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Abstract 

For multi-view face alignment, we have to deal with 

two major problems: 1. the problem of multi-modality 

caused by diverse shape variation when the view changes 

dramatically; 2. the varying number of feature points 

caused by self-occlusion. Previous works have used non-
linear models or view based methods for multi-view face 

alignment. However, they either assume all feature points 

are visible or apply a set of discrete models separately 

without a uniform criterion. In this paper, we propose a 

unified framework to solve the problem of multi-view face 

alignment, in which both the multi-modality and variable 
feature points are modeled by a Bayesian mixture model. 

We first develop a mixture model to describe the shape 

distribution and the feature point visibility, and then use 

an efficient EM algorithm to estimate the model parame-

ters and the regularized shape. We use a set of experi-

ments on several datasets to demonstrate the improve-
ment of our method over traditional methods. 

1. Problem description

Parametric deformable models [1, 2, 3, 4, 5, 6] have 

been widely used in such vision tasks as image segmenta-

tion and object localization. Among different models, 

statistical shape models [3, 6] have shown state of the art 

performance for shape registration by using statistical 

techniques to describe shape distribution in order to regu-

larize shapes in shape registration. However, the shape 

models used in these methods are generally Gaussian lin-

ear models and are only capable of describing faces with 

limited view changes. When view changes dramatically, 

the Gaussian linear models often fail to model shapes 

properly. To solve the multimodal shape registration 

problem, two main approaches have been proposed. One 

is the view based method which uses a set of different 

models to represent shapes from different views [4], and 

the other is the non-linear model method which uses 

nonlinear models to represent shape variations [5]. The 

view-based methods treat a set of discrete models sepa-

rately without a uniform criterion to regularize shape in a 

multimodal framework. It is very difficult to cover unlim-

ited view change possibilities with a small set of discrete 

models. Therefore, the method has high requirements on 

the views of the training data, which has to be close to the 

testing data. Since every view has to be computed, the 

computation cost significantly increases. On the other 

hand, the non-linear model methods generally assume all 

the feature points are visible. But this assumption might 

not hold for multi-view faces. In fact, an important issue 

for large view variation is that some feature points might 

become invisible at some views because of self-occlusion. 

So this requires the model to be able to handle varying 

feature point sets. However, the varying dimensional 

model optimization itself is an ill posed problem of expo-

nential complexity. Instead of solving such a varying di-

mension optimization problem, we will treat the point 

visibility as a random variable and then infer the probabil-

ity of the visibility of each point. 

In this paper, we propose a multimodal Bayesian 

framework for multi-view face alignment. First, the prob-

lems of multi-modality and variable feature points are 

formulated in a unified Bayesian framework. Specially, 

we use a mixture model to describe the shape distribution 

and point visibility, and then derive the posterior of the 

model parameters given an observation of unknown valid 

feature points. Second, an EM algorithm is given to esti-

mate the model parameters, the regularized shape, and the 

visibility of its points. Extensive experiments on several 

datasets clearly show the efficacy of the new algorithm. 

2. Problem formulation

Our probabilistic formulation includes a prior mixture 

model of the shape and point visibility and a likelihood 

model about the observation of variable feature points in 

the image space. At the end of this section, we derive the 

posterior about the model parameters and formulate a 

hierarchical hidden variable model for the problem. 

2.1. Prior model 

A shape with N landmark points is labeled by a 3N-

dimensional vector (x11,x12,v1,…,xN1,xN2,vN), in which the 

pair (xi1, xi2) is the coordinates of the ith point and vi is a 

0-1 variable indicating the visibility status of the ith point. 

Using x=(x11,x12,…,xN1,xN2)
T
 to denote all point coordi-

nates and using v=(v1,…,vN)
T
 as the visibility indicator for 

all points, we represent a shape as (x, v). The prior model 

includes a mixture shape model of x and a mixture visibil-

ity model of v. A mixture shape model is learned after 
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aligning all the shapes to a common coordinate frame. 

Computing the common coordinate frame and aligning all 

the shapes is a typical Generalized Procrustes Analysis 

(GPA) [3, 5, 6]. In this paper, we learn a 2-cluster mixture 

PPCA model [9], 
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where m is the cluster number, i is the cluster weight and 

fi(⋅|b(i)
) is a normal density function; b=(b

(1)
,…,b

(m)
) is 

called the shape parameter and each b
(i)

 follows a Gaus-

sian distribution p(b
(i)

)=N(0, Λ(i)
) in which Λ(i)

 is a diago-

nal matrix; µ(i)
 is the center of the ith cluster and Φ(i)

 is 

the principal matrix whose columns are the eigenvectors.  

The prior landmark point visibility model is defined as 

a mixture Bernoulli model, 
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where the cluster weight i is the same as Eq. (1) and qk
(i)

is a value between 0 and 1 which defines the probability 

of the kth point to be visible for the shapes in the ith clus-

ter. Each qk
(i)

 is learned after the mixture shape model is 

obtained. For a training shape x, its probability for be-

longing to the ith cluster is denoted as fi(x). We compute 

fi(x) by first projecting x into the principle subspace Φ(i)

to get its shape parameter b
(i)

 and then multiplying the 

probability p(b
(i)

) with fi(x|b
(i)

). In other words, we com-

pute the Mahanalobis distance of x to the cluster center µ(i)

as the summation of the M-distance in the principal sub-

space and the M-distance from the principal subspace [9]. 

So far, with the training set {(x
(1)

,v
(1)

),…,(x
(L)

,v
(L)

)}, the 

prior visible probability qk
(i)

 of point k in cluster i is 
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Figure 1 shows the two cluster centers of the mixture 

shape model with the visible probability of each landmark 

point illustrated as the degree of the darkness. The darker 

the point is, the more likely it might be occluded. 

2.2. Likelihood model 

For the current searched image, the observation for the 

shape regularization is the updated shape after local tex-

ture matching [3, 6]. We call this updated shape as the 

observed shape [6] and denote it as y. The observed shape 

y is in the image space and there is a similarity transfor-

mation difference between y and the shapes in the under-

lying shape space. We use a vector θ=(c1,c2,s,θ)
T
  to rep-

resent this set of transformation parameters, in which 

c=(c1,c2)
T
 is the translation, s is the scale and  is the rota-

tion. We use Tθ(⋅) to denote the similarity transformation 

incurred by this set of pose parameter, i.e. for a shape 

vector x ,  Tθ(x)=s(IN⊗Uθ)x+1N⊗c. Here ⊗ is the 

Kronecker product, 1N is a N-dimensional column vector 

whose elements are all one, IN is the N-dimensional 

Figure 1: Centers of the two clusters in the mixture shape model. 

Figure 2: The hierarchical hidden variable model. 

identity matrix and Uθ is the rotation matrix with the an-

gle . We denote Tθ
-1

(⋅) as the inverse transformation of 

Tθ(⋅).
The observed shape y is known to be noisy and some 

of its feature points might be occluded. So given the un-

derlying shape x and its point visibility v, y is assumed to 

follow a distribution in Eq. (4), 
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where the notation  is array multiplication which is the 

entry-by-entry product of two vectors and the notation ⋅
is the L1 norm. The variance ρ2

 is estimated from the up-

date of the shape in the local texture matching step [6]. 

The visibility variable v indicates the valid feature points 

of the observed shape y.

2.3. Hierarchical hidden variable model  

The parameters to be estimated here are the shape pa-

rameter b and the pose θ. Based on the prior models (1), 

(2), and the likelihood model (4), the posterior of the pa-

rameters is obtained by integrating the hidden variables, 

( ) ( ) ( ) ( ) ( ), | | , , |p p p p p∝b y y x v x b v b dxdv . (5) 

The variables x and v are the hidden variables in our 

formulation. In addition, the cluster indicator variable is 

denoted as w=(w1,…,wm)
T
, which only takes value like 

(0,…,0,1,0,…0)
T
 and its distribution function is, 
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And then given the cluster variable w, the distribution 

of x and v can be rewritten as 
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With x, v, and w, the whole framework can be described 

by a hierarchical hidden variable model in Figure 2. 

3. Shape regularization by EM algorithm
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In this section, we describe an EM algorithm to com-

pute the parameter MAP estimation in the hierarchical 

hidden variable model in Figure 2. 

3.1. EM algorithm for MAP of parameters 

Instead of directly optimizing the posterior function in 

Eq. (5), we apply the EM algorithm to find the MAP es-

timation of parameters. The E step computes the expecta-

tion of the log-posterior. It is done through the computa-

tion of the expectation of several sufficient variables. The 

derivation of these sufficient statistics is presented in Ap-

pendix A and B. And we summarize the E step as follows.

E1) Estimation of the cluster weight: [ ]ˆ |i iw E w= y .

E2) Estimation of the point visibility: [ ]ˆ | , 1i iE w= =v v y .

E3) Estimation of the shape: [ ]ˆ ˆ| , , 1i i iE w= =x x y v

( )( ) ( ) ( )
2

ˆ1
i i

i
= − ⊗v 1 b ( )2

ˆ
i+ ⊗v 1 ( ) ( ) ( ) ( )( )11

i i

i i
p p Tθ

−+ −b y .

In the above steps, refer to Eq. (12) in Appendix B for 

the computation of wi and Eq. (11) for the computation of 

vi. Each element of vi is a value between 0 and 1, and it 

determines how much we will use the information of each 

point from the observation when we estimate the underly-

ing shape xi. The form of the estimation of the shape xi

tells us: 1) if some element of vi is small, that is, the cor-

responding point is supposed to be very likely to be oc-

cluded, we will put less confidence on that point; 2) when 

the observed shape is used for the estimation of xi, its 

weight depends on the ratio between its noise and the 

noise in the shape space. Please refer to Eq. (10) in Ap-

pendix B for the derivation of xi. With the expectation of 

the sufficient statistics computed in the E step, the M step 

tries to maximize the expected log-posterior. It is done 

separately for the shape and pose parameters, 

M1) update of shape: ( )
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From Eq. M1), we can see when projecting the shape 

xi to the PCA subspace Φ(i)
, it is regularized by shrinking 

its weight along each principal direction. And the inten-

sity of shrinkage depends on the energy Λ(i)
 at the princi-

pal direction. If the energy Λ(i)
is small, that means the 

distribution along the principal directions is compact, then 

the shrinkage will be significant; otherwise, the shrinkage 

will be minor. In addition, the cluster weight wi is also 

used to compute the shrinking factor. If the cluster weight 

is small, i.e. it is unlikely that the shape comes from this 

cluster, the shrinkage will be much significant for the 

shape parameter of this cluster. Eq. M2) shows that the 

cluster weight also contributes to the weighted least 

square process to update the pose parameter θ. And the 

point visibility vi determines the contribution of each fea-

ture point in the update of pose. 

3.2. The regularized shape and its reliability 

Once we get the MAP parameter (b, ), we can regu-

larize the observed shape y as the transformed expected 

underlying shape x with the pose parameter . And the 

expected tangent shape x is   

1

ˆ ˆ| , ,
m

i i

i

E w
=

=x y b x .                                             (7) 

So the regularized shape is a weighted average of 

shapes in different clusters which are the best matched to 

the observed shape. It is weighed by the weight of the 

cluster, which tells us how likely the current shape be-

longs to this cluster. And we can also get the expected 

point visibility v of the regularized shape x as, 

( )
1

ˆ ˆ| , ,
m

i i

i

E w
=

=v y b v .                                             (8) 

The point visibility estimation is a value between 0 and 

1, and it actually gives us a measurement of the reliability 

of each feature point of the regularized shape. In fact, 

although the shape x and the point visibility v are as-

sumed independent in the prior mixture model, this inde-

pendence is not tenable any more after the observation y

is incorporated. This is illustrated by the formulation in 

Figure 2. The estimation of shape x is based on its visibil-

ity probability v. And the point visibility probability 

measures how consistent one point is in the shape model, 

or in other words, to all other points. 

4. Experimental analysis

We apply the hierarchical mixture model to multi-view 

face alignment. In this section, we describe the training 

procedure in details and evaluate the performance of the 

algorithm in terms of accuracy and stability. We demon-

strate that, with a set of discrete view models, we can 

handle face images within a range of views. The mixture 

model can not only compute positions of the feature 

points, but also estimate the reliability of each point. An 

interesting byproduct of the new algorithm is that we can 

also use the model to estimate the view direction of a face. 

4.1. Training the mixture model 

The database we use for training and testing includes 

both the real and synthetic images. In order to better 

evaluate the algorithm, we divide our database into three 

parts: Dataset I, Dataset II, and Dataset III. Dataset I is 

composed of the frontal, 40 and 50 degree viewed face 

images, which will be used to train the prior mixture 

model. There are 230 frontal face images in Dataset I 

which come from the FERET database [7] and the AR 

database [8]. And there are 100 face images for the 40 

and 50 degree views respectively, which are generated 

from the USF Human ID 3D database [10]. Dataset II also 

contains viewed face images generated from these 3D 

data. The faces in Dataset II are of 10, 20, and 30 degree 
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Figure 3: Faces with labeled landmarks. 

views and there are 100 images for each view. The im-

ages in Dataset II are well labeled, and since they are dif-

ferent from those in Dataset I, they will be used as the 

ground truth for testing. The images in Dataset III are all 

synthetic images. We use 490 images in the FERET and 

AR databases and apply the technique in [11] to generate 

the 3D model of the face in each image. Then, using the 

3D model, we can synthesize viewed face images at arbi-

trary views. In Dataset III, we have totally 490x51 syn-

thetic face images, so there are 490 images at each view 

direction from 0 to 50 degrees. 

The faces in Dataset I and II are labeled with 83 fea-

ture points. Figure 3 shows labeled faces at 10 and 50 

degree views. We draw the points with three different 

shapes to represent different meanings. The circle points 

(white), i.e. the points on eyes, eyebrows, and mouth, are 

those of texture significance in the image and have the 

same geometrical meanings at each view. These points 

are chosen to correspond to the same points on the 3D 

model. More precisely, the locations of these points at 

different views all have corresponding points on the fron-

tal view face at which all the points are visible. Unlike the 

circle points, the diamond ones (black) do not have the 

same geometrical meaning for all the views. In fact, they 

are selected because they have strong texture significance 

on the image, for example the edges, and have important 

functions in image searching. This kind of points includes 

those on the nose and the left part of silhouette (boundary 

with the background). All the other points (gray) are 

drawn with squares for those without texture meanings on 

the images. They are chosen to correspond to the same 

points on the 3D face model. These points are on the right 

part of the silhouette. After we finish labeling all the loca-

tions of these feature points, their visibilities are auto-

matically computed with the 3D model of each face. 

Training the hierarchical model includes learning a 

mixture shape model for all the 83 feature points and a 

mixture visibility model for each point. In the prior model, 

we learn a mixture PPCA model for the shape and a mix-

ture Bernoulli model about the visibility of each point as 

described in Section 2.1. Training is done on the images 

in Dataset I and two clusters are learned for the mixture 

model. Figure 1 shows the two cluster centers. One clus-

ter is the faces of nearly the frontal views and the other is 

the faces of 40 and 50 degree views. Given a shape x, the 

probability p(wi=1|x) describes the likelihood that x

Figure 4: Local updating step. 

comes from the cluster i and how close it is to this cluster 

center, so this probability may give us some information 

on the view of x. Based on this consideration, we learn a 

regression function of the view over the cluster weight 

estimation from Dataset I and II. The probability p(wi=1|x)

is proportional to p(wi=1)fi(x). Since the view distribution 

in Dataset I and II is very sparse, which only takes values 

as 0, 10, 20, 30, 40 and 50, the regression function we 

learned is a very simple 2nd-order polynomial. Thus, with 

this regression function and the estimated weight we can 

roughly estimate the view direction of an input face. 

4.2. Local texture update 

Similar to ASM and BTSM, the process of our method 

is composed of two steps: local texture matching and 

global shape regularization. However, because of the mul-

timodality of the images we model, we use a slightly dif-

ferent local texture matching strategy. The local texture 

model is learned for each cluster separately. Specifically, 

for each cluster, the local texture model is trained on the 

faces whose shapes are within the three standard devia-

tions of the PPCA model of each cluster. Our local texture 

model is the same as ASM and BTSM, which is based on 

gray gradients at the feature point. Also, our method is 

implemented in a multi-resolution framework and a three-

layer Gaussian image pyramid is formed on each image 

by down-sampling its pixels to obtain images of coarser 

resolutions. And the local models are trained for each 

layer. Therefore, for each point, there are two local mod-

els at each layer. When we use the two models to do local 

updating, we first calculate the update of the point with 

each local model and then weigh the results to get a final 

one. And the weight is just the weight estimation of the 

cluster. Figure 4 shows this local updating process. After 

the local updating, in the shape regularization step, we use 

the EM algorithm in Section 3 to estimate the shape and 

pose parameters, and finally get the estimation of the 

regularized shape and the reliability of each point. 

4.3. Alignment accuracy 

The accuracy of our algorithm is tested on Dataset II 

which has labeled ground truth. It should be noted that the 

faces in Dataset II are of 10~30 degree views, which do 

not appear in our training data in Dataset I. We intend to 

show that using only a set of discrete view models, we 
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(a)                                             (b) 

Figure 5: Statistics of alignment errors. (a) Densities of error 

differences. (b) Densities of errors of top 10 worst points. 

Figure 6: Results on testing images. 

can handle face images in a range of views. To demon-

strate the accuracy, we compare our method with another 

two existing methods: the view based model and the 

nonlinear model. The alignment error is calculated as the 

average point-to-point distance between the aligned 

points and the labeled ground truth. For the view based 

model, we train two linear BTSM models [6] for frontal 

view and 40-50 view respectively with the face images in 

Dataset I and present the best result of the individual 

viewed BTSM models. For other nonlinear models, we 

compare ours with that using a mixture Gaussian model 

for representing shape variations in ASM [5]. The three 

algorithms use the same local texture description and start 

with the same initialization. The alignment accuracy of 

the three methods is compared in Figure 5. Figure 5 (a) 

shows the overall improvement of our model over the 

other two. It shows that our method is better than the mix-

ture ASM on 81% images and outperforms the best 

viewed BTSM on 91% images. The improvement can be 

seen more clearly if we only concentrate on the worst 

aligned points. Figure 5 (b) shows the average errors of 

top 10 worst aligned points: while 81% images aligned by 

the mixture ASM and 74 % images aligned by the viewed 

BTSM have this error above 10 pixels, our model has an 

error below 10 pixels on 75% images. Some results of the 

three methods are also shown in Figure 6. 

These results show two aspects of our algorithm. First, 

compared with view based methods, our method can rea-

sonably weigh each mixture component model. Since the 

(a)

(b)                                                (c) 

Figure 7: (a) Aligned results. (b) View estimation. (c) Estima-

tion of the visibility probability of the left eye inner corner point. 

weighted combination of mixture components implies a 

much bigger sample space, our method can also work on 

the cases even if similar viewed samples are not in the 

training data. Second, compared with other nonlinear 

models, our model considers the visibility of the feature 

points and uses this visibility measure to prevent the miss-

ing or misleading features to ruin the overall result. 

4.4. View and point visibility estimation

One interesting result of our method is that we can es-

timate the face view direction using only the 2D model. 

We do this through the estimation of the cluster weights. 

In our model, this weight estimation represents how far 

the face is from the cluster center in terms of the Maha-

lanobis distance. We have one cluster of nearly frontal 

faces and the other of about 40~50 degree viewed faces. It 

is reasonable to assume that the faces between 0 and 50 

degrees have different distances to the two cluster centers. 

And this conjecture is confirmed by our experimental 

results. The dotted line in Figure 7 (b) shows view estima-

tion results when the view of a face changes from 0 to 50 

degrees and Figure 7 (a) shows the alignment results. We 

can see the estimation is consistent for the continuous 

change of views. It shows the weight estimation is rather 

stable. Although the results seem not fitted well between 

40 to 50 degrees, this is reasonable since 40 and 50 de-

gree viewed faces are in the same cluster in our model so 

that the views between them cannot be classified well. 

Another interesting outcome is the estimation of point 

visibility and this quantity is a probability between 0 and 

1 which can give us a reliability measure for each point. 

Figure 7 (c) shows the curve of the estimated visible 

probability of the left-eye inner corner point with the 

change of views. The gray dot points exactly correspond 

to the results visualized in Figure 7 (a). 
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(a)                                           (b) 

Figure 8: Statistics of view estimation errors. (a) Densities. (b) 

Empirical CDFs. 

Finally, we test the behavior of our view estimation 

method on Dataset III. Dataset III is composed of syn-

thetic viewed face images from 0 to 50 degree views and 

there are 490 images at each view. Since the weight will 

become undiscriminating between 40 and 50 degree 

views, we present the results in these views separately. 

Figure 8 (a) shows the density of the view estimation er-

rors. The x-axis is the difference of the estimated view 

and the true view. We can see that for the views under 40 

degrees, the view estimation is roughly a Gaussian distri-

bution around the true view with a standard deviation of 

about 10 degrees. Figure 8 (b) further plots the empirical 

c.d.f. of the absolute errors. It shows that for the face 

views bellow 40 degrees, 80% of them have the view 

estimation errors under 8 degrees and 90% under 10 de-

grees. 

5. Conclusion and discussion 

This paper has presented a new nonlinear model for 

multimodal shape registration problem. By modeling 

shape and point visibility in a mixture probabilistic model, 

we have handled the large shape variation and variable 

feature points in a unified framework. Within this frame-

work, an efficient EM algorithm for shape regularization 

is developed. When leveraging all the modalities in our 

model, we reasonably weigh their contributions in a sense 

of goodness-of-fit. Since this kind of continuous weight 

values are more accurate than the discrete values used by 

traditional view based methods, our method is more stable 

when the view changes. That partially explains why our 

model can work on a range of views with the prior model 

learned only on several views. On the other hand, by in-

troducing a hidden variable to indicate the visibility status 

of each point, we handle the self-occlusion stochastically. 
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Appendix 

A. Expectation of log-posterior
The expectation of the log-posterior of the complete 

variable (y,x,v,w) is computed by the following function, 

( ) ( ) ( ) ( ){
( ) ( )( ) ( ) ( )

1

| | , | , ,
1

22
2 2
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, | ,
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 (9) 

So the computation of Q-function is to compute the 

sufficient statistics [ ]ˆ |iw E= w y , [ ]ˆ | , 1i iE w= =v v y , and 

[ ]ˆ ˆ| , , 1i i iE w= =x x y v .

B. Some conditional probabilities 
1) Posterior of the shape x in cluster i with visibility v:

( ) ( )( ) ( )
( ) ( ) ( ) ( )
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−
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x y v x b y x v

x b v 1 x y
(10)

So the expectation of x is that of Eq. E3) in Section 

3.1.

2) Posterior of point visibility v for each cluster: 

( ) ( ) ( ) ( )( )
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( ) ( ) ( )
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3) Posterior of view class: 

( ) ( ) ( )
( )( )

( ) 2 2 2
2

1 2

2 2 2 2 2 2
1

1 | 1 | 1

1 exp
2 2 2 2

i i i

k k kiN
i k i

i k

k i i i

p w p w p w

z z zq
q

s

δπ
πσ ρ δ σ ρ −

=

= ∝ = =
′

∝ − + ⋅ − + +∏

y y

 (12) 

( ) ( ) ( )1
2 2 2 2 2 2 2 2 2

1 2 1where , , 1 ,i i is p s s p pδ σ ρ ρ σ ρ
−− − − −= + = + = −

( ) ( ) ( )1

1 2 1 1 2 2, , and
i i

T p pθ
− ′= = = +z b z y z z z , kz is the kth

point of z.
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