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Abstract—Robustness and discriminability are two key issues in 
face recognition. In this paper, we propose a new algorithm 
which extracts micro-structural Gabor feature to achieve good 
robustness and discriminability simultaneously. We first design 
a family of directional block partitions to compute the block-
level directional projections of the classical Gabor feature. Then 
we use two statistical kernels, i.e, the mean kernel and the vari-
ance kernel, to extract the micro-structural statistics. Analysis of 
both robustness and discriminability is conducted to show that 
the new feature is not only more robust to misalignment, but also 
more discriminative than the classical down-sampling Gabor 
feature, which is further demonstrated by three groups of ex-
periments on the BANCA dataset.  

Keywords-Micro-structural Gabor feature; Face recognition; 
Statistical kernel 

 

I.   INTRODUCTION 
In recent years, Gabor feature has become one of the most effec-

tive features for face recognition[1~11]. However, the complete 
Gabor feature set is huge and redundant. This will not only increase 
much burden in computation, but also introduce high risk of “curse-
of-dimensionality”. So it is necessary to reduce the dimensionality of 
Gabor features. 

At present, there are at least three kinds of methods to deal with 
the dimensionality problem of Gabor features. The first kind is based 
on graph. Lades[1] and Wiskott[2] constructed the grid graph and 
the labeled graph respectively to extract a family of Gabor features. 
The second is uniform down-sampling. For example, Liu et al. [5] 
reduced the Gabor feature dimension by only convolving Gabor 
filters on uniformly down-sampled pixels. In the third category of 
methods, an objective function is generally designed to optimize the 
selection of Gabor filters, including selection of their locations, 
scales, and orientations. Among them, Gökberk et al. [7] learned the 
importance of each grid point. The least important grids were dis-
carded, and the remaining grids were weighted according to their 
recognition performance. They also used a number of feature selec-
tion algorithms and a genetic algorithm to find the optimal Gabor 
kernel location for face recognition [8]. In [9], Wu et al. selected 
optimal Gabor filters for high-speed face identification. AdaBoost 
was also used by Yang et al.[10] to choose the most discriminative 
Gabor feature set. 

In all the above methods, only the Gabor feature on a set of indi-
vidual sites is considered, so they have two drawbacks. Firstly, the 
Gabor feature on individual sites is sensitive to misalignment, such 
as shift and size variation. Secondly, it cannot reflect the spatial 
correlation between Gabor features at the neighboring sites, which is 

quite important for discriminating different persons. 
In this paper, we propose a new algorithm which extracts micro-

structural Gabor features (MSGF) to enhance the performance of 
face recognition. The key idea originates from our observation that 
micro-structural characteristics will play an important role in the 
face recognition problem. Although there are differences in the 
global face patterns among different persons, the spatial correlation 
between neighboring sites may contain much discriminative infor-
mation when human recognizes persons. Therefore, we compute the 
micro-structural Gabor features to reflect the local statistics of Gabor 
features at neighboring sites. We first design a family of directional 
block partitions to compute the block-level directional projections of 
the classical Gabor features. Then we present two kernels, the mean 
kernel and the variance kernel, to extract the statistical characteris-
tics of those block-level directional projections. The mean kernel 
improves the feature’s robustness, and the variance kernel enhances 
its discrimination capability. 

II. CLASSICAL GABOR FEATURE 
Gabor wavelet representation was introduced to image analysis 

due to its biological relevance and its outstanding capacity on spatial 
locality, scale selectivity, and orientation selectivity. It can be de-
noted as follows: 
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( ),h x yγϕ  is the impulse response function of Gabor filter with pa-

rameters ( , , )ϕ γ ϕλ φ σ , and , ( , )O x yγ ϕ is its output at site ( , )x y . 

Among them, max / f ϕ
ϕλ λ=  and / nγφ πγ= give the wavelength and 

orientation of the Gabor filter respectively, and ϕ ϕσ βλ= gives the 

deviance of Gaussian function. If 8n = , { }0,1,2,3,4γ ∈ , 

{ }0,1,...,7ϕ ∈ , 2f = , max 8λ = , and 1β = , a family of Gabor 
filters with 5 scales and 8 orientations are generated. 

Usually, the amplitude or the absolute value of the real part of 
, ( , )O x yγ ϕ  is computed to extract the Gabor feature. Take the ampli-

tude as an example. It can be computed by 

, ,( , ) ( , )G x y O x yγ ϕ γ ϕ= .                                       (3) 
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III. MICRO-STRUCTURAL GABOR FEATURE 
The classical Gabor feature in Eq.3 is based on an individual site, 

and it is sensitive to misalignment [11], such as shift and size varia-
tion, which often occurs in fully automatic face recognition system. 
Moreover, the feature based on individual sites cannot describe the 
spatial correlation between the Gabor features at neighboring sites, 
which is significant for discriminating different persons. As a result, 
in the next part, a new algorithm will be proposed to extract micro-
structural Gabor features, which will improve both the robustness 
and discrimination capability of the classical Gabor feature.  

A. Block-Level Directional Projection 
The first step of the new algorithm is the block-level directional 

projection of the classical Gabor feature. It first divides the image 
into sub-blocks as shown in Fig. 1. Then it designs a family of direc-
tional block partitions. Each of them is designed for a corresponding 
Gabor filter with specific orientation (Fig.2) due to Gabor’s property 
on orientation selectivity. After that, the block-level directional pro-
jections of the classical Gabor feature are computed independently 
for each scale and each orientation. Suppose there are a family of 
Gabor filters with 4 orientations, e.g. { }0, / 4, / 2, 3 / 4γφ π π π∈ , and the 

block size is 3 3× , then the directional block partitions are designed 
as shown in Fig. 2 (pixels bounded by the same color belong to the 
same partition). The directional projection computes the sum of Ga-
bor features in each partition, as depicted in Fig. 2. 

 

 
Fig. 1 Block-level representation 

 
 (a) (b) (c) (d) 

Fig. 2 The family of directional block partitions and their corresponding 
block-level directional projections. The orientation of the corresponding 
Gabor filter is displayed in the left-bottom corner of each sub-figure. 

B. Statistical Kernel 
In the second step, the new algorithm presents two statistical ker-

nels to extract the statistics of the above block-level directional pro-
jections. One is the mean kernel, and the other is the variance kernel. 
Suppose the block size is M M× ( M N= ), and the block-level 
directional projections of the Gabor feature with ( , , )ϕ γ ϕλ φ σ in the 

i -th block are
1 2, ,...,

T

i i i iMp p pγϕ γϕ γϕ γϕ⎡ ⎤= ⎣ ⎦P . The directional mean i
γϕµ and 

the directional variance 2( )i
γϕσ can be computed as:  
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where 1
MMµ =K 1 , 1 T

M M M MMσ ×= −K I 1 1 . 

From the above, we can see that if we define µK  as the mean 

kernel and σK  as the variance kernel, i
γϕµ and 2( )i

γϕσ can be com-
puted by a 1-order multiplication with the mean kernel (Eq.4) and a 
2-order multiplication with the variance kernel (Eq.5) respectively. 
If the block size is 3 3× , the mean kernel and the variance kernel can 
be depicted as shown in Fig. 3. 

                            
(a)                                 (b) 

Fig. 3 The statistical kernel for micro-structural Gabor features. (a) The 
mean kernel. (b) The variance kernel. 

In this way, the micro-structural Gabor feature Z can be ex-

tracted as { }i
γϕ=Z Z , where ,

T

i i i
γϕ γϕ γϕµ σ⎡ ⎤= ⎣ ⎦Z is computed from the 

Gabor feature with parameters ( , , )ϕ γ ϕλ φ σ , and 2( )i i
γϕ γϕσ σ= . 

Since the mean kernel can be regarded as a low-pass filter in the 
frequency domain, 2( )i

γϕµ  represents the energy of the low-

frequency part. From 2 2 2
1

( ) ( ) ( )M
i ij ij

pγϕ γϕ γϕσ µ
=

= −∑  where the first 

item on the right hand represents the total energy in the block, we 
can deduce that 2( )i

γϕσ  indicates the sum of the energy in the high-
frequency part. Therefore, the micro-structural Gabor feature basi-
cally decomposes the energy into two parts: the low-frequency part 
which is emphasized by i

γϕµ to improve the feature’s robustness to 
misalignment, and the high-frequency part which is represented by 

i
γϕσ to depict the statistical variation of the classical Gabor features 

in the block area and thereby enhance the discrimination capability 
of features. By extracting micro-structural Gabor feature, both ro-
bustness and discriminability are achieved simultaneously. 

To better understand the newly proposed micro-structural Gabor 
feature, we investigate both robustness analysis and discriminability 
analysis on the new feature in the next part. 

C. Robustness Analysis  
To analyze the robustness, we compare our MSGF feature with 

the classical down-sampling Gabor feature (DSGF) which is down-
sampled by x yD D× . Only directional mean is used here, since the 
robustness is mainly achieved by the mean kernel implementation. 
Fig. 4 shows that our new feature is much more robust to shift than 
DSGF, and Fig. 5 demonstrates its better robustness on size variation. 

D. Discriminability Analysis 
Discussions on discriminability analysis are necessary. Although 

i
γϕµ represents the global characteristics of the Gabor features in the 

whole block and it improves the robustness, it cannot reflect the 
spatial correlation between Gabor features at neighboring sites. Add-
ing i

γϕσ will emphasize the statistical variation in the block, and 
thereby enhances the discrimination capability. 

Take Fig. 6 as an example. Two images manifest different pat-
terns, but they take the same value when only applying the mean 
kernel. However, the variance kernel will discriminate these two 
patterns. Fig. 7 is another demonstration of the stronger discrimin-
ability of the new feature. In the figure, the new feature with both 
the mean kernel and the variance kernel shows more discrimination 



capability than the classical down-sampling Gabor feature. 

IV. EXPERIMENTS AND ANALYSIS 
Three groups of experiments on the BANCA database[12] are 

conducted to evaluate the performance of our new feature. The gray-
scale feature is used as a baseline, and the classical down-sampling 
Gabor feature (DSGF) in Liu’s work [5] is used as a benchmark for 
comparison. The database contains 52 subjects. In the experiments, 
the MC test configuration is employed, thereby 5 images/subject in 
Session 1 are used for training, and the other 35 images/subject in 
Session 1~4 are used for testing.  So there are altogether 260 images 

for training and 1820 images for testing. Because the size of the 
training set is small, Gabor filters with only 2 scales and 4 orienta-
tions have been used on the original grey-level images in order to 
balance the feature dimension against the sample number. 

A. Experiments on Precisely Aligned Data 
The first group of experiments is tested on precisely aligned face 

images, each of which is cropped and normalized to the size of 
55 51×  based on the manual registration of eyes. Four kinds of fea-
tures, the grayscale feature, the classical down-sampling Gabor fea-
ture in Liu’s work [5] (DSGF), the micro-structural Gabor feature 
(MSGF) with only mean kernel (MSGF-1), and MSGF with both 
kernels (MSGF-2), are extracted. For each kind of feature, PCA is 
applied to reduce the feature dimension. Lastly, a nearest-neighbor 
(NN) decision is used for face recognition. In the experiments, we 
have { }6.5,6.5 2ϕλ ∈ , { }0, / 4, / 2, 3 / 4γφ π π π∈ , 1β = ,

2x yD D= = , 3M N= = , and 0K L= = . The experimental results 
are shown in Fig. 8. 

From Fig. 8, we can observe that both MSGF features are better 
than the classical down-sampling Gabor feature. Among them, 
MSGF-2 is better than MSGF-1. When we use 20 features to test the 
probe set, the MSGF-2 achieves 85.88% accuracy rate, and DSGF 
gets only 81.76%. When 90 features are used, MSGF-2 achieves 
91.98% accuracy rate, reducing the error rate by 12.64%. This dem-
onstrates the effectiveness of the micro-structural Gabor features. 

By further comparing the performance curves of the three kinds 
of Gabor feature, we see that, when the feature dimension is low, the 
performance improvement is mainly achieved by the mean kernel. 
Since the mean kernel acts as a low-pass filter, the block-level direc-
tional mean of the Gabor feature occupies a lower dimensionality 
than the classical Gabor feature. Thereby it achieves similar per-
formance with much less features. When the feature dimension is 
high, the performance improvement is mainly achieved by the vari-
ance kernel, since it captures the statistical variance in the local 
block and thus enhances the discrimination capability. 

B. Experiments on Misaligned Data 
To test the performance on misaligned data, another group of two 

experiments are designed. The first is the test on zoomed faces, in 
which all the test images in Sec. IV (A) are zoomed by 4%. The 
second is a test on shifted faces, in which all the test images are ver-
tically shifted by 1 pixel. The results are shown in Fig. 9.  

From the figure, it is easy to find out that both MSGF-1 and 
MSGF-2 achieve better performance than DSGF, and again MSGF-2 
is better than MSGF-1. In the 4%-zooming case, MSGF-2 achieves 
10.05% error rate, 11.12% lower than that of MSGF-1, and 16.46% 
lower than that of DSGF. In the 1-pixel shift case, MSGF-2 achieves 
89.12% recognition rate with 90 features, and its error rate is 23.54% 
lower than that of DSGF. The error reduction rate could also achieve 
14.67% when compared with MSGF-1.  The outperforming of 
MSGF-2 over MSGF-1 on all the experiments shows that the vari-
ance kernel enhances the discrimination capability with or without 
misalignment. 

 
Fig.8   Experiments on precisely aligned data. 

 
Fig. 6 Two patterns with the same directional mean but the different 
directional variance. 

    (a) (b) 

Fig. 7 Comparison of discriminability between DSGF and MSGF with 
both mean and variance kernels. (a) Distribution of samples using 
DSGF. (b) Distribution of samples using MSGF with both kernels. Data 
are taken from three persons in the BANCA database[12]. The first 
two PCA components of the two kinds of features are displayed. 
Parameters of Gabor feature are the same as in Sec. IV. 

 

 
(a)        (b)            (c) 

Fig. 4 Comparison of the robustness on shift between DSGF and MSGF 
with only mean kernel. (a) The original image and the shifted face with 
3-pixel vertical shift. (b) The L1-distance between DSGF of the two 
images. The mean L1 distance (MLD) is 450.99. (c) The L1-distance 
between MSGF of the two images. MLD=216.23. ( 5 2λ = , / 2φ π= , 

0.9β = , 4x yD D= = , 4M N= = , 0K L= = ) 

 

 
(a)                               (b)                                                 (c) 

Fig. 5 Comparison of the robustness on size variation between DSGF 
and MSGF with only mean kernel. (a) The original image and the 
zoomed face with a 4%-zooming rate. (b) The L1-distance between 
DSGF of the two images. The mean L1 distance (MLD) is 309.96. (c) 
The L1-distance between MSGF of the two images. MLD=142.36.
( 5 2λ = , / 2φ π= , 0.9β = , 4x yD D M N= = = = , 0K L= = ) 



It is interesting to note that the mean kernel helps improve the 
robustness of features to misalignment. In the zoomed case, the per-
formance of the three kinds of features drops by 31.05%, 21.20%, 
and 23.62% respectively. In the shift case, the error rate using DSGF 
increases by 55.01%, while using MSGF-1 only increases by 
29.98%, and using MSGF-2 increases by 33.83%. In the zoomed 
case, the performance of the three kinds of features drops by 31.05%, 
21.20%, and 23.62% respectively. From the above, we can see that 
both two kinds of MSGF features are more robust than the classical 
down-sampling Gabor feature, and the better robustness is mainly 
achieved by the mean kernel.  

To further analyze the robustness on misalignment, a third group 
of two experiments are designed. The first is robustness analysis on 
size variation, and the second is on shift variation. Two algorithms 
are compared, DSGF and MSGF-2. The robustness index difference 

R∆  is computed by 2DSGF MSGFR R R∆ = −  , where DSGFR  is the accu-
racy decreasing rate of DSGF, and 2MSGFR is that of MSGF-2. The 
results are shown in Fig. 10. 

The experiments further demonstrate that MSGF-2 is more robust 
to misalignment than DSGF. Firstly, it manifests more robustness on 
size variation, since 0R∆ > when the zooming rate increases from 
4% to 10%. Secondly, it is more robust to shift variation than DSGF 
when the shift is smaller than 4 pixels. In case that the shift is larger 
than 4 pixels, which exceeds both the half wavelength and the block 
size, the performance of Gabor feature drops drastically. It is diffi-
cult for the mean kernel to improve the performance of Gabor fea-
ture, since the shifted image will move out of the block. Generally, 
the 4-pixel shift seldom occurs in automatic eye location for an im-
age with size 55×51. We tested the automatic eye locator[13] on the 
BANCA dataset, and the average location errors of 99.1% images 
are less than 4 pixels. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, a new algorithm is proposed to extract micro-

structural Gabor features for face recognition. The main advantage 
of the new feature is that it achieves good robustness and discrimin-
ability simultaneously by decomposition into two parts: the low-
frequency part improves the robustness to misalignment by applying 
mean kernel on the block-level directional projections; and the high-
frequency part enhances the discrimination capability by using the 

variance kernel to capture the statistical variation in the local block 
area.  

The new feature is of broad applicability. Although PCA is used 
in this paper to compress its dimension, the new feature can be com-
bined with other methods such as Subspace LDA, Direct LDA, or 
Bayesian Subspace for higher recognition rate. It can also be applied 
on other datasets to test its robustness on various data. Moreover, it 
can be integrated into the current feature selection methods [7,8,10]. 
Finally, the idea of extracting micro-structural feature is valuable for 
pattern recognition. The block-level directional projection and the 
statistical kernel can be applied to other features, such as edge fea-
ture. The kernel is also not limited to the mean kernel and variance 
kernel in this paper. More effective and adaptive kernels could be 
designed for better performance, which will be an interesting direc-
tion of future work. 
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(a)                                                         (b) 

Fig.9 Comparing MSGF with DSGF on misaligned data. (a) 
Comparison on zoomed images with 4% zooming rate (b). Comparison 
on shifted data with 1-pixel vertical shift. 

   
 (a)                                                            (b) 

Fig.10 Robustness Analysis of MSGF and DSGF on misalignment. (a) 
Comparison on size variation. (b) Comparison on shift variation. 
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