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Abstract- A new approach for localizing facial structure in videos 
is proposed in this paper by modeling shape alignment dynami-
cally. The approach makes use of the spatial-temporal continuity 
of videos and incorporates it into a statistical shape model which 
is called Constrained Bayesian Tangent Shape Model 
(C-BTSM).Our model includes a prior 2D shape model learnt 
from labeled examples, an observation model obtained from ob-
servation in the current input image, and a constraint model de-
rived from the prediction by the previous frames. By modeling 
the prior, observation and constraint in a probabilistic frame-
work, the task of aligning shape in each frame of a video is per-
formed as a procedure of MAP parameter estimation, in which 
the pose and shape parameters are recovered simultaneously. 
Experiments on low quality videos from web cameras are pro-
vided to demonstrate the robustness and accuracy of our algo-
rithm.  

 
1. RELATED WORK 

 
Localizing facial structure in images or videos is generally a 
preliminary step for many vision tasks, such as pose estima-
tion, non-rigid motion tracking, and face recognition. And in 
the vision literature, this problem elicits many visual tracking 
algorithms for videos and shape alignment algorithms for im-
ages. 
 
1.1. Probabilistic treatment for object tracking 
Tracking targets in videos has been widely studied as a time 
series inference problem [3][5], in which probabilistic models 
are used to formulate the temporal information from previous 
frames and the observation in the current frame along the time 
line. A typical visual tracking system is described by two 
probabilistic models: one is a dynamic model and the other is 
a measurement model. Specifically, the dynamic model predi-
cates the possible states of the tracked object with some kind 
of assumptions on the temporal continuity in videos, and the 
measurement model assesses these possible states by incorpo-
rating the observation in the current frame. Thus, the object 
tracking problem becomes a process of generating and then 
verifying hypotheses. 
 
1.2. Statistical shape models for alignment in images 
Among shape alignment algorithms for images, statistical 
shape models [1][6][7][8] have state of the art performance. 
The statistical models are capable of incorporating a prior 
density learnt from a set of shape examples into shape regis-
tration. In these models, the Bayesian Tangent Shape Model 
(BTSM) [8] provides a probabilistic framework for shape reg-
istration and proposes a set of regularization rules under this 
framework. With a prior model learnt from examples and an 

observation model derived from the current image, BTSM 
solves the problem of aligning a shape structure in an image as 
a MAP parameter estimation process, by which the underlying 
shape representation and the pose of the current shape are re-
covered simultaneously. BTSM shows more robustness and 
better accuracy with comparison to other alignment algo-
rithms.  

 
1.2.1 Prior shape model in BTSM 

A face shape x with n landmark points is represented by a 
2n-dimensional vector (x1,y1,……,xn, yn)

T. After aligning all 
the training shapes to the tangent space ΦΦΦΦ of the mean shape µµµµ, 
the shape distribution is described by a PPCA model in the 
tangent space as (1), 

r= + +x � � b �� .              (1) 
In (1), the shape parameter b has a prior distribution as Ν(0,ΛΛΛΛ) 
�and the isotropic noise εεεε distributes as N (0, σ2I). 
 

1.2.2 Observation model in BTSM 
The observation model is proposed after the local update step 
[8] in BTSM, and the observation, a 2n-dimensional vector y 
called the observed shape, is the updated shape via local tex-
ture matching. Thus, the observation model is defined as (2),  
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where s is the scale, θ is the rotation, (c1, c2) is the translation, 
and � is the kronecker product; Tγ(⋅) is the 2D similarity 
transformation and γ=(s�cosθ, s�cosθ, c1, c2),; η is the Gaussian 
image noise, distributed as N(0, ρ2I). 
 

2. A PROBABILISTIC APPROACH TO MODELING SHAPE 
ALIGNMENT DYNAMICALLY IN BTSM 

 
Although face alignment has been well studied for image ap-
plications, its application in videos is still an open problem as 
how to explore the face dynamics from the spatial-temporal 
continuity in videos remains a key issue to solve. From video-
sequences, not only the information of the tracked object can 
be obtained, but also the temporal continuity can provide a 
robust representation. In this paper, we propose a Bayesian 
approach to incorporate the temporal information in 
model-based shape registration: Constraint Bayesian Tangent 
Shape Model (C-BTSM). Our model has its merits in two as-
pects: first, with the usage of face dynamics, the algorithm 
runs more stably than only implementing alignment algorithm 
frame-by-frame independently; secondly, the shape prior 

0-7803-9134-9/05/$20.00 ©2005 IEEE



 
Fig. 1: Temporal constraint in face alignment 

learnt from examples, which is not used in traditional feature 
point tracking algorithms [4][5], provides a robust prior 
knowledge to regularize the tracked objects in our method.  
 
2.1. Temporal constraint in videos 
Applying alignment algorithms frame-by-frame independently 
in a video sequence might suffer from the inconsistent and 
unstable results in continuous frames due to the non-linearity 
property of the alignment methods and the noise in videos. 
However, such a problem can be alleviated by the temporal 
continuity from video sequences, so how to incorporate it into 
alignment methods is fundamental for applying shape registra-
tion in videos. In this section, we propose a Bayesian approach 
to formulate the dynamic evolution of model parameters into 
the framework of shape registration. 

We use the operator κ to denote one of the robust feature 
point tracking methods [4]. Then, from the previous aligned 
result xt-1, we can get the predicted possible configuration of xt 
with the tracker κ. A random noise ζζζζ is used to measure the 
discrepancy resulted from both the frame-to-frame difference 
and the error of κ. Thus, the prediction model is like (3), 

( )1t tκ −= +x x � .              (3) 
Fig. 1 shows the correlation between two continuous frames 
we formulate in the prediction model. 

A good property of Bayesian formulation is that it is easy 
to combine extra constraints as long as these constraints can 
be modeled with probabilities. BTSM provides such a Bayes-
ian formulation, allowing extra constraints to be applied. In 
this section we formulate the temporal constraints in the 
BTSM framework. The prediction model can be formulated 
into BTSM as a constraint model like Fig. 2. The constrained 
shape variable z is exactly the predicted shape configuration 
κ(xt-1) from previous frames. However, in the practical appli-
cation of our algorithm, we allow the constrained shape to be a 
variable set of feature points, for example, the top 50% accu-
rately tracked points. Under that condition, z is a 
2m-dimensional vector where m is the number of selected 
constrained points. We can see that, in constrained BTSM, the 
constrained shape z incorporates more assumption on the un-
derlying shape x and the pose γγγγ. And this assumption makes 
use of the temporal information in videos. 
 
2.2. C-BTSM 

From the predicted shape κ(xt-1) and prediction model in (3), 
we can select a set of valuable feature points {ui ,vi}i=1:m of 
κ(xt-1) with higher confidence. Denote  z=(u1,v1,u2,v2,….,um, 
vm)T as the 2m-dimensional constrained shape vector. Then, 
the constraint model in Fig. 2 can be written as: 

( )TT = +
�

Q x z � .             (4) 

 
Fig. 2: Graph model for Constraint BTSM 

In (4), 
1) Q is the 2mx2n matrix related to the constrained shape 
vector, which indicates the linear relationship between the 
tangent shape and the constrained shape: i.e. if the jth feature 
point of x is constrained, the 2j and 2j+1 columns of the ma-
trix Q are correspondently set to be  

( )2 2
0,...,0, 1,0,...,0

T

j j⋅ =Q , ( )2 1 2 1
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T

j j⋅ + +
=Q ; 

2) In the constraint model, the estimation error ζζζζ of the con-
strained points consist of two parts: the point localization error 
in previous frame and the points tracking error in the in-
ter-frame motion. Here we combine the two types of error into 
Gaussian white noise N~ (0, δ2I): 
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Here the estimation error δ2 is measured by the average 
point-to-point distance between the estimation result and the 
constrained shape. Using Euclidean distance for variance 
measurement is from the intuition that the regularization shape 
will be stably closed to the constrained points while the esti-
mation error will also converge to zero. The xold and γγγγold are 
the old values in the last iteration of EM algorithm. The EM 
algorithm will be described in the next section. 

By introducing the latent variable x, C-BTSM connects 
the prior shape model with both image observation and con-
strained shape. The likelihood related to x (the latent shape 
variable) consists of two components: the shape likelihood 
between z (prediction shape) and x; the shape likelihood be-
tween x and y (the observation shape). The prior model and 
likelihood model between observation shape and tangent 
shape are the same as BTSM [8]. 
 

3. E-M INFERENCE FOR PARAMETER ESTIMATION 
 

After it is formulated by the graphical model in Fig. 2, the 
shape alignment problem turns to be a parameter estimation 
problem, that is, given the observation y we need to compute 
the MAP estimation of p(b,�|y). We use the EM algorithm to 
optimize this posterior. And we first derive the expected 
log-posterior of all the parameters (b, �) given all the variables 
(x, y, z) which will be optimized directly in each iteration of 
the EM algorithm. 
 According to Fig. 2, the posterior of all the parameters (b, 
�) given all the variables (x, y, z) is factorized as (6). p(b) is 
the prior probability of the shape parameter b, which is a 
Gaussian distribution Ν(0,ΛΛΛΛ), and the conditional probabilities 
p(y|�,x), p(x|b) and p(x,�|z) are defined by the observation 



model (2), the prior model (1) and the constraint model (4) 
respectively. 

  ( ) ( ) ( ) ( )p p p p=b,� | x, y, z b | x � | x, y � | x, z .      (6) 
Thus, from (6), we can get the expected log-posterior of 

all the parameters given the complete data in (7), 
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Computing the L-function in (7) is equivalent to calculate two 
sufficient statistics �x� and �||x||2�. 
 
3.1. E-Step 
The expected tangent shape �x� has different forms in the con-
straint subspace Q and its orthogonal complement H, but the 
common thing is that they are both a weighted average of sev-
eral shape parts. Then, we decompose x as 

Q H= +x Qx Hx .                                      

And each part of �x� and �||x||2� are computed as (8), 
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where the weights are 

( ) 12 2 2 2 2 2
1Qp s sσ σ ρ δ

−− − − −= + + , 

( ) 12 2 2 2 2 2 2
2Qp s s sρ σ ρ δ

−− − − −= + + , 

( ) 12 2 2 2 2 2 2
3Qp s s sδ σ ρ δ
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( ) 12 2 2 2
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Thus, from (8), we can see that in the constraint subspace 
Q, the shape representation not only weighs the reconstructed 
PCA shape ΦΦΦΦrb and the projected observed shape ΦΦΦΦΦΦΦΦTTγ

-1(y), 
but also the projected constrained shape QΦΦΦΦΦΦΦΦTQTTγ

-1(z). 
 
3.2. M-Step 
Given the expected tangent shape �x�, in the M-step, the shape 
parameter b and pose parameter γ are maximized as, 

( ) 12 2 1 T
new rσ σ

−− − −= +b I � � x ,                          (9) 
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where X=(x, x*, e, e*) and XQ=(xq, xq
*,eq, eq

*). The * operator 
means rotating a shape by 90° and e=(1,0,1,0,…1,0)T . (see [8] 
for details.) 

 
4. EXPERIMENTS 

 
In this section, we use a series of experiments to demonstrate 
the accuracy and stability of C-BTSM when the constraints of 
temporal continuity and consistency in videos are utilized. The 
shape model and local texture models, which are used in ASM, 
BTSM and C-BTSM, are trained from 721 manually labeled 

face images in the FERET and AR databases [2]. In order to 
quantitatively compare the accuracy and stability of different 
algorithms, we generate 138 video sequences with the 3D face 
models in USF Human ID 3D database [7]. For each video 
sequence, we apply different illumination condition via adding 
different surrounding lighting, and the head pose changes from 
0 to 20 degrees in the direction of out-plane rotation. And all 
frames of each video have labeled ground truth for evaluation. 
The result of a real video captured from a USB web camera is 
also shown in Fig. 3. 
 
4.1. Constrained points selection 
We select a set of constrained points from the aligned shape in 
the previous frame based on the confidence we calculate for 
each feature point. And the confidence is composed of two 
parts: one is texture difference measured by using the local 
texture model in the ASM [6] and BTSM [8], and the other is 
the sum of residual error around the local region around the 
tracked feature points (see [4] for details). The confidence is 
then evaluated by weighing the two measurements:  

( ) *alignment trackingconfidence p p pλ= + .      (10) 

In.(10), the � is a scalar that tells how big the item of tracking 
confidence is. In our experiments, we choose � as a value be-
tween 0.5 and 1.0, and select the top 25% points of higher 
confidence as constrained points. 
 
4.2. Alignment accuracy  
The accuracy of our method is investigated by three experi-
ments. In the first experiment, we evaluate the effect of 
frame-to-frame constraints by comparing the alignment errors 
of BTSM and C-BTSM. And the alignment error is calculated 
as the average of point-to-point distance between the aligned 
shape and the labeled ground truth. In another experiment, we 
evaluate the effect of the constraint accuracy on the alignment 
accuracy. The last experiment investigates the effects of the 
number of constrained points on the alignment accuracy. As 
the result, we draw the conclusions as:  the constraints im-
prove the alignment accuracy; and moreover, the more accu-
rate the constraints are or the more constrained points, the 
more accurate the alignment results are.  
Fig. 4 shows the alignment errors of BTSM and C-BTSM in a 
videos sequence. In the video, the head pose of a person 
changes from 0 to 20 degrees in the out-plane direction. From 
the figure we can see that C-BTSM outperforms BTSM espe-
cially on the points of eyebrows parts (highlight region). This 
is mainly because the similar intensity distribution in the 
around area couldn’t be well discriminated in the local texture 
model while it can be tracked efficiently, so the unstable 
eye-brow region alignment can be improved with a firm con-
straint from tracking points. In our experiment, the average 
improvement of C-BTSM over BTSM is about 4 pixels. 
However if we concentrate on the eyebrows parts, we can see 
a larger improvement of C-BTSM over BTSM: it is about 
9-10 pixels. 

From the derivation in section 3, we can see the align-
ment error is related to the estimation of the constraint error. 
Fig. 5 demonstrates the distribution of constraint error calcu-
lated from138 video sequences: the mean constraint error in  



Fig. 3: Results of the intermediate frames by C-BTSM 

 
Fig. 4: Alignment error of BTSM and C-BTSM 

 
Fig. 5: Constraint Error statistics in C-BTSM 

our experiment is about 9 pixels. Fig. 6 shows the alignment 
error of the different number of constraint points.  

 
4.3. Alignment Stability 
Stability is very essential for the algorithms used in videos. 
And the main purpose of C-BTSM algorithm is to improve 
the stability of the alignment results of the continuous frames 
In order to show the stability of BTSM and C-BTSM algo-
rithms, we plot the alignment errors of each frame in a video 
for both algorithms. Based on Fig. 7, the maximum of the 
alignment errors in C-BTSM does not exceed 10 pixels, 
which is much smaller than that in BTSM. Since the head 
pose changes between 0 to 20 degrees, we can see a periodic-
ity of 40 frames for the alignment error change. And because 
our training data are mainly the frontal faces, the alignment 
error might become larger when the view deviates from the 
frontal view. Aligned results for the C-BTSM in videos are 
shown in Fig. 3 for an intuitive understanding of the stability.  
 

5. CONCLUSION AND DISCUSSION 
 

In this paper, we propose C-BTSM to extend the usage of 
model-based image alignment algorithm into videos by com-
bining the temporal continuity and consistency. As an exten 
sion of BTSM, the C-BTSM model has a set of regulation 
rules similar to those in BTSM, like the shrinking function in 
the PCA subspace and the weighted representation of the un 
derlying shape. From the derivation in section 3, C-BTSM 

 
Fig. 6: Alignment error with different constraint points 

 
Fig. 7: Average alignment error of BTSM and C-BTSM frame by frame 
degenerates to BTSM[8] when the estimation errorδ2 goes to 
infinity. Through using the constraints of previous informa-
tion, C-BTSM shows more stability and better accuracy in 
videos than BTSM. Moreover, C-BTSM can also be used to 
combine other feature localization techniques with BTSM. If 
compared with the traditional optical flow-based tracking al-
gorithms, C-BTSM is more robust to the environmental 
change because the prior shape model provides a global con-
straint to formulate non-rigid facial motion. 

The C-BTSM algorithm converges after a few iterations 
on a single frame and its speed in videos is close to real time. 
For a 320*240 video stream, the C-BTSM algorithm runs at 
speed of 10 fps on a Pentium IV-2.7GHz machine. 
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