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Abstract
  

We simultaneously approach two tasks of nonlinear dis-
criminant analysis and kernel selection problem by pro-

posing a unified criterion, Fisher+Kernel Criterion.  In 

addition, an efficient procedure is derived to optimize this 

new criterion in an iterative manner. More specifically, 
original input vector is first transformed into a higher 

dimensional feature matrix through a battery of nonlinear 

mappings involved in different kernels.  Then, based on 

the feature matrices, FKC is presented within two coupled 
projection spaces: one projection space is used to search 

for the optimal combinations of kernels; while the other 

encodes the optimal nonlinear discriminating projection 

directions.  Our proposed method is a unified framework 
for both kernel selection and nonlinear discriminant 

analysis. Besides, the algorithm potentially alleviates 

overfitting problem existing in traditional KDA and has 

no singularity problems in most cases.  The effectiveness 
of our proposed algorithm is validated by extensive face 

recognition experiments on several datasets.

1. Introduction 

Kernel Discriminant Analysis (KDA) has been widely 

used in computer vision, especially for face recognition [9] 

[16]. KDA first maps the original data to a higher dimen-

sional feature space via a nonlinear mapping, and then 

applies Linear Discriminant Analysis (LDA) [6] in the 

transformed feature space.  In KDA, we need not explic-

itly know the nonlinear mapping; and the kernel function,

i.e. inner product of the data pair in feature space, is 

enough to derive final solution [13][15].  A kernel deter-

mines the induce bias of a learning algorithm on a specific 

data set; thus a proper way to select optimal kernel is cru-

cial for such learning algorithms as KDA. 

There have been some attempts to pursue more effec-

tive kernels [2] [8].  Generally speaking, these methods 

can be classified into two types: one is independent to the 

subsequent learning algorithm and the other is dependent.  

For the first type, new kernels are the refined ones of the 

traditional kernels with special motivations, such as [7] 

and the cosine kernel [10].  These methods are not always 

effective for specific algorithms in practice.  For the sec-

   *This work was performed at Microsoft Research Asia. 

ond type, such as boosting kernel for SVM [1] and RBF 

kernel parameter selection for KDA [5], the procedure for 

kernel selection is time consuming and is usually re-

stricted to a certain kind of kernels. 

As discussed in this work, it is infeasible to conduct 

kernel selection in KDA due to the overfitting problem 

existing in traditional KDA when the kernel Gram matrix 

is nonsingular.  In such cases, the data of the same class 

are mapped onto the same point; therefore traditional 

KDA cannot distinguish which kernel is better.  On the 

other hand, searching for an optimal combination of ker-

nels [3] [4] is regarded as a proper way for kernel selec-

tion.  But simple linear combination of the kernel matrix 

is far from satisfactory, and the overfitting problem still 

exists if the combined kernel Gram matrix is nonsingular. 

Motivated by the above observations, we propose a 

novel criterion, called Fisher+Kernel Criterion (FKC) for 

discriminant analysis, in which kernel selection and 

nonlinear discriminant analysis problems are simultane-

ously solved by optimizing a united objective function. 

More specifically, we first construct a compound trans-

formation by combining several different nonlinear map-

pings involved in different kernels.  The original input 

vector is mapped to a feature matrix through this com-

pound map.  Then these feature matrices are projected 

into a lower dimensional feature space by optimizing the 

FKC.  Here in FKC, two projection spaces corresponding 

to the two dimensions of a matrix are used in the optimi-

zation.  The right-projection space is used to search for a 

better combination of the simple nonlinear mapping func-

tions; while the left-projection is devoted to finding the 

optimal projection directions for nonlinear discriminant 

analysis.  Finally, an iterative optimization procedure is 

designed to optimize this criterion based on matrix analy-

sis techniques.  The integration of FKC and the solution 

procedure is called Fisher+Kernel Analysis (FKA) in this 

work. 

The rest of this paper is organized as follows.  First, we 

provide an overview of the KDA algorithm in Section 2.  

In Section 3, we present the Fisher+Kernel Criterion and 

its optimization procedure.  The detailed analysis of the 

FKA is presented in Section 4.  Then, the face recognition 

experiments on different benchmark databases are given 

in Section5.  Finally, we conclude this paper in Section 6. 
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2. Kernel Discriminant Analysis 

Given a collection of training image samples denoted 

as
1 2

{ , }
n

x x xχ = , where m

ix ∈  and sample ix belong to 

the il -th class, {1,2,..., }il p∈ and ln is the number of 

samples belonging to the l-th class.  

Let :  ( )x xφ χ φ∈ → ∈F be a nonlinear mapping 

from the original input space to a higher dimensional fea-

ture spaceF ; and the inner product in the feature space is 

defined as a kernel function ( , ) ( ) ( )k x y x yφ φ= .

The main idea of KDA is to apply the Fisher Criterion 

in the higher dimensional feature space. So the criterion 

for KDA algorithm can be given as follows 

Criterion 1 
( )
( )

* arg max

T

B

T

W

S

Sψ

ψ ψ
ψ

ψ ψ
=

where { ( ), 1,..., }ispan x i nψ φ∈ = ⊂F ,
1

( )
n

i ii
xψ α φ

=
=

And the intra-class scatter matrix wS and the inter-class 

scatter matrix BS are

( )( )
( )( )

1

1

( ) ( )i i
Tn l l

W i il

Tp l l

B ll

S x x

S n

φ φ φ φ

φ φ φ φ

=

=

= − −

= − −
 (1) 

where lφ is the average of the mapped samples belonging 

to the class-l, andφ is the average of all mapped samples.   

Denote ( )1
( ), , ( )nx xφ φΦ = , then we have 

1 1 1

1 1
( , ) ( , )

    

i i

T
n n n

T

W i i j j i i j j

i j jl l

T

w

S e l l e e l l e
n n

M

δ δ
= = =

= Φ − − Φ

Φ Φ

where
1

( , )
0

if i j
i j

else
δ

=
= , and ie is a n-dimensional vec-

tor with ( )i ije j δ= . Let 
TS be the total scatter matrix as 

1 1 1

1 1
T

n n n
T T

T i j i j T

i j j

S e e e e M
n n= = =

= Φ − − Φ Φ Φ

Then BS  can be written as 

( ) T T

B T W T W BS S S M M M= − = Φ − Φ Φ Φ        (2) 

Thus, in the higher or even infinite dimensional feature 

space F, we can define the scatter matrices directly as  
T

W WS M= Φ Φ  and T

B BS M= Φ Φ                   (3) 

Denote the kernel Gram matrix TK = Φ Φ , then the op-

timal solution of criterion 1 can be obtained as
T T

B W
K M K K M Kα λ α=      (4) 

From Eq. (4), we have the following observations: class 

information is contained in matrices 
B

M  and 
W

M  while 

distribution information of training data is included in the 

matrix K.  For classification problem with fixed number 

of samples, learning algorithm is fully decided by its ker-

nel Gram matrix.  Moreover, we have ( )T

W
rank K M K ≤

( )
W

rank M n p= − ; hence the dimension of the null space 

of T

W
K M K  is no less than p; and the number of α  satis-

fying 
( )
( )

max

T

B

T

W

S

S

ψ ψ

ψ ψΨ
= +∞ is at least p.  As proved in 

appendix, when kernel gram matrix is nonsingular, sam-

ples of the same class are mapped on the same point in the 

learned lower dimensional feature space, which leads to 
overfitting. And this overfitting makes KDA fail to deter-

mine which kernel is better since all the criterion values 

will be infinite if nonsingular kernels are used.

These considerations motivate us to propose a criterion 
which has the ability to distinguish different kernels and 

meanwhile can be solved efficiently.  To this end, we pro-

pose Fisher+Kernel Criterion as follows. 

3. Fisher+ Kernel Criterion and Optimization 

Define 2

1, 1
|| ||

m

F iji j
A A

= =
= as Frobenius norm of matrix 

A.  Denote a collection of nonlinear mapping functions 

as: :jφ χ → jH , where {1, , }j f∈ and jH is a Hilbert 

space.  H is a Hilbert space as the direct sum of jH .  So, 

ˆ ( )
j

xφ ∈H , {1, , }j f∈ , is a vector expanded by ( )
j

xφ .

     Traditional kernel methods are processed in the single 

Hilbert space jH ; but here we intend to process the kernel 

selection in the larger Hilbert space H . Thus the i-th

original sample
i

x  is first mapped onto a so called feature 

matrix 
1
ˆ ˆ( ) [ ( ), ( )]

i i f i
x x xφ φΦ = in that larger spaceH .

3.1 Fisher + Kernel Criterion 

Since kernel function is the inner product of ˆ
j

φ in Hilbert 

spaceH , selection for kernels is actually the selection of 

nonlinear map ˆ
j

φ .  Besides, we intend to learn the most 

discriminating features with Fisher Criterion, which has 

achieved good performance in many real world problems. 
To fuse kernel selection problem into Fisher Criterion, we 

propose Fisher +Kernel Criterion below: 

Critrion2

2

2,

|| ||
( *, *)

|| ( ) ||
i

T T

c c Fc

T TU V
i l Fi

n U V U V
U V arg max

U x V U V

Φ − Φ
=

Φ − Φ

where ˆ( ( ))
j i

U span xφ∈ ⊂ H  , 'f fV ×∈ , Φ is total aver-

age matrix of all the feature matrix ( )
i

xΦ ,
c

Φ  is average 

matrix of the ( )
i

xΦ belonging to class c, and so for 
il

Φ .
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In criterion 2, right matrixV is to search a better com-

bination of ˆ , ( 1, )
j

j fφ = , so right-projection space is a 

finite dimensional Euclidean space.  While left matrix is 

used to find the most discriminative subspace in H ;

therefore left-projection space is a subspace of H .

Our criterion is based on the whole Hilbert spaceH , so 

inner product should be defined between any two vectors 

inH for similarity measure; to simplify the algorithms, we 

assume that the feature vectors mapped by different
j

φ are

independent, i.e. 
ˆˆ ˆ( ) ( ) ( , )j

j j
x y k x yφ φ = and ˆ ˆ( ) ( ) 0  ( )

i j
x y i jφ φ = ≠   (5). 

Specifically, we can define

1 1 1

'ˆ (0 0,   ,0 0) '

j j f

j j
φ φ

− +

= .

Conventionally, we can pursue left projection subspace 

in ˆ( ( ))
j i

span xφ , yet it will result in a very large scale op-

timization problem.  To cut the overhead of calculation, 

we propose two methods to constrain the left-projection 

space, which leads to two different algorithms, called 
FKA01 and FKA02, respectively. 

1). FKA01: Assume left-projection space is constrained 

in ( )( )span xφ , where 
1

ˆ( ) ( )
f

jj
x xφ φ

=
=                        (6). 

Denote 1 2( ), ( ), ( )nU x x x L Lφ φ φ= Φ , n mL ×∈ .

Suppose the projection of ( )ixΦ  in left projection space 

is iK , then the element of iK , i.e. ( , )iK a b , has the form: 

ˆ( , ) ( ) ( ) ( ) ( ) ( , )b

i a b i b a b i a iK a b x x x x k x xφ φ φ φ= = = .

Different kinds of kernel functions bk  are chosen from 

the kernel bank{ }jk , which can be obtained as a kind of 

prior knowledge given by users. 

2).FKA02: Another way to alleviate computational cost 

is to use the mapping of class centroids approximate the 

ˆ( ( ))j ispan xφ , namely, ˆ ( )j sxφ  is used in left projection 

space instead of all ( )ˆ
j ixφ , where sx , {1, }s p∈  is the 

centroid of s-th class.  Then we can define            

1 2
[ ( ), ( ), ( ), ]pU x x x L L= Φ Φ Φ Φ , fp mL ×∈ .      

Denote the projection of ( )ixΦ  in the projection space 

as iK , then the element of iK , i.e. ( , )iK a b , has the form: 

1 0 1 0

1 0

,

, 0 1

ˆ ˆ( , ) ( ) ( ) ( ) ( )

( , ), ( 1)

i a a b i a b b a b i

b

a b a i

K a b x x x x

k x x a a f a

φ φ δ φ φ

δ

= = ⋅

= ⋅ = − +
Though the two mentioned methods have different pro-

jection spaces, both of them satisfy the same criterion 2 

and have the same form.  So we can solve these two algo-

rithms in the same way as follows: 

      Denote that    T

c cK = Φ Φ           TK = Φ Φ
T

i iK = Φ Φ
i i

T

l lK = Φ Φ (7)

Then the criterion 2 can be simplified to  

Criterion3 

2

2,

|| ||
( *, *)

|| ||
i

T T

c c Fc

T TL V
i l Fi

n L K V L KV
L V arg max

L K V L K V

−
=

−

The kernel matrices can be directly computed from the 

kernel function bank{ }ik .  Also, K matrices in criterion 3 

has finite dimensions, thus criterion 3 can be solved using 

general matrix analysis techniques.  To the best of our 

knowledge, criterion 3 has no closed-form solution; here 

we present an iterative procedure to solve this problem. 

3.2 Iterative optimization procedure

For a given 'f fV ×∈ , the objective function of crite-

rion 3 is rewritten as: 
2 2

2 2

|| || || ||

|| || || ||

( )
                                       

( )

i i

T T T v T v

c c c c Fc c

T T T v T v

i l F i l Fi i

T v

B

T v

W

n L K V L KV n L K L K

L K V L K V L K L K

Trace L S L

Trace L S L

− −
=

− −

=

 (8) 

where the symbol vA with superscript v means vA AV ,

and          ( )( )
v v v v v T

B c c cc
S n K K K K= − −

( )( )
i i

Tv v v v v

W i l i li
S K K K K= − −

(9)

and the optimal L for the given V  can be obtained from  
V V

B wS x S xλ=                               (10) 

Similarly, for a given n m fp mL or× ×∈ , the objective 

function of criterion 3 can be reorganized as follows 
2

2

|| || ( )

|| || ( )
i

T T T L
c c Fc B

T T T L

i l F Wi

n L K V L KV Trace V S V

L K V L K V Trace V S V

−
=

−
 (11) 

 Fisher +Kernel Analysis: 

Given input sample set { },  i=1,...,nm

ix ∈ , class la-

bels {1,2,..., }il p∈ and the desired final dimensions m

and 'f .

1. Construct the kernel matrix defined in the Eq.  (7)

2. Initiate
0

V .

3. for t =1, 2, … , f, do

       a) For given
1tV − , calculate the optimal tL  from

the Eq. (8) by using a generalized eigenvector 

decomposition method. 

       b) For given tL , calculate the optimal tV  from Eq. 

(11) using a general eigenvector decomposition 

method. 

       c) If 1|| ||t t

FL L ε−− < , 1|| ||t t

FV V ε−− < and 2t > ,

go to step 4; else, continue; 

4. Output the projections fp m n m

tL L or× ×= ∈  and

'f f

tV V ×= ∈ .

Figure1. The procedure for Fisher+Kernel Analysis 
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where the symbol LA with superscript L means  L TA L A

and            ( ) ( )
L L L T L L

B c c cc
S n K K K K= − −

( ) ( )
i i

L L L T L L

W i l i li
S K K K K= − −

(12)

The optimal solution V for the given L  can also be calcu-

lated similar to Eq. (10). 

Then, we develop the so called Fisher+Kernel Analysis 

(FKA) procedure to iteratively optimize the matrix L and 

V for the local optimum as in Figure 1.  

4. Algorithmic Analysis

Here, we discuss the characteristics of FKA as follows: 

Merge kernel selection into discriminant analysis.

Kernel selection and discriminant analysis are carried out 

simultaneously using two projection spaces.  Also we 

only need the final projection of Gram matrices rather 

than the exact form of final selected kernel function. Thus 

FKA avoids the complex process in kernel selection and 

can also be generalized into other kernel algorithm such as 

KPCA.  Besides, the kernel selection result is optimal for 

the whole projection matrix.  That is quite different from 

most other algorithms [5], which can only guarantee that 

the selected kernel is optimal for the first dimension of the 

projection matrix. 

Process discriminant analysis in a larger Hilbert 

space. In traditional KDA, discriminant analysis is proc-

essed in each iH , and our algorithm is carried out in the 

whole feature spaceH .  If traditional KDA classification 

is taken as a nonlinear classifier, the new algorithm can be 

regarded as a synthesis of several different classifiers.  

This brings possibility of capturing more discriminating 

features of the data.  Moreover, this larger space enables 

our algorithm capability to select kernel among various 

different kinds of kernel function.  

Could avoid overfitting in traditional KDA.  As proved 

in appendix, when K is a nonsingular matrix, there exists 

overfitting problem in KDA algorithm.  Most of the ker-

nel matrix is nonsingular, e.g.  RBF kernel cases [15].  So 

in this condition, it is infeasible to pursue the selection of 

kernel under traditional Fisher Criterion, for all the ker-

nels are equal under this criterion.  

 In our algorithms, original image vectors are mapped 

to feature matrices. Take FKA01 for example and suppose 
*V is the optimal V matrix.  Note that v n f

iK ×∈  and 

( )( )
i i

Tv v v v v n n

W i l i li
S K K K K ×= − − ∈ . So, ( )wrank S  is 

around min{( )* , }n p f n− .  When we use multiple kernels, 

there is ( )*n p f n− >>  , therefore the matrix wS  can be 

guaranteed to be in full rank in most cases. The case of 

FKA02 is similar to that; hence both of our algorithms can 

alleviate overfitting to some extent.  Therefore, it is dif-

ferent with those combined kernel methods which simply 

add weight to each kernel matrix, whereas the overfitting 

and singular problem still exists for KDA. 

5. Experiments 

In this section, we conduct a series of experiments to 

compare FKA algorithm with traditional KDA.  We use 

Gaussian kernel: ( )2 2
( , ) exp || || / 2

i

ik x y x y σ= − −  and set 

the parameter , 1, 10,i i iσ σ= × ∈  where σ is the stan-

dard variation of training data.  { , 1,...,10}ik i =  is used as 

kernel bank in FKA.  Algorithms are tested on the bench-

mark face databases, ORL [11], FERET [12] and CMU 

PIE [14].  For ease of presentation, each experiment is 

named as Gm/Pn, which means m images per person are 

randomly selected as gallery set and other n for probe set.  

Histogram equilibrium has been applied as preprocessing 

step and nearest neighbor is used as final classifier. 

5.1. ORL database

The ORL database contains 400 images of 40 individu-

als.  Some images were captured at different times and 

had different variations including expression and facial 

details.  The images were taken with a tolerance for some 

tilting and rotation of the face up to 20 degrees.  All im-

ages are grayscale and normalized to a resolution of 

46*56 pixels.  Five sample images of one person in the 

ORL database are shown in Figure 2. 

Figure 2. Five sample images in ORL face database 

Figure 3 and 4 display the error rates of three sets tests 

compared between KDA and FKA. Vertical axis repre-

sents error rate of different algorithm. Horizontal axis 

represent different algorithms, where the numbers from 1 

to 10 denote KDA algorithms using ten different parame-

ters while 11 and 12 represent FKA02 and FKA01 taking 

ten kernels in KDA as the kernel bank, respectively.  The 

whole databases are divided into gallery and probe set as: 

Test A G3/P7, Test B G2/P8 and Test C G5/P5.  From 

Figure 3, we can see that FKA02 has much lower error 

rate than the KDAs with different kernels in both cases. 

1 2 3 4 5 6 7 8 91011
5

10

15

TestAer
r%

1 2 3 4 5 6 7 8 91011
10

20

30

TestB

er
r%

Figure 3. Error Rate of FKA02 vs. KDAs on ORL database. 
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In Figure 4, we show the results of both FKA 01 and 02 

in Test C to compare with ten KDAs with different ker-

nels.  It also confirms that both FKA algorithms outper-

form all the KDAs. 

1 2 3 4 5 6 7 8 9 10 11 12
5
6
7
8
9

10
11
12
13

TestC  

er
r%

Figure 4. Error Rate of FKA02 &FKA01 vs. KDAs on the 

ORL database.  Note that horizontal axis coordinate 11 

represents FKA02 and 12 represents FKA01.

Figure 5 displays recognition rates of FKA02 on differ-

ent dimensions and the results are from Test C. Horizontal 

axes represent the row and column dimensions of the final 

low dimensional matrix used for face recognition. 

Figure 5. Accuracy of FKA 02 vs. number of eigenvectors in 

Test C on the ORL database. 

5. 2. FERET database

In this experiment, seventy persons of the FERET data-

base are used and each person has six different face im-

ages.  All images are aligned by fixing the location of the 

two eyes and resized to 46*56 pixels.  There are facial 

expression, illumination and pose, facial details  variances 

in the images.  Figure 6 displays six examples of one per-

son in FERET. 

Figure 6.  Six samples of one subject in FERRET database 

In this experiment, we randomly partition the database 

into G4/P2 as test A and G2/P4 as test B.  Figure 7 pre-

sents the results of these two experiments, which also 

demonstrates that the algorithm FKA02 outperforms tradi-

tional KDA algorithm with different kernel parameters. 

1 2 3 4 5 6 7 8 91011
2

4

6

8

10
TestAer

r%

1 2 3 4 5 6 7 8 91011
20

25

30

35
TestBer

r%

Figure 7. Error rate of FKA02 vs. KDAs on FERET data-

base. 

5.3. PIE database 

The CMU PIE database contains more than 40,000 fa-

cial images of 68 people.  The images were acquired 

across different poses, under variable illumination condi-

tions and with different facial expressions.  In our used 

database of PIE, five near frontal poses (C27, C05, C29, 

C09 and C07) and illumination 08 and 11 are chosen. The 

flash 08 and 11 are placed near the center and the illumi-

nation can be considered as the nearly frontal illumina-

tion.  Each person has ten images and all the images are 

aligned by fixing the locations of two eyes, and the im-

ages are resized to 64*64 pixels.  Figure 8 shows five ex-

amples of one person without preprocessing. 

Figure 8. Five images of one person  in  the PIE database

Similar to experiments above, the data set is randomly 

partitioned into gallery and probe sets with G4/P6 in test 

A and G3/P7 in test B.  We compare KFA01 with KDA in 

this experiment.  The result in Figure 9 again shows that 

KFA01 can improve face recognition accuracy compared 

with traditional KDA with different kernel parameters. 

1 2 3 4 5 6 7 8 91011
0

10

20

30
TestAer

r%

1 2 3 4 5 6 7 8 91011
0

10

20

30
TestBer

r%

Figure 9. Error Rate of FKA01 vs. KDAs on  the PIE database 

From the results above, we can find that the parameter 

for KDA to obtain the best performance is discrepant on 

different data set; hence, it is difficult and unreasonable to 

select kernels by experience as in traditional KDA.  While 

our algorithms can effectively combine different kernels 

and derive elegant representation for classification; thus 

are superior to traditional KDA in almost all cases. 
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6. Conclusion 

In this paper, we proposed a novel criterion that fuses the 

process of kernel selection into the nonlinear discriminant 

analysis.  Also we developed an efficient iterative proce-

dure for the optimization of the criterion.  The algorithm 

integrating these two contributions, called Fisher+Kernel 

Analysis (FKA), automatically combines all the kernels in 

user-defined kernel bank to search for the most discrimi-

nating features; moreover, it alleviates the overfitting ex-

isted in traditional KDA.  Extensive experiments on dif-

ferent face databases validate the superiority of the pro-

posed FKA compared with traditional KDA algorithm. 

Appendix 

Proof of overfitting in KDA mentioned in Section 4: 

Lemma 1 The rank of matrix wM is n-p.

Theorem 1 In KDA algorithms, when K is a nonsingular 

matrix, there exist p basis vectors that map the original 

data of the same class onto the same point 

Proof: When K is nonsingular, Eq. (4) can be simpli-

fied as:                        B WM K M Kα λ α=                (13) 

Set that , nKα β β= ∈ . Using lemma 1, we conclude 

that WM  only has p zero eigenvalues.  

Define 

l-1

j=1

(0, 0 ,1, 1,0, 0)

j
l

n n

lβ = , we have     

      = (0, 0, ,0, 0) 0W l l lM diag Aβ β =                (14) 

So ( 1 )l l pβ = is the eigenvector corresponding to
WM ’s

zero eigenvalues. Recalling the M matrices defined in Eq. 

(2) and (3), we can obtain that  

( ) 0B l T W l T lM M M Mβ β β= − = ≠       (15) 

So 1

l lKα β−= is chosen as the eigenvectors, and we 

have λ = ∞ .

The image of ix in higher dimensional feature space, 

i.e. ( )ixφ , is projected to ( )( )l i i lg x xφ ψ= . Note that 

( )
1

( ) ( )
n

l i i l j i l lj
g x x j Kφ α φ α β

=
= = =

where ( )l iβ  means the i th entry of the vector
lβ . Let 

n

j=1
( )l l jjψ α φ=  be a set of basis vectors of the feature 

space, where the vector lα  corresponds l lKα β= . Note 

that when ,i jx x  are two different samples from the same 

class (for example, class c) in the original data set, they 

are projected to the coordinate 0 under the basis ( )l l cβ ≠
and the coordinate 1 under the basis ( )i i cβ = .  Under this 

set of basis, the data of the same class is mapped to the 

same data point in the dimension-reduced subspace.      
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