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Abstract—PCA, LDA, and Bayesian analysis are the three most representative

subspace face recognition approaches. In this paper, we show that they can be

unified under the same framework. We first model face difference with three

components: intrinsic difference, transformation difference, and noise. A unified

framework is then constructed by using this face difference model and a detailed

subspace analysis on the three components. We explain the inherent relationship

among different subspace methods and their unique contributions to the extraction

of discriminating information from the face difference. Based on the framework, a

unified subspace analysis method is developed using PCA, Bayes, and LDA as

three steps. A 3D parameter space is constructed using the three subspace

dimensions as axes. Searching through this parameter space, we achieve better

recognition performance than standard subspace methods.

Index Terms—Face recognition, subspace analysis, PCA, LDA, Bayesian

analysis, eigenface.
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1 INTRODUCTION

SUBSPACE analysis methods, such as PCA, LDA, and Bayes, have

been extensively studied for face recognition in recent years. The

eigenface method (PCA) [13] uses the Karhunen-Loeve Transform

to produce the most expressive subspace for face representation

and recognition. LDA or Fisher Face [1], [12], [19] is an example of

the most discriminating subspace methods. It seeks a set of

features best separating face classes. Another important subspace

method is the Bayesian algorithm using probabilistic subspace [8],

[9]. Different from other subspace methods, which classify the

probe face image into L classes for L individuals, the Bayesian

algorithm casts the face recognition task into a binary pattern

classification problem with each of the two classes, intrapersonal

and extrapersonal variations, modeled as a Gaussian distribution.

Many other subspacemethods aremodifications or extensions of

the above three methods. Independent Component Analysis (ICA)

[18], nonlinear PCA (NLPCA) [4], and Kernel PCA (KPCA) [16] are

all the generalizations of PCA to address higher order statistical

dependencies. Kernel-based Fisher Discriminant Analysis (KFDA)

[7] extracts nonlinear discriminating features. To improve the

generalization ability of LDA on different data sets, several

modifications are proposed, including the Enhanced FLD model

[5], LDA mixture model [3], and direct LDA [17]. In addition to

directly processing image appearance, subspace methods can also

be applied to other features, such as Gabor features [6], [15].

In this work, we develop a unified framework to study the

three major subspace face recognition methods: PCA, LDA, and

Bayes. PCA is an evaluation benchmark for face recognition. Both

LDA and Bayes have achieved superior performance in the

FERET test [11]. A unified framework on the three methods will

greatly help to understand the family of subspace methods for

further improvement.

We start our investigation by defining a face difference model

with three components: intrinsic difference, transformation differ-

ence, and noise. A unified framework is then constructed by using

the face difference model and a detailed subspace analysis on the

three components. Using this framework, we explain the inherent

relationship among different subspace methods and their unique

contributions to the extraction of discriminating information from

the face difference. Starting from the framework, a unified

subspace analysis method is proposed using PCA, Bayes, and

LDA as three steps. It is shown that the subspace dimension of

each method can affect the recognition performance significantly.

It is a trade off on how much noise and transformation difference is

excluded, and how much intrinsic difference is retained. This

eventually leads to the construction of a 3D parameter space that

uses the three subspace dimensions as axes. Searching through this

parameter space, we achieve better recognition performance than

the standard subspace methods, which are all limited to local areas

of the parameter space.

2 REVIEW OF THE PCA, LDA, AND BAYESIAN

ALGORITHMS

In appearance-based approaches, a 2D face image is viewed as a

vector in the image space. A set of face image samples fx*ig can be

represented as an N by M matrix X ¼ ½x*1; . . . ; x
*

M �, where N is the

number of pixels in the images and M is the number of samples.

Each face image x
*
i belongs to one of theL face classes fX1; . . . ; XLg,

with ‘ðx*iÞ as the class label of x
*
i. When a probe T

*

is the input, the

face recognition task is to find its class label in the database. In this

section, we briefly review the three subspace methods.

2.1 PCA

In PCA, a set of eigenfaces are computed from the eigenvectors of
sample covariance matrix C,

C ¼
XM
i¼1

x
*
i �m

*
� �

x
*
i �m

*
� �T

; ð1Þ

where ~mm is the mean face of the sample set. The eigenspace U ¼
u
*
1; . . . u

*
K

h i
is spanned by the K eigenfaces with the largest

eigenvalues. For recognition, the prototype P
*

for each face class

and the probe T
*

are projected onto U to get the weight vectors w
*

p ¼
UT ðP

*

�m
*Þandw

*
T ¼ UT ðT

*

�m
*Þ. The face class is found tominimize

the distance

" ¼ jjw*T � w
*

pjj ¼ jjUT T
*

� P
*

� �
jj: ð2Þ

2.2 LDA

LDA tries to find the subspace that best discriminates different face

classes by maximizing the between-class scatter matrix Sb, while

minimizing the within-class scatter matrix Sw in the projective

subspace. Sw and Sb are defined as

Sw ¼
XL
i¼1

X
x
*

k2Xi

x
*

k �m
*

i

� �
x
*
k �m

*
i

� �T

; ð3Þ

Sb ¼
XL
i¼1

ni m
*

i �m
*

� �
m
*

i �m
*

� �T

; ð4Þ

where m
*

i is the mean face for the individual class Xi and ni is the

number of samples in class Xi.
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LDA subspace is spanned by a set of vectors W , satisfying

W ¼ argmax
WTSbW

WTSwW

����
����: ð5Þ

W can therefore be constructed by the eigenvectors of S�1
w Sb.

Computing the eigenvectors of S�1
w Sb is equivalent to simultaneous

diagonalization of Sw and Sb [2]. First, compute the eigenvector

matrix � and eigenvalue matrix � of Sw. Then, project the class

centers onto ���1=2, thus Sb is transformed to Kb ¼ ��1=2�TSb�

��1=2. After computing the eigenvector matrix � and eigenvalue

matrix � of Kb, the projection vectors of LDA can be defined as

W ¼ ���1=2�. For recognition, the linear discriminant function is

computed as

d T
*

� �
¼ WT T

*

� P
*

� �
: ð6Þ

The face class is chosen to minimize jjdjj. To avoid degeneration of

Sw, most LDA methods first reduce the data dimensionality by

PCA, then apply discriminant analysis in the reduced PCA

subspace.

2.3 Bayesian Algorithm

The Bayesian algorithm classifies the face intensity difference � as
intrapersonal variation (�I ) for the same individual and extra-
personal variation (�E) for different individuals. The MAP
similarity between two images is defined as the intrapersonal a
posterior probability

SðI1; I2Þ ¼ P ð�I j�Þ ¼ P ð�j�IÞP ð�IÞ
P ð�j�IÞP ð�IÞ þ P ð�j�EÞP ð�EÞ

: ð7Þ

To estimate P ð�j�IÞ, PCA on the intrapersonal difference set
�j� 2 �If g decomposes the image difference space into intraper-

sonal principal subspace F , spanned by the di largest intrapersonal
eigenvectors, and its orthogonal complementary subspace �FF , with
the dimension N-di. P ð�j�IÞ can be estimated as the product of
two independent marginal Gaussian densities in F and �FF ,

P ð�j�IÞ ¼
exp � 1

2 dF ð�Þ
� �

2�ð Þdi=2
Qdi

i¼1 �
1=2
i

" #
exp �"2ð�Þ=2�ð Þ

2��ð Þ N�dið Þ=2

" #

¼
exp � 1

2 dF �ð Þ þ "2 �ð Þ=�ð Þ
� 	

2�ð Þdi=2
Qdi

i¼1 �
1=2
i

h i
2��ð Þ N�dið Þ=2

h i : ð8Þ

Here, dF ð�Þ ¼
Pdi

i¼1
y2i
�i

is a Mahalanobis distance in F , referred as

“distance-in-feature-space” (DIFS). yi is the principal component of

� projecting to the ith intrapersonal eigenvector, and �i is the

corresponding eigenvalue. "2ð�Þ is defined as “distance-from-

feature-space” (DFFS), equivalent to PCA residual error in �FF . � is

the average eigenvalue in �FF . P ð�j�EÞ can be estimated in a similar

way in the extrapersonal subspace computed from �j� 2 �Ef g.
An alternative maximum likelihood (ML) measure, using the

intrapersonal likelihood S0 �ð Þ ¼ P �j�Ið Þ alone, is proven to be

simpler but almost as effective as the MAP measure [9]. In

recognition, all the parameters in (8) are constant except dF �ð Þ and
"2 �ð Þ. So, it is equivalent to evaluate the distance

DI ¼ dF �ð Þ þ "2 �ð Þ=�: ð9Þ

3 A UNIFIED FRAMEWORK

The three methods reviewed in Section 2 are developed with

different specific considerations. In this study, we formulate an

indepth subspace analysis to construct a unified framework for the

three methods. Under this framework, we study the inherent

connections of the three methods in order to understand the reason

behind the different performance of each method. A unified

subspace analysis method is then proposed based on the theorems

and insights provided by the unified framework.
To construct the framework, let us first look at the matching

criterions and focus on the difference� ¼ T
*

� P
*

between the probe
T
*

and the prototype P
*

. From (2), (6), and (9), we can see that the
recognition process of the three methods can be described by the
same framework as shown in Fig. 1. When a probe face image T

*

is
the input, we compute the difference � between T

*

and each class
prototype P

*

. Then, � is projected into an image subspace to
compute the feature vector V

*

D. Finally, based on the feature vector
and the specific distance metric, � is classified as intrapersonal or
extrapersonal variations.

The two key components of this framework are the image

difference� and its subspace. Especially, using a set of theorems,we

will show that all the three subspaces for PCA, Bayes, and LDA can

becomputed fromthe facedifference set insteadof theoriginal image

set. This is the central point of theunified framework.Wemodel�by

three key components: intrinsic difference (~II) that discriminates

different face identity; transformation difference ( ~TT ), arising fromall

kinds of transformations, such as expression and illumination

changes; noise ( ~NN), which randomly distributes in the face images.

The intrapersonalvariation�I is composedof ~TT and ~NN , since it comes

from the same individual. Notice that extrapersonal variation �E is

not equivalent to ~II. In �E , ~II, ~TT , and ~NN exist together, since ~TT and ~NN

cannot be canceled when computing the difference of the images of

two individuals.
~TT and ~NN are the two components deteriorating recognition

performance.Normally, ~NN is of small energy. Themain difficulty for

face recognition comes from ~TT , which can change the face

appearance substantially [10]. A successful face recognition algo-

rithm should be able to reduce the energy of ~TT as much as possible

without sacrificingmuchof ~II. To improve recognition efficiency, it is

also useful to compact ~II onto a small number of features. In the

following, we propose a set of theorems to analyze the properties of

the three subspaces forPCA,LDA,andBayes inorder to findouthow

they suppress the ~TT and ~NN components, and extract the ~II component

in their respective subspaces. Due to length limit, detailed proofs of

the theorems are not shown in this paper. They can be found in [14].

3.1 PCA Subspace

Eigenfaces are computed from the ensemble covariance matrix C.

Equation (1) shows that C is derived from all the training face
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images subtracting of the mean face. We have shown that C can

also be formulated as [14]

C ¼
XM
i¼1

XM
j¼1

x
*

i � x
*

j

� �
x
*

i � x
*

j

� �T

: ð10Þ

Therefore, the eigenvectors for fx*ig can also be computed as the

eigenvectors for the face difference set fðx*i � x
*

jÞg, containing all the
difference between any pair of face images in the training set.

Theorem 1. The PCA subspace characterizes the distribution of face

difference between any two face images, which may belong to the same

individual or different individuals.

3.2 Intrapersonal and Extrapersonal Subspaces

In the Bayesian algorithm, the eigenvectors of intrapersonal

subspace are computed from the difference set fðx*i � x
*
jÞj‘ðx

*
iÞ

¼ ‘ðx*jÞg, for which the covariance matrix is

CI ¼
X

‘ x
*

ið Þ¼‘ x
*

jð Þ
x
*

i � x
*

j

� �
x
*
i � x

*
j

� �T

: ð11Þ

The eigenvectors of extrapersonal subspace are derived from the

difference set fðx*i � x
*
jj‘ðx

*
iÞ 6¼ ‘ðx*jÞg, with covariance matrix

CE ¼
X

‘ x
*

ið Þ6¼‘ x
*

jð Þ
x
*
i � x

*
j

� �
x
*
i � x

*
j

� �T

: ð12Þ

Comparing with (10), we have C ¼ CI þ CE . Since the sample

number for CE is far greater than the sample number of CI , the

energy of CE usually dominantes the computation of C. Therefore,

the extrapersonal eigenfaces are similar to the PCA eigenfaces.

Theorem 2. The intrapersonal subspace and extrapersonal subspace are

both contained in the PCA eigenspace, with the extrapersonal

eigenfaces being similar to the PCA eigenfaces.

Experiments in [9] have shown that the ML measure using the

intrapersonal subspace alone is almost as effective as the MAP

measure using the two subspaces. In this paper, we prove that the

extrapersonal subspace is similar to the PCA subspace and cannot

contribute much to separating ~TT and ~II since ~TT and ~II are coupled

together in �E . The improvement of the Bayesian algorithm over

the PCA method benefits mostly from the intrapersonal subspace.

Therefore, given the significant additional computational cost of

MAP for little improvement over ML, we focus our study on ML

only in the framework.

3.3 LDA Subspace

The LDA subspace is derived from Sw and Sb. Similar to the

previous analysis of the PCA and Bayesian approaches, we can

also study the LDA subspace using image difference. For

simplicity, we assume that each class has the same sample number

n. Similar to the proof of Theorem 1, we have

Sw ¼
XL
i¼1

X
x
*

k1
;x
*

k2
2Xi

x
*
k1 � x

*
k2

� �
x
*

k1 � x
*
k2

� �T

¼ CI ð13Þ

and

Sb ¼
XL
i¼1

n m
*

i �m
*

� �
m
*

i �m
*

� �T

¼ n

2L

XL
i¼1

XL
j¼1

m
*

i �m
*

j

� �
m
*

i �m
*

j

� �T

:

ð14Þ

So, we have the following theorem.

Theorem 3. Sw is identical to CI , the covariance matrix of the

intrapersonal subspace, which characterizes the distribution of face

variation for the same individual. Using the mean face image to

describe each individual class, Sb, characterize the distribution of the

difference between any two mean face images.

3.4 Comparison of the Three Subspaces

Although PCA and LDA were initially developed based on

statistical distribution of original face images, the above theorems

show that they can also be computed from the distribution of face

differences. We now can compare these subspaces using the same

face difference model.

As shown in Fig. 2a, since PCA subspace characterizes the

difference between any two face images, it concentrates both ~TT and
~II as structural signals on a small number of principal eigenvectors.

By selecting the principal components, most noise encoded on the

large number of trailing eigenvectors is removed from ~TT and ~II.

Because of the continuing existence of ~TT , the PCA subspace is not

ideal for face recognition.

For the Bayesian algorithm, the intrapersonal subspace plays a

critical role. Since the intrapersonal variation only contains ~TT and ~NN ,

PCA on the intrapersonal variation arranges the eigenvectors

according to the energy distribution of ~TT , as shown in Fig. 2b.

When we project a face difference � (either intrapersonal or

extrapersonal) onto the intrapersonal subspace, most energy of the
~TT component will concentrate on the first few largest eigenvectors,

while the ~II and ~NN components distribute over all of the

eigenvectors. This is because ~II and ~NN are somewhat independent

of ~TT , which forms the principal vectors of the intrapersonal

subspace. In (9), the Mahalanobis distance in F weights the feature

vectors by the inverse of eigenvalues. This effectively reduces the
~TT component since the principal componentswith large eigenvalues

are significantly diminished. "2ð�Þ is also an effective feature for

recognition since it throws away most of the ~TT component on the

largest eigenvectors, while keeping the majority of ~II in �FF .
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Fig. 2. Energy distribution of the three components ~II, ~TT , and ~NN on (a) eigenvectors in the PCA subspace, (b) the intrapersonal subspace, and (c) the LDA subspace.



The Bayesian algorithm successfully separates ~TT from ~II.

However, ~II and ~NN are still coupled on the small eigenvectors.

When normalized by the small eigenvalues, the effect of ~NN could be

significantly enlarged in the probabilistic measure. Another draw-

back of the Bayesian algorithm is that the intrinsic difference ~II is not

compacted and, thus, spreads over F and �FF . This leads to high

computational cost. The computational cost of DFFS is equivalent to

the correlation of two high dimensional image vectors.

Finally, we look at the LDA subspace. The LDAprocedure can be

divided into three steps. First, PCA is used to reduce the data

dimensionality. Noise is significantly reduced in this step. In the

second step, to whiten Sw, we first compute its eigenvector matrix�

and eigenvalue matrix �. From Theorem 3, we know that � spans

the intrapersonal subspace, therefore � essentially represents the

energy distribution of ~TT . The whitening process projects data onto

intrapersonal subspace � and normalizes it by��1=2. So, Theorem 3

effectively proves that this step reduces ~TT in a manner similar to the

key component (ML measure) in the Bayesian analysis.

In the third step of LDA, PCA is again applied to the whitened

class centers. When averaging images in each class to compute the

class centers, the noise ~NN is further reduced. This is useful since ~NN

may have been enlarged in the whitening process. Since both ~TT

and ~NN have been reduced up to this point, the main energy in the

class centers is ~II, which spreads over the entire eigenvector axes

after the whitening as shown in Fig. 2b. PCA on the class centers

therefore serves two purposes. First, it can further reduce the noise.

Second, it compacts the energy of ~II into a small number of

principal components, as shown in Fig. 2c.

The subspace analysis results of the three methods on the face

difference model are summarized in Table 1. Our analysis shows

that PCA and the key component of Bayesian analysis can be

viewed as the intermediate steps of LDA. In theory, the LDA

subspace should be able to separate ~II from ~TT and ~NN . However, the

original LDA has not achieved this because it uses fixed

parameters in each step and, thus, fails to take full advantage of

the information provided by the PCA and Bayesian analysis steps.

Our subspace analysis provides a clear understanding of the

unique contribution of each of the three subspaces to the

processing of the face difference model. Especially, our study

shows that the degree of control over the ~TT and ~NN components in

the face difference by each of the three methods depends on the

dimensionality of the three subspaces, PCA subspace (dp),

intrapersonal subspace (di), and LDA subspace (dl) in Fig. 2.

Using the above framework, we propose a unified subspace

analysis method as shown in Fig. 3. Using the three subspace

dimensions as parameter axes, it provides a new3Dparameter space

to improve the recognition performance, as shown in Fig. 4. It

controls ~II, ~TT , and ~NN components in the face difference by adjusting

the dimensionality of the three subspaces. The choice of the three

parameters greatly affects the system performance. The original

PCA, LDA, andBayesmethods only occupy some local lines or areas

in the 3D parameter space. PCA changes parameters in the

dp direction on line AD. DIFS and DFFS of the Bayesian algorithm

changeon the lineDEF in thedidirection. FisherFace [1] corresponds

to point Bðdp ¼ di ¼ M � L; dl ¼ L� 1Þ in the graph. All these

methods change parameters only in the local regions. However, for

the new algorithm, optimal parameters may be searched in the full

3D space. We can clearly see this advantage in the experiments.

4 EXPERIMENT

In this section, we conduct experiments on the FERET face database

[11]. We select 1,195 people from the FERET database, with two face

images (FA/FB) for each person. Images of 495 people are randomly

selected for training, and the remaining 700 people are used for

testing. So, there are a total of 990 face images in the training set,

700 face images in the gallery, and 700 face images for probe. In the

preprocessing procedure, all the images are normalized by the eye

for scaling, translation, and rotation, such that the eye centers are in

fixed positions. A 27� 41 mask template is used to remove the

background andmost of the hair. Histogram equalization is applied

to the face images for photometric normalization.
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TABLE 1
Behavior of Subspaces on Characterizing the Face Image Difference

Fig. 3. Unified subspace analysis method using the framework.

Fig. 4. 3D parameter space.



4.1 PCA Experiment

Euclid and Mahalanobis distance measures are used for the PCA

recognition. We use direct correlation (84.1 percent) as a benchmark

since it is essentially a direct use of face difference without subspace

analysis. The overall results in Fig. 5 show that PCA is no better than

direct correlation in terms of recognition accuracy. When using the

Mahalanobis distance measure, it reaches peak accuracy (84.3

percent) with around 150 eigenvectors, and then drops with further

increase of dimensionality. The high dimensional components with

small eigenvalues are significantly magnified in whitening. Since

these dimensions tend to contain more noise than structural signal,

they will deteriorate the recognition results.

4.2 Bayesian Experiment

Experimental results for the Bayesian algorithm are reported in

Fig. 6. It has achieved around 93 percent accuracy with 10 percent

improvement over direct correlation. The eigenvectors of the

intrapersonal subspace are arranged by the energy of ~TT . When only

a small number of eigenvectors are selected, the principal subspace

does not have enough information on ~II, so the accuracy of DIFS, a

main step of Bayes, is low (below 60 percent for 20 eigenvectors).

However, the lost information can be compensated fromDFFS in �FF .

When we use the Euclid instead of Mahalanobis distance measure

for DIFS, the accuracy drops greatly and becomes even worse than

PCA. This shows the effectiveness of whitening in the Bayesian

analysis. The accuracy of ML using DIFS + DFFS is high since it

combines the two components together. The MAP measure using

both intrapersonal and extrapersonal subspaces is around 94

percent, slightly better than ML.

4.3 Bayesian Analysis in Reduced PCA Space

After comparing the PCA and Bayesian methods individually, we

now investigate how these two subspace dimensions interact with

each other. We first apply PCA on the face data to reduce the

dimensionality and remove the noise. Then, the Bayesian analysis

using DIFS in the intrapersonal subspace is implemented in the

reduced PCA subspace. This corresponds to the dp-di plane in the

3D space in Fig. 4. Results are reported in Table 2. Since there are

990 face images and 495 classes in the training set, the rank of Sw is

bounded by 495. The maximum value for di is min dp; 495

 �

.

The shape of the dp-di accuracy table clearly reflects the effect of

noise ~NN . When dp is small, there is little noise in the PCA subspace.

So, the recognition accuracy monotonically increases with di as

more discriminating information ~II is added. However, as dp

increases, noise begins to appear in the PCA subspace and starts

to affect the accuracy. The accuracy begins to decrease after reaching

a peak point before di reaches the full dimensionality. The decrease

in accuracy for large di is because noise distributed on the small

eigenvectors is magnified by the inverse of the small eigenvalues.

Interestingly, for this training set, the parameters proposed in

Fisherface [1] lead to very low accuracy around ðdp ¼ 495; di ¼ 495Þ.
This shows the importance of parameter selection for a given

training set.

We plot the highest accuracy of each accuracy row of different dp

in Fig. 7. The maximum point with 96 percent accuracy could be

found at ðdp ¼ 150; di ¼ 150Þ. In this PCA subspace, noise has been

removed and all of the eigenvectors can be used for Bayesian

recognition.
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Fig. 5. PCA recognition accuracy. Fig. 6. Bayes recognition accuracy.

TABLE 2
Recognition Accuracy of Bayesian Analysis in the Reduced PCA Subspace

The vertical direction is the dimension of the PCA subspace (dp) and the horizontal direction is the dimension of the intrapersonal subspace (di).



4.4 Extract Discriminant Features from Intrapersonal
Subspace

We now investigate the effect of the third dimension dl in the

3D parameter space. For ease of comparison, we choose four

representative points on the dp-di surface, and report the accuracy

along the dimension of dl as shown in Fig. 8. The curves first increase

to a maximum point and then drop with further increase of dl. For

traditional LDA, the dl dimension is usually chosen as L� 1, which

corresponds to the last point of the curve with di ¼ 495. The result is

clearly much lower than the highest accuracy in Fig. 8. As discussed

in Section 3, this dimension mainly serves to compact ~II and remove

more noise ~NN so dl should be reasonably small instead of being fixed

by L. The best results on the curve plots are indeed better than only

using the first two dimensions. Since the computational cost for face

recognition is proportional to the feature number used, we compare

the recognition accuracies using small feature number for each step

of the framework, as shown in Fig. 9. For Bayes, DIFS measure is

used for comparison, since DIFS + DFFS measure is costly to

compute even for a small feature number. The results clearly

demonstrate the improvement on recognition efficiency by the

addition of dl dimension.

As shown by these experiments, although we have not

explored the entire 3D parameter space, better results are already

found comparing to the standard subspace methods. A careful

investigation of the entire parameter space should lead to further

improvement.

5 CONCLUSION

Starting from the face difference model that decomposes a face

difference into three major components, intrinsic difference ~II,

transformation difference ~TT , and noise ~NN , we unify the three major

subspace face recognitionmethods, PCA, Bayes, and LDAunder the

same framework. Using this framework, we study how each of the

three methods contributes to the extraction of discriminating

information ~II in the face difference. This eventually leads to the

construction of a 3D parameter space that uses the three subspace

dimensions as axes. Searching through this parameter space, we

achieve better recognition performance than the standard subspace

methods. Searching through the whole 3D parameter space may be

time consuming. A possible strategy is suggested by the steps of our

experiments. First, find high accuracy points on the PCA (Mahala-

nobis) curve to narrow down dp, then use the found dp to compute

the di curve to find the best di value and then choose dl according to

the accuracy curve in LDA subspace. Thus, by choosing dp, di, and dl

sequentially, we only need to test oðmaxðdpÞ þmaxðdiÞ þmaxðdlÞÞ
points instead of oðmaxðdpÞ �maxðdiÞ �maxðdlÞÞ points. In this

framework, the intrapersonal variation is modeled as Gaussian

distribution. However, for significant ~TT , such as large changes in

pose, this assumption may break down. One way to solve this

problem is to first “normalize” the large lighting and pose changes.

Another way is to model the intrapersonal difference by more

complex distributions instead of a single Gaussian distribution.
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