integer sT

(number of Bagging classifiers), integer fT  (number of 

RSM classifiers), x  is the test sample. 

1. For 1j =  to sT  { 

2. j

− =S bootstrap sample from −S .

3.   for 1i =  to fT {

4.               
i =F bootstrap sample from F .

5.      ( ),
, ,i j i jC I − += F S S .

6.   } 

7.   } 

8. ( )*
( , , , )

1 ,1

ij i j

f s

C
C aggregation

i T j T

− +

=
≤ ≤ ≤ ≤

x F S S
x

Output: classifier *C .
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Since Bagging RSM strategy can generate more 

diversified classifiers than using Bagging or RSM 

alone, it should outperform the two. In order to achieve 

maximum diversity, we choose to combine all 

generated classifiers in parallel as shown in Figure 1. 

This is better than combining Bagging or RSM first 

then combing RSM or Bagging. 

Figure 1. Aggregation structure of the ABRSVM. 

For a given test sample, we first recognize it by all 

f sT T⋅ weak SVM classifiers: 

( ){ }, |1 ,1
ij i j f s

C C F S i T j T= ≤ ≤ ≤ ≤ .                (12) 

Then, an aggregation rule is used to integrate all the 

results from the weak classifiers for final classification 

of the sample as relevant or irrelevant. 

3.4 Dissimilarity Measure 

For a given sample, we first use the MVR to 

recognize it as query relevant or irrelevant. Then we 

measure the dissimilarity between the sample and the 

query as the output of the individual SVM classifier, 

which gives the same label as the MVR and produces 

the highest confidence value (the absolute value of the 

decision function of the SVM classifier).  

4. Image Retrieval System 

To evaluate the performance of the proposed 

algorithms, we develop the following general CBIR 

system with RF. In the system, we can use any RF 

algorithm for the block “Relevance Feedback Model”. 

In Figure 2, when a query image is input, the low-

level features are extracted. Then, all images in the 

database are sorted based on a similarity metric (here 

we use Euclidean distance). The user labels some top 

images as positive and negative feedbacks. Using these 

feedbacks, a RF model is trained based on a SVM. 

Then the similarity metric is updated based on the RF 

model. All images are resorted by the updated 

similarity metric. The RF procedure will be iteratively 

executed until the user is satisfied with the outcome. 

In our retrieval system, three main features, color, 

texture, and shape are extracted to represent the image. 

For color feature, we use the color histogram [13] in 

HSV color space. Here, the color histogram is 

quantized into 256 levels. Hue, Saturation and Value 

are quantized into 8, 8, and 4 bins respectively. Texture 

is extracted from Y component in the YCrCb space by 

pyramid wavelet transform (PWT) with Haar wavelet. 

The mean value and standard deviation are calculated 

for each sub-band at each decomposition level. The 

feature length is 2 4 3× × . For shape feature, edge 

histogram [14] is calculated on Y component in the 

YCrCb color space. Edges are grouped into four 

categories, horizontal, 45 diagonal, vertical, and 135 

diagonal. We combine the color, texture, and shape 

features into a feature vector, and then we normalize 

each feature to a normal distribution. 

Figure 2. Flowchart of the image retrieval system. 

5. Experimental Results 

In this section, we compare the new algorithms with 

existing algorithms through experiments on 17, 800 

images of 90 concepts from the Corel Photo Gallery. 

The experiments are simulated by a computer 

automatically. First, 300 queries are randomly selected 

from the data, and then RF is automatically done by 

the computer: all query relevant images (i.e. images of 

the same concept as the query) are marked as positive 

feedbacks in the top 40 images and all the other images 

are marked as negative feedbacks. In general, we have 

about 5 images as positive feedbacks. The procedure is 

close to the real circumstances, because the user 

typically would not like to click on the negative 

feedbacks. Thus requiring the user to mark only the 

positive feedbacks in top 40 images is reasonable.  

In this paper, precision and standard deviation (SD) 

are used to evaluate the performance of a RF algorithm. 

Precision is the percentage of relevant images in the 

top N retrieved images. The precision curve is the 

averaged precision values of the 300 queries, and SD 

curve is the SD values of the 300 queries’ precision 

values. The precision curve evaluates the effectiveness 

of a given algorithm and SD curve evaluates the 

robustness of the algorithm. In the precision and SD 
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curves 0 feedback refers to the retrieval based on 

Euclidean distance measure without RF.  

We compare all the proposed algorithms with the 

original SVM based RF [5] and the constrained 

similarity measure SVM (CSVM) based RF [7]. We 

chose the Gaussian kernel ( )
2

,K e
ρ− −= x y

x y  with 1=ρ
(the default value in the OSU-SVM [15] MatLab

TM

toolbox) for all the algorithms. The performances of all 

the SVM algorithms are stable over a range of ρ .

5.1. Performance of Asymmetric Bagging SVM 

Figure 3 shows the precision and SD values when 

using different number of SVMs in ABSVM. The 

results show that the number of SVMs will not affect 

the performance of the asymmetric Bagging method. 
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Figure 3. Asymmetric Bagging SVM based RF. 

The second experiment compares the performances 

of the ABSVM using 5 weak SVM classifiers and the 

standard SVM and CSVM based RF. The experimental 

results are shown in Figure 5.  

From these experiments, we can see that 5 weak 

SVMs are enough for ABSVM, and ABSVM clearly 

outperforms the SVM and CSVM. The precision curve 

of ABSVM is higher than that of SVM and CSVM, 

and SD curve is lower than that of SVM and CSVM. 

5.2. Performance of RSM SVM 

Figure 4 shows the precision and SD values when 

using different number of SVMs of RSVM. The results 

show that the number of SVMs does not affect the 

performance of RSVM. 
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Figure 4. RSM SVM based RF. 

The second experiment compares the RSVM using 5 

weak SVM classifiers with the standard SVM and 

CSVM based RF. The experimental results are also 

shown in Figure 5. 

The results demonstrate that 5 weak SVMs are 

enough for the RSVM, and RSVM outperforms the 

SVM and CSVM. 

5.3. Performance of Asymmetric Bagging RSM 

SVM

This experiment evaluates the performance of the 

proposed ABRSVM, ABSVM, and RSVM based RF. 

In this experiment, we chose 5sT =  for ABSVM, 

5fT =  for RSVM, and 5s fT T= =  for ABRSVM. 

The results in Figure 5 show that the ABRSVM 

gives the best performance followed by RSVM then 

ABSVM. They all outperform SVM and CSVM. 

5.4. Computational Complexity 

To verify the efficiency of the proposed algorithms, 

we record the computational time when conducting the 

experiments. The ratio for the time used by different 

methods are SVM: CSVM: ABSVM: RSVM: 

ABRSVM = 25: 25: 11: 3: 5. This is show that the new 

SVM based algorithms are much more efficient than 

existing SVM based algorithms. 
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6. Conclusion 

In this paper, we design a new Asymmetric Bagging 

Random Subspace Method for SVM based RF. The 

proposed algorithm can address the classifier unstable 

problem, the unbalanced training set problem, and the 

small sample size problem effectively. Extensive 

experiments on a Corel Photo database with 17, 800 

images show that the new algorithm can improve the 

performance of relevance feedback significantly. 
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Figure 5. Performance of all proposed algorithms compared to existing algorithms. The algorithms are evaluated over 9 iterations. 
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