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Abstract

Occlusion is one of the challenging problems in stereo.

In this paper, we solve the problem in a segment-based style.

Both images are segmented, and we propose a novel patch-

based stereo algorithm that cuts the segments of one image

using the segments of the other, and handles occlusion ar-

eas in a proper way. A symmetric graph-cuts optimization

framework is used to find correspondence and occlusions si-

multaneously. The experimental results show superior per-

formance of the proposed algorithm, especially on occlu-

sions, untextured areas and discontinuities.

1. Introduction

Occlusion is one of the major challenges in stereo. For a

two-frame stereo system, a point in an image is occluded if

its corresponding point is invisible in the other image. Com-

puting of occlusion is ambiguous, so prior constraints need

to be imposed. Ordering and uniqueness are two constraints

typically used. Ordering constraint inhibits the change of

order between images. This constraint is often exploited in

a dynamic program framework [6], because it can greatly

reduce the search space and lead to an efficient matching.

But it is incorrect when there are thin objects in the scene

[6]. Uniqueness is effective constraint, which enforces at

most one correspondence for each element of both images.

Zinick and Kanade imposed it as the inhibitions in a coop-

erative frame [17]. Kolmogorov and Zabih [8] proposed an

graph-cuts based algorithm that searches a global optimal

unique configuration of assignments between pixels of im-

ages. Jian et al[13] modified the uniqueness constraint to

a weaker constraint, visibility constraint, so that the prob-

lem of uniqueness caused by sampling [11] can be avoided

when the scene contains horizontally slanted planes. More

early techniques for occlusion handling can be found in the

survey by Egnal and Wildes [6] and that by Brown et al[4].

Our new idea of handling occlusion originates from the

observation that the occlusion border in one image corre-

sponds to a discontinuity in the other images [6], and the

discontinuity often makes strong texture on the other image

which can be achieved by color segmentation. Therefore,

we provide a framework that can use the segmentation of

one image to help compute the occlusion in the other.

Color segmentation information is used in several re-

cent stereo approaches [7, 16, 15, 14, 2]. They are called

segment-based methods. They use the assumption that dis-

continuity only happens at the boundaries of segmented re-

gions (we call it discontinuity assumption in this paper).

The performance of discontinuity and untextured area is im-

proved if the scene contains generally slanted plane. But

occlusion is not explicitly moded in Hong and cheng’s [7]

and Zhang and Kambhamettu’s [16] algorithms. So it is

hard to identify occlusions and they use a robust error cri-

teria before global matching or region growing. Bleyer and

Gelautz’s [2] formulate the problem in a two-level frame-

work. Uniqueness is used in the pixel level to infer occlu-

sion, and discontinuity assumption is imposed in segment-

level. However, their method only use segmentation infor-

mation of one image while the boundary information of

occlusion is actually in the other image from our analysis

above.

In this paper, we use segmentation of both images, and

propose a patch-based framework to explicitly handle oc-

clusions. Based on the observation that the observation that

the shared edge of a visible area and an occluded area cor-

responds to a discontinuity in the other image, we intro-

duce the concept of patch. We first segment both images,

and warp the segment of one image to the other by dispar-

ity. Then the warped segment is divided into several small

patches by the segment boundaries in the other image. We

constrain the boundary of occlusions to be the boundary of

patches. A symmetric global framework using graph cuts

is constructed to find the disparity and occlusions embodied

by the patch segmentation. The new correspondence ap-

proach gives a proper constraint for occlusions, which leads

to better results near occlusions, and inherits the advantage
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of segment-based approaches on slanted plane, as well as

untextured and discontinuity areas.

The main contributions in this paper include: 1) By using

segmentation of both images, a novel matching unit patch is

introduced, which preserves the visibility consistency and

lead to a proper handling of occlusions; 2) A symmetric

graph-cuts framework on patches is proposed to find dis-

parities and occlusions simultaneously.

2. Problem formulation

2.1. Stereo problem

Let L and R be the set of pixels in the left and right im-

ages respectively, and let P = L ∪ R. The pixel in the left

image will have coordinate (px, py), and the pixel in the

right image will have coordinate (p′x, p′y). The stereo prob-

lem can be formulated as a labeling problem, in which each

pixel p ∈ P must be assigned a label fp within some label

set L. That is, the goal is to find a labeling configuration f
that assigns each pixel p ∈ P a label fp ∈ L.

To describe the generally slanted plane, we use a 3-

parameter linear transform in this paper, and take the pa-

rameters of the linear transform as the definition of labels,

i.e.

fp = fp′ = 〈c1, c2, c3〉 ⇔

p
〈c1,c2,c3〉

↔ p′, where p′x = c1px + c2py + c3, p
′
y = py

where p
〈c1,c2,c3〉

↔ p′ means p and p′ are corresponding

points if assigned a label 〈c1, c2, c3〉 to either of them. If

a point is occluded in the other image, its label is φ.

2.2. Patch and visibility consistency

In order to find the labels for all the points that are mostly

accordant to the input stereo image pair, prior assumptions

are generally used, such as smoothness assumption and

uniqueness constraints. In segment-based algorithms, dis-

continuity assumption is used. However, the border of the

segments in one image is not always the border of occlu-

sion in that image, and the shared edge of a visible area

and an occluded area is corresponding to a discontinuity of

the other image. Therefore, we firstly separate the segment

of one image into patches by using the discontinuity of the

other, and impose a new constraint, which enforce the same

visibility for all the pixels within a patch. In the following

paragraphs, we will give definition of the patch and show

why this constraint is reasonable.

Suppose that a segment r is a region in the left image,

and its label is denoted as fr. If fr = φ, r is fully oc-

cluded, we consider it as a whole. Otherwise, we warp all

Figure 1. Definition of patches. Region r in
the left image are warped to the right image

and the warped image is separated by shared
edge e′ of s′ and t′ into q′

1
and q′

2
. Accordingly

r is separated into two patches q1 and q2.

the points in r into the right image by it. The warped seg-

ment r′ may cross a number of segments in the right image,

e.g. two segments s′ and t′ in the right image in Figure 1.

Suppose that the shared edge between s′ and t′ is e′, there

should be a shared edge e correspondent to e′ in r. As a

result, the points in r are separated into two sets, q1 and q2

by e. We call them the patches of the region r. For a clear

description, we define qfr
r (i) as the i-th patch of segment

under label fr or simply qr(i). By assuming the boundary

of segment in the right image to be the potential discon-

tinuity, the corresponding shared edge in the left image is

the potential occlusion boundary. So we enforce the same

visibility for all the points within a patch, and call it the

patch-consistency constraints. Different patches can have

different visibilities, but one patch cannot partly occluded.

In this way, we use the segmentation information in one im-

age to give a hard constraint to occlusion in the other image.

The partial visibility within a segment is allowed and guide

by segmentation information, which is advantageous over

previous segment-based approaches. Experimental results

will also show its advantage in later sections.

The definition of patch is symmetric, i.e. the patches

in the right image can be similarly defined. For example in

Figure 1, q′
1

and q′
2

in the right image are patches of segment

s′ and t′ respectively if they are assigned with the same label

with r. In this situation, we call q1 ∼ q′
1

(and q2 ∼ q′
2
) a

patch pair, because if one of them is visible, the other should

be visible too. If ft′ �= fr, for each visible patch in t′, a

corresponding patch within one segment of the left image

with the label ft′ can be found. So all the visible patches in

the left and right images are paired.

Using the patch-consistency constraint, the label config-

uration can be reformulated in a segment-patch level. That

is, for each segment r in either image, we assign it a label

fr ∈ L, and if fr �= φ, we assigned equal number of vis-

ibilities vr(i) (also denoted as vr(qr(i)) for each patch of

r. The i-th patch of r is visible if vr(i) = 1 and otherwise
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occluded. Besides, we constrain the configuration to be reg-

ular, i.e. the visible patches in the configuration should be

in pair. For example in Figure 1, if fr �= φ and vr(q1) = 1,

we constrains that f ′
s = fr and vs′(q′

1
) = 1.

The label of each point can be computed as

fp =

{
fr fr �= φ ∧ vr(i) = 1

φ otherwise
,∀p ∈ qr(i).

By abuse of notations, we use f to denote the configuration

in a segment-patch level in the rest of the paper.

2.3. Energy function

We compute the optimal configuration under an energy

minimization framework:

fopt = arg minf E(f)

= arg minf Edata(f) + Esmooth(f) + Eoccl(f).

Edata(f) is the energy of matching errors for each visi-

ble patches. It is defined as

Edata(f) =
∑

r

T (fr �= φ)
∑

i

εpatch(qi, fr),

εpatch(qi, fr) =
∑
p∈qi

(εpoint(p, p′), p
fr
↔ p′)

where T (·) equals 1 if the argument holds and otherwise 0,

and εpoint(p, p′) is the intensity difference between point p
in the one image and point p′ in the other image.

Esmooth(f) exploits smoothness assumptions. If two

connected patch with same label contains different visibil-

ity, we impose a penalty. The selection of this smooth-

ness term affects whether the energy can be minimized ef-

ficiently by graph-cuts, so we put its definition in next sec-

tion.

Eoccl(f) gives penalties to occluded pixels (otherwise a

trivial configuration with all pixels occluded will take the

least energy). It is defined as:

Eoccl(f) = Co

∑
r

Eoccl(r),

Eoccl(r) =

{
Sa(r) fr = φ∑

i(1 − vr(i)) otherwise

where Co is a occlusion constant controlling the weight of

occlusion energy in the whole energy.

3. Energy minimization

The patches is generated by warping the segment accord-

ing to its label, but we do not know the label of a segment

before matching. So a global framework is proposed to

compute labels of segments and the visibility of each patch

simultaneously.

3.1. Alpha expansion framework

We know that a segment can have |L| possible labels

and the separation of the segment into patches is generally

different under each label. So the whole searching space

is huge, so it is impractical to directly search the optimal

result. We use the α expansion framework proposed by

Boykov et al[3] to solve the problem. By using it, the prob-

lem is solved in an iterative style, and a strong local mini-

mum is obtained in each iteration. After convergence, the

global minimum is achieved.

In our situation, we start from a configuration with all

segments occluded. Then in each iteration, a label α is cho-

sen, and a local minimum within one α expansion is com-

puted using graph-cuts. If no label can further decrease the

energy, we get the final minimized configuration. If a con-

figuration is within an α expansion of f , a segment can only

have one of the following 3 choices: keeping its current la-

bel in f , becoming occluded, or changing its label to α, and

the configuration should keep regular.

3.2. Binary-variable energy term

Now we convert the minimization of E(f) in each iter-

ation (α expansion move) into a minimization of a binary-

variable energy, so that the latter minimization can be per-

formed by graph-cuts.

We classify the the segments into two classes according

its labels before expansion:

1. For each segment r in either image, fr /∈ {φ, α}, we

allocate a labeling variable lr to decide the label of r
after expansion, denoted as f̃r. The relation between

lr and f̃r is

f̃r =

{
fr/φ lr = 0

α/φ lr = 1
.

Whether fr equals φ is determined by the visibility of

the patches. Suppose the number of r’s patches un-

der label fr and α are N0

r and Nα
r respectively. The

visibility of the patches are determined as follow:

(a) If r is in the left image, we allocate N0

r visi-

bility variables, b0

r(i), indicating visibilities of

patches under the label fr when lr = 0, and de-

fine ṽr(i) = 1 − b0

r(i). we also allocate Nα
r vis-

ibility variables, bα
r (i), indicating visibilities of

patches under the label α when lr = 1, and de-

fine ṽr(i) = bα
r (i).

(b) If r is in the right image, we need not allocate

new binary variables, and choose the correct bi-

nary variables allocated for segments in the left

image to indicate the visibility of the patches. We
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use the same notation for those chosen visibility

variables.

2. For each segment r ⊂ P, fr ∈ {φ, α}, labeling vari-

able is not necessary, only visibility variables bα
r (i) are

allocated.

The set of all binary variables is denoted as V =
{lr, b

0

r(i), b
α
r (i)}.

There are some other constraints for values of V . If lr �=
0, we require ∀b0

r(i) �= 0, and if lr �= 1, ∀bα
r �= 1. If this

requirement is satisfied, we say V is regular, and otherwise

irregular. When V is regular, we denote the corresponding

configuration as f(V ).

The α expansion move can be performed by minimizing

the following energy function of binary variables:

f̃ = arg minV Eb(V ),

Eb(V ) =

{
E (f(V )) V is regular

∞ otherwise

Eb(V ) can be rewritten as the sum of the following

terms:

Eb(V ) = Eb
reg(V )

+ Eb
data(V ) + Eb

smooth(V ) + Eb
occl(V )

Ereg(V ) takes infinity value if V is not regular, and 0

otherwise. It can be written from the definition of regular

V :

Ereg(V ) =
∑

r

∑
i

E0

reg(lr, b
0

r(i)) +
∑

i

Eα
reg(lr, b

α
r (i)),

E0

reg(lr, b
0

r(i)) =

{
∞ lr = 1 ∧ b0

r(i) = 0

0 otherwise
,

Eα
reg(lr, b

α
r (i)) =

{
∞ lr = 0 ∧ bα

r (i) = 1

0 otherwise

Eb
data and Eb

occl can be trivially derived from the def-

inition of Edata and Eoccl. We know give the definition

for Eb
smooth and equivalent Esmooth. Our visibility vari-

ables are assignment-like variables as in the approach by

Kolmogorov and Zabih [8]. So we take the similar smooth-

ness energy function as:

Eb
smooth(V ) = Cs

∑
q

∑
qn∈Nq

Sc(q, qn) · T (bq = bqn
)

where Nq is the set of neighboring patches of q with the

same label as q, Sc(q, qn) is the length of shared border of q
and qn, bq is the visibility variable corresponding to patch q

and Cs is a smoothness constant controlling the balance of

smoothness with other energy. The equivalent Esmooth is

Esmooth =
∑

q

∑
qn∈N 0

q

Esmooth(q, qn),

Esmooth(q, qn) = Sc(q, qn)




0 fq = fqn

Cs fq �= φ ∨ fqn
�= φ

2Cs otherwise

where N 0

q is the set of neighboring patches of q.

3.3. Regularity of Energy Function

Eb(V ) can be trivially rewritten as the sum of energy

items up to 2 variables at a time, i.e:

Eb(V ) =
∑

i

Ei(vi) +
∑
i<j

Ei,j(vi, vj)

And for all Ei,j(vi, vj),

Ei,j(0, 0) = Ei,j(1, 1) = 0, Ei,j(0, 1), Ei,j(1, 0) ≥ 0

So it obeys the regularity inequality introduced by Kol-

mogorov and Zabih [9]. We then use the results of [9] to

compute the minimization of Eb(V ).

4. Algorithm implementation

Figure 2. Flowchart of our algorithm.

The flowchart of the whole algorithm is shown in Fig-

ure 2. The left image (Figure 3.a) is firstly segmented

into relatively large segments using mean-shift segmen-

tation algorithm [5] (Figure 3.c). A Sum-of-Absolute-

Difference(SAD) algorithm with Birthfield and Tomas’s

dissimilarity algorithm [1] plus cross-checking algorithm

is used to find disparities of reliable points. A plane fit-

ting similar to [7] is exploited to select the label set L (Fig-

ure 3.d). Input images are then over-segmented into smaller

segments (Figure 3.e and Figure 3.f). The symmetric algo-

rithm proposed in Section 3 is exploited to compute labels

of each segment and visibilities of each patch. Disparities
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and occlusion results are then obtained (Figure 3.g). An

occlusion filling operation is used to compute the disparity

map without occlusions (Figure 3.h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Intermediate results for “venus”. (a)
and (b) are input left and right images. (c)
is segmentation result for disparity selection.
(d) is the result of label selection. (e) and (f)
are segmentation results for matching. (g) is
the result with occlusions (marked in black),
and (h) is the result after occlusion filling.

4.1. Parameter selection

There are two parameters in our algorithm the smooth-

ness constant Cs and occlusion constant Co. We find that

Cs is somehow sensitive to input images and propose a

method to select the value automatically so that our algo-

rithm can be more adaptive.

Our selecting strategy is designed according to the fol-

lowing analysis. The data error energy makes the correctly

matched patch pair, which contains least SAD error in noise

free situation, to be selected. Noise may cause a wrong

patch to have smaller errors than the correct one, but the

wrong patch is often inconsistent with neighbors. Smooth-

ness energy is used to punish the inconsistency and reject

the wrong match. Therefor we choose a larger constant for

greater noise level.

The noise level is estimated using the disparity map of

reliable points in the label selection step. For each reliable

point, we compute a matching error ε, and take the average

of all matching errors ε̄ as the average noise level. Cs is set

by a value proportional to ε̄.

5. Experiments and discussion

5.1. Experimental results

In order to get the performance of detecting occlusion

and the effectiveness of modeling occlusion, we firstly com-

pare our occlusion result with several recent approaches:

“GC+occl” algorithm by Kolmogorov and Zabih [8] which

is a pixel-based approach using a symmetric graph-cut

framework to handle occlusion, “Seg+GC” algorithm by

Hong and Chen [7] which is a segment-based asymmetric

graph-cut approach that does not explicitly detect occlusion,

and “Layer” algorithm by Lin and Tomasi [10] which is a

combination of pixel-based and segment-based approaches.

Two image pairs are used, which are the “tsukuba” and

“venus” data sets from [12]. Same parameters are se-

lected for both data sets. We use the source code from

Kolmogorov’s homepage to compute results of “GC+occl”.

The non-occlusion results of “Seg.+GC” are downloaded

from [12]. The occlusion result is computed by checking

the visibility of each point in the non-occlusion result. Re-

sult of “Layer” is from the authors’ website. The results are

shown and compared in Figure 4. Table 1 gives the error

statistics for “tsukuba” and “venus” respectively. They are

quantitatively evaluated by 3 criteria, which are the percent-

ages of: false positive, false negative, bad points near occlu-

sion. A bad point is a point whose absolute disparity error

is greater than one [12]. We make a near occlusion model

by dilating the occlusion area to 10 pixels and excluding the

occlusion area.

Table 1. Occlusion evaluation for “tsukuba”
and “venus”. (Best of each group is in italic
and bold face)

tsukuba False pos False neg Near occl.

Our results 1.05% 30.16% 4.10%

GC+occl [8] 1.51% 32.91% 6.44%

Seg+GC [7] 1.19% 32.51% 7.72 %

Layered [10] 2.28% 25.42% 8.87%

venus

Our results 0.19% 16.61% 0.54%

GC+occl [8] 1.88% 32.97% 12.24%

Seg+GC [7] 0.55% 17.73% 0.67%

Layered [10] 0.37% 50.63% 0.90%

From Table 1 we can see that, using the uniqueness and

segmentation makes the ratio of false positive than all the

others for both images. The ratio of false negative is com-

parable with others. The boundary of our occlusion results

in Figure 4 is cleaner than others’, because they are bounded

by segmented regions. Our error near occlusion is also ob-

viously better the others. That proves that the performance

of visible areas can also benefit correctly detecting occlu-

sion. This experiment shows the power of our patch-based

approaches on occlusion handling.

We also summit our results to the standard test bed [12]

for dense two-frame stereo algorithms in order to compare
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Ground truth Our results Results from [8] Results from [7] Results from [10]

Figure 4. Occlusion results for “tsukuba” (the upper row) and “venus” (the lower row) datasets.

tsukuba sawtooth venus map

Figure 5. Results of middlebury datasets with
automatically chosen parameters. The first
row is the left images, the second row is the
ground truth, and the third row is our results.

our over-all performance . Disparity maps are shown in Fig-

ure 5, and quantitative evaluations are shown in Table 2. Re-

sult of “tsukuba” is superior than others’ in the list, results

of “sawtooth” and “venus” are also on the top level. The

patch-based formulation inherits the advantage of segment-

based approaches on slanted plane and untextured area. The

over-all performance for scenery with only fronto planes

(”tsukuba” dataset) is also better than others, because of the

well occlusion handling. But the result for “map” is not

enough good. We found that artifacts happen at the place

where the color foreground object there is very similar to

the color of background. The color segmentation failed to

segment them into two segment. Discontinuity assumption

is thus violated. Similar statistical data can be found in other

segment-based approaches. This reveals the limitation of all

current segment-based approaches that when discontinuity

assumption is not satisfied, disparities in those areas will

fail to be correctly computed.

5.2. Discussion

In this section, we give a comparison between our algo-

rithm and other correspondence approaches.

We firstly consider the labeling space. In most pixel-

based algorithms, the labeling space is equivalent to the

disparity space. Pairwise smoothness assumption (explic-

itly or implicitly imposed) gives a bias of same dispari-

ties for neighboring pixels. This affects the performance of

those algorithms when there are greatly slanted planes in the

scene. So Ogale and Aloimonos used a 2D linear parameter

space for horizontally slanted planes, and many segment-

based algorithms used a 3D linear parameter space which

can model generally slanted plane. In Table 2, we can find

that pixel-based algorithm can easily achieve sound results

in “tsukuba” and “map”, which only contains fronto or near-

fronto planes, while segment-based approaches performs

better in “sawtooth” and “venus” which contains horizon-

tally (in “venus”) and vertically (in both of them) slanted

planes. But the 3D linear space is much larger than 1D dis-

parity space, so a label selection algorithm is often used to

select all possible linear parameters before matching.

Another comparison is between the different levels of

using segmentation or texture information. In most pre-

vious pixel-based algorithms, texture information is used

to control the smoothness intention of neighboring points,

e.g. in [8], intensity difference between neighboring pixels

is used to adjust the smoothness constant. The segment-

based algorithms use the color segmentation results as a

hard constraint for labels. The points in a segment are con-

sidered as a single matching unit, and the number of match-

ing units greatly decreases. This is why they can use the

larger 3D linear parameter labeling space than pixel-based

approaches. But the segmentation error is also transmitted

to the disparity results, which causes the imperfect results

for “map”. Sun et al[13] used the segmentation information

in a soft style. The fitted plane information gives a bias to

the pixel-based matching, and the results on “sawtooth” and
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Table 2. Evaluation results on Middlebury stereo test-bed
Algorithm Tsukuba Sawtooth Venus Map

all untex. disc. all untex. disc. all untex. disc. all disc.

Sym.BP+occl 0.97 2 0.28 3 5.45 2 0.19 1 0.00 1 2.09 1 0.16 4 0.02 3 2.77 6 0.16 1 2.20 1

OUR METHOD 0.88 1 0.19 1 4.95 1 0.29 5 0.00 1 3.23 5 0.09 2 0.02 3 1.50 2 0.30 7 4.0810

Segm.-based GC 1.23 5 0.29 5 6.94 6 0.30 6 0.00 1 3.24 6 0.08 1 0.01 1 1.39 1 1.4924 15.4629

Graph+segm. 1.39 9 0.28 3 7.17 8 0.25 4 0.00 1 2.56 3 0.11 3 0.02 2 2.04 3 2.3529 20.8733

Segm.+glob.vis. 1.30 7 0.48 8 7.5010 0.20 2 0.00 1 2.30 2 0.79 7 0.81 8 6.3711 1.6326 16.0731

Layered 1.5812 1.0614 8.8213 0.34 7 0.00 1 3.35 7 1.5215 2.9625 2.62 5 0.3712 5.2412

Belief prop. 1.15 3 0.42 6 6.31 3 0.9814 0.3019 4.8312 1.0010 0.76 7 9.1317 0.8421 5.2713

MultiCam GC 1.8515 1.9420 6.99 7 0.6212 0.00 1 6.8617 1.2112 1.9615 5.71 9 0.31 9 4.3411

Region-Progress.1.4410 0.55 9 8.1811 0.24 3 0.00 1 2.64 4 0.99 9 1.3713 6.4012 1.4925 17.1132

2-pass DP 1.5311 0.6610 8.2512 0.6110 0.0210 5.2513 0.94 8 0.95 9 5.7210 0.7019 9.3220

GC+occl. 1.19 4 0.23 2 6.71 4 0.7313 0.1113 5.7115 1.6418 2.7523 5.41 8 0.6117 6.0515

“venus” are much better than other pixel-based algorithms.

Their approach does not suffer from segmentation error di-

rectly, but the plane fitting is in a local style and the fronto

bias still exists. Our approach belongs to the segment-based

category, but we use more segmentation information for oc-

clusion handling.

6. Conclusions

A patch-based corresponding algorithm using graph-cuts

handling occlusions is proposed. Unlike other segment-

based approaches, both images are segmented and segments

are further separated into patches during matching. More

information from segmentation is used. Occlusions are han-

dled in a proper way. The experimental results show perfor-

mance improvement on occlusion for scenes with slanted

planes.

Segmentation error is still a drawback of our approach as

other segment-based ones. So in our future work we con-

sider several new technique that can make the algorithm less

suffer from the segmentation error. Better results have been

obtained and will be reported in recent publications.
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