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Abstract

In this paper, we present a novel approach to learning
semantic localized patterns with binary projections in a su-
pervised manner. The pursuit of these binary projections
is reformulated into a problem of feature clustering, which
optimizes the separability of different classes by taking the
members within each cluster as the nonzero entries of a pro-
jection vector. An efficient greedy procedure is proposed
to incrementally combine the sub-clusters by ensuring the
cardinality constraints of the projections and the increase
of the objective function. Compared with other algorithms
for sparse representations, our proposed algorithm, referred
to as Discriminant Localized Binary Projections (dlb), has
the following characteristics: 1) dlb is supervised, hence
is much more effective than other unsupervised sparse al-
gorithms like Non-negative Matrix Factorization (NMF) in
terms of classification power; 2) similar to NMF, dlb can de-
rive spatially localized sparse bases; furthermore, the spar-
sity of dlb is controllable, and an interesting result is that the
bases have explicit semantics in human perception, like eyes
and mouth; and 3) classification with dlb is extremely effi-
cient, and only addition operations are required for dimen-
sionality reduction. Extensive experimental results show
significant improvements of dlb in sparsity and face recog-
nition accuracy in comparison to the state-of-the-art algo-
rithms for dimensionality reduction and sparse representa-
tions.

1. Introduction

Subspace learning methods [2][4][20][7] have been
widely used in pattern classification owning to their com-
putational simplicity and analytical attractiveness [3]. Most
of them, such as Principal Component Analysis (PCA)
[8][18], Linear Discriminant Analysis (LDA) [1][13] and
the recently proposed Marginal Fisher Analysis (MFA)
[22], are holistic, that is, all entries of a projection vec-
tor may be nonzero and the computation of each low di-
mensional feature needs to explore all the features in the

original feature space. Methods for sparse representa-
tion have been studied to find projection vectors with few
nonzero elements. Non-negative Matrix Factorization [10]
is the pioneering work towards such a property. It imposes
non-negativity constraints in learning the projection vec-
tors. The elements of the projection vectors, i.e., bases,
together with the low dimensional representations, are all
non-negative. This ensures that the basic projection vectors
shall be combined to form an image in a non-subtractive
way.

NMF has been extended to Non-negative Tensor Factor-
ization (NTF) [5] for handling the data encoded as general
tensors; and Wang et al proposed the Fisher NMF [21] by
adding a term of scatter difference to the objective function
of NMF. Recently, Tao et al. [17] proposed an algorithm to
employ rectangle features for image reconstruction, which
substantially enhances the computational efficiency by tak-
ing advantage of the Integral Image. There were some at-
tempts to utilize bases with ±1 values for image transfor-
mation, such as the projection with Walsh-Hadamard ker-
nel [6]. Also there were some works to develop bases with
±1 and zero values for image analysis, such Harr wavelets
(normalized bases) for image compression, which have ever
been extended to Harr-like features and work as weak clas-
sifiers for real time face detection [19]. However, most pre-
vious dimensionality reduction algorithms on sparse or bi-
nary representations are motivated by image reconstruction
in an unsupervised manner, hence they are not necessarily
optimal in terms of classification power. Up to now, it is
still not clear how to automatically extract spatially local-
ized features effectively in supervised learning.

To deal with the above problem, we present a novel ap-
proach which learns a set of localized binary projections
with a user-defined cardinality (defined as the number of
non-zero elements) for supervised dimensionality reduc-
tion. More specifically, the problem is first formulated as
a task to learn orthogonal binary projections with limited
cardinality, which is done by optimizing a separability cri-
terion that maximizes the average distance between samples
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of different classes while minimizing that distance between
samples of the same class. Then such a problem is trans-
formed to a problem of feature clustering where the mem-
bers within each cluster correspond to the nonzero entries of
a projection vector. Finally, a greedy procedure is proposed
to optimize the above separability criterion by progressively
combining the sub-cluster pairs into a single cluster.

The advantages of this new algorithm, called discrimi-
nant localized binary projections (dlb), stem from the fol-
lowing characteristics : 1) dlb is a supervised learning
method and the derived sparse bases encode information
that has the most discriminating power; 2) the bases are spa-
tially localized and have explicit perceptual semantics asso-
ciated with the human cognition of an object; 3) the features
are extracted by summing local patches, which make them
more robust; and 4) the computational complexity is greatly
reduced, only addition operations are used in dlb.

The remainder of this paper is organized as follows: In
section 2, we present the algorithm of dlb and discuss its
complexity. Experiments on sparse analysis, face recogni-
tion and robust analysis are shown in section 3. We con-
clude with section 4.

2. Discriminant Localized Binary Projections

Assume the sample points are given as {xi|xi ∈
R

m}N
i=1 where the corresponding class labels are {ci|ci ∈

{1, ..., Nc}}N
i=1. Denote the sample number of the c-th class

as nc. Since in practice the dimension m is often very high,
it is usually necessary to transform the data from the input
space to a low-dimensional space to alleviate the problem of
the curse of dimensionality. For example, if each data point
represents an image, then m shall be equal to the number of
image pixels, which is over 10, 000 for an image of mod-
erate size. Many dimensionality reduction techniques have
been extensively studied and they have achieved much suc-
cess in real applications [15].

2.1. Motivations and Problem Statement

Classical dimensionality reduction methods usually find
a projection matrix P = [p1, p2, ..., pd] ∈ R

m×d, which
maps the original high dimensional feature x ∈ R

m to a
low dimensional one y ∈ R

d by y = PT x. Generally, there
is no constraint imposed on the entries of the projection vec-
tors pi and all entries in pi can be nonzero, hence the vec-
tors are holistic. However, psychological and physiological
evidence have shown the component-based representations
in the brain [10]. The problem of sparse representations
has been studied, and the Non-negative Matrix Factoriza-
tion algorithm [10] is proposed for such a purpose. Though
non-negative bases and coefficients can be derived in NMF,
similar to the Harr wavelet bases and Walsh-Hadamard ker-
nels, NMF and its variants [5][21] are originally intended

for image reconstruction. Hence, they are not necessarily
effective for classification tasks.

There exists evidence that humans recognize a face of-
ten in a local patch-based manner, such as that a face has a
high nose, a small mouth, or big eyes. This encourages us
to utilize sparse localized bases for feature extraction. An-
other observation is that, for general projection vectors with
both positive and negative values, the extracted features are
easily affected by image misalignment, say, translations or
scale variations, and one possible way out of this problem is
to require the entries of the projection vectors to be binary,
which means that the extracted feature must be the sum of
some features.

Motivated by the above analysis, we study the supervised
dimensionality reduction problem by imposing the follow-
ing constraints: 1) the bases, i.e. the projection vectors, only
consist of binary entries; 2) the transformed features from
the projection vectors must be effective in classification, un-
like the criterion in NMF which emphasizes reconstruction
ability; and 3) the bases are spatially localized and orthog-
onal to each other. Formally speaking, this problem can be
defined as follows:

Problem Definition: Given the sample set X = {xi}N
i=1

and the corresponding class labels {ci}N
i=1, we search for a

set of projection vectors P = [p1, p2, ..., pd] that satisfy

P = argmax
P

F (P ), s.t.

1. pi(k) = 1 or 0, i = 1, 2, ..., d; k = 1, 2, ...m
2. pi ⊥ pj , ∀ i �= j
3. Card(pi) ≤ Ns, ∀ i

where F (P ) is the objective function which characterizes
the classification performance of the projection matrix P ;
Card(pi) is the cardinality (number of non-zero entries) of
the projection vector pi, and Ns is an upper bound of the
cardinality.

The objective function F (P ) can be defined differently
for different purposes, such as the Fisher criterion [1] and
the Maximum Margin criterion [11]. In our paper, we
present a new objective function motivated by the Nearest
Neighborhood method. In this objective function, the sepa-
rability of each sample is evaluated using the difference be-
tween its average distance to the other samples in the same
class and that to the samples in other classes, and the final
objective function is the sum of these difference values from
all samples, that is,

F (P ) =
N∑

i=1

(− ∑
cj=ci

||PT xi − PT xj ||2/(nci − 1)

+
∑

cj �=ci

||PT xi − PT xj ||2 /(N − nci)).
(1)

The above supervised learning problem along with the
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Figure 1. Illustration of the framework for Discriminant Localized
Binary Projections in the point of view of clustering.

objective function defined in Eq.(1) is a classical Integer
Optimization problem. Yet, the number of parameters to be
optimized is too large, and it is prohibitive to directly opti-
mize the objective function with traditional techniques for
the integer optimization problem; hence it is more desirable
to have an efficient procedure which approximates the opti-
mal solution.

2.2. Solution Pursuit

In this subsection, we present a procedure to obtain an
approximate solution for the above problem. Since the pro-
jection vectors are orthogonal and consist of binary entries,
there shall be at most one entry being non-zero within each
row of the projection matrix P . Therefore, the above prob-
lem can be equally reformulated into a feature clustering
problem. Each projection vector pi of the matrix P corre-
sponds to a feature cluster Ci, and the projection vector pi

acts as an indicator vector for clustering. If the entry pi(k)
is one, then the feature fk is assigned to the cluster Ci; oth-
erwise not. The corresponding feature clustering problem
can be formally formulated as follows:

Problem Reformulation: For a given set of features
{fk}m

k=1, search for a method that separates them into (d+1)
clusters {C0, C1, ..., Cd} by maximizing the objective func-
tion F (P ) along with the constraints that pi(k)=1 ⇔ fk ∈
Ci, pi(k)=0 ⇔ fk �∈ Ci, ∀ i, k and the feature number
within each cluster is not more than Ns.

In the above clustering process, features in cluster C0

do not appear in the projection vectors, and they contribute
less to the separation of different classes. A local opti-
mum of this problem can be obtained using the reassign-
ment method, which has ever been used for the clustering
algorithm K-means [4]; yet this method is also not practi-
cal since we have to recompute the objective function for
each reassignment and know the cluster number that is usu-
ally unknown in advance. In the following paragraph, we
develop a greedy method to progressively combine sub-
clusters into a single one, and increase the objective func-
tion value step by step while satisfying all constraints.

Greedy Solution. The objective function in Eq. (1) can

1. Initialize each feature fk as a cluster Ck, namely P 0 =
Im, and set the ineffective feature cluster as C0 = ∅;

2. Compute the matrix S as in Eq. (3);

3. for t = 1, 2, ..., m-d,

• Select the maximal non-diagonal entry (i, j) of

matrix St−1(= P t−1T
SP t−1) which satisfies

the condition that the number of the nonzero en-
tries within the combined cluster is no more than
Ns.

• if (pt−1
i + pt−1

j )T S(pt−1
i + pt−1

j ) ≤ 0, then
put these two features into cluster C0, namely
set pt

i = pt
j = 0; else if the entry (i, j) of

St−1 is not larger than zero, break; else, set
pt

i = pt−1
i + pt−1

j , pt−1
j = 0, namely combine

the sub-clusters Ci and Cj into cluster Ci and set
the cluster Cj = ∅;

• St = P tT SP t

4. Reorder the projection vectors according to pt
i
T
Spt

i

from large to small, and output P = [p1, p2, ..., pd].

Figure 2. Procedure to learn discriminant localized binary projec-
tions.

be rewritten in a trace form as

F (P ) = Tr(PT SP ) =
d∑

k=1

pT
k Spk (2)

where

S =
N∑

i=1

(
1

N − nci

∑

cj �=ci

xijx
T
ij −

1
nci − 1

∑

cj=ci

xijx
T
ij) (3)

and xij = xi − xj .
Instead of directly optimizing the objective function, we

present a greedy solution and assume that the approximate
solution is obtained by combining two sub-clusters into a
single one progressively meanwhile ensuring that the in-
crease of the objective function value is maximal in each
step. In this process, the first two constraints are naturally
satisfied, and the last one can be easily met by ensuring that
the feature number of the combined cluster is less than Ns.

Assume that the projection matrix is initialized as P 0 =
Im ∈ R

m×m, where Im is the identity matrix of size m,
that is, each feature constitutes a single sub-cluster. In
the (t+1)-th step, two sub-clusters are combined into one,
i.e., two column vectors of the projection matrix P t =
[pt

1, p
t
2, ..., p

t
m] are summed into one pt+1

i ⇐ pt
i + pt

j , and
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pt
j is reset as pt+1

j = 0. Thus, the objective function value
is increased by

(pt
i + pt

j)
T S(pt

i + pt
j) − pt

i
T
Spt

i − pt
j
T
Spt

j (4)

= 2pt
i
T
Spt

j = 2eT
i (P tT SP t)ej (5)

where ei is an m dimensional binary vector with only one
entry having the value of one at the i-th entry.

The above analysis shows that we need only to find the
maximal non-diagonal entry of the matrix St = P tT SP t

under the constraint that the feature number within the com-
bined cluster is not larger than Ns. The computation of the
maximal non-diagonal entry is efficient; furthermore, the
matrix St = P tT SP t can be incrementally computed as

St+1 = P t+1T
SP t+1 (6)

= (P t(I + Eji − Ejj))
T
SP t(I + Eji − Ejj) (7)

= (I + Eji − Ejj)T St(I + Eji − Ejj) (8)

where Eji is an m × m binary matrix with only one entry
being one at (j, i). Thus it can be efficiently computed with
one row and one column operation for matrix St.

In each step, if the combined feature derives a negative
value at the (i, i) entry of matrix St+1 = P t+1T

SP t+1,
the elements within this cluster are transferred to cluster C0

and this cluster is emptied. If the calculated non-diagonal
entry (i, j) of matrix St is negative or zero, the algorithm is
terminated and the final clustering result is output. The de-
tailed procedure is listed in Fig. 2, and Fig. 1 illustrates our
framework of combining the features into a set of clusters.

2.3. Algorithmic Analysis

In this section, we discuss the complexity of our algo-
rithm, referred to as Discriminant Localized Binary projec-
tions (dlb) in both learning and classification stages, and
show that dlb is very efficient in terms of computation. We
shall also analyze its advantages compared with other al-
gorithms for dimensionality reduction, especially for sparse
representations.

Complexity of the learning stage. The computational
cost of dlb in the learning stage is divided into two main
parts: one for the computation of the matrix S, which has
a complexity of O(N2m2) × T× where T× is the time for
a multiplication operation; another for the computation of
the largest entry of the non-diagonal matrix P tT

SP t in all
the m-d steps, which has a complexity of O(m3) × T+

where T+ is the time for an addition operation. Therefore,
the total complexity of dlb is O(N2m2)T× + O(m3)T+,
which is even less than that of the PCA algorithm, which is
O(Nm2)T× + O(m3)T×, when N 
 m. Moreover, the
average distances in Eqn. (1) can be restricted within the

k nearest neighbors of each sample and the computation of
the S matrix is reduced to O(Nkm2)×T×, hence the dlb is
very efficient in the learning stage. In all our experiments,
we set k to be nci − 1 in this paper.

Complexity of the classification stage. In obtaining
the low dimensional representation of new data for classi-
fication, since all the projection vectors pi are binary and
orthogonal to each other, then each feature in the origi-
nal feature space will be used at most once and only addi-
tion operations will be used. Therefore, the corresponding
complexity is m × T+, which is much lower than that of
PCA and other holistic algorithms, where the complexity is
md × T×. In NMF, the multiplication operations are also
required, hence NMF is less efficient than dlb.

Advantages of dlb. Generally, dlb comprises the advan-
tages of both supervised algorithms, like LDA, and sparse
representation algorithms, like NMF. It is effective for clas-
sification and consistent with the way that the human brain
understands the world. Furthermore, the binary property of
dlb brings additional merits: 1) dlb is robust to image mis-
alignment owing to the fact that the low dimensional fea-
tures are acquired by summing a subset of features, instead
of linearly combining all features with different weights;
and 2) the binary property makes the computation of low-
dimensional features faster.

3. Experiments

In this section, we present three sets of experiments to
evaluate the effectiveness of our algorithm and compare it
with holistic algorithms like PCA and LDA, as well as the
sparse representation algorithm NMF. The first set of exper-
iments is designed to compare the sparsity properties of the
bases between NMF and dlb; the second set of experiments
is used to compare the classification performance of dlb,
PCA [18], NMF [10], and PCA+LDA (U-Subspace) which
is similar to the unified subspace [20] method and explores
all possible combinations of PCA dimensions and LDA di-
mensions.

3.1. Sparse Representation

NMF explores sparse non-negative representations for
data objects. Its basic objective is to find a set of bases for
optimal image reconstruction, hence the bases will usually
focus on locations with high gray level values. However,
the most effective parts for classification do not always lie
in such areas. We compare the results of NMF and dlb on
three databases, XM2VTS [12] face database, MNIST dig-
ital number databases [9], and the CMU PIE [16] database.

The XM2VTS database contains 295 persons and each
person has four frontal images each taken in a different
session. All the images are aligned by fixing the loca-
tions of two eyes and normalizing the size to 72*64 pixels.
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The MNIST digital number database consists of images of
handwritten numbers (’0’-’9’) extracted from a collection
of Dutch utility maps; and we use the 5,000 images in the
test set with image size of 28*28 pixels. The values of these
images are binary. The CMU PIE (Pose, Illumination, and
Expression) database contains more than 40,000 facial im-
ages of 68 persons. The images were acquired over different
poses, under variable illumination conditions and with dif-
ferent facial expressions. We select nine images for each
person as shown in Fig. 5, and there are strong pose varia-
tions within the selected images. All the images are aligned
by fixing the locations of two eyes and normalizing the size
to 64*64 pixels, and 63 persons are used in our experiments
due to the data incompleteness of the other five persons.

The learned bases of dlb and NMF from the above three
databases are displayed in Fig. 3, 4 and 5. The bases of
dlb are reordered according to their objective function val-
ues pT

i Spi; and if the bases number is larger than 20, the
bases of NMF are reordered according to the sums of the
projections to the bases from all the samples. We also plot
the importance map for dlb and NMF, which is defined as
the sum of the leading projection vectors and characterizes
the importance of the feature for a specific algorithm. All
the projection vectors are linearly scaled to within [0, 255]
for display. From these results, we have the following ob-
servations: 1) when the faces are well aligned, like in the
XM2VTS database, NMF can derive localized features; but
there still exist holistic bases as shown in Fig. 3; 2) for bi-
nary images, like the MNIST database, the bases of NMF
are sparse; 3) for face images with different poses, like in
the CMU PIE database, the bases of NMF are not satisfac-
tory in sparsity, and many distorted faces are derived; 4) in
all of the three cases, dlb consistently outputs sparse and
localized bases, and the bases from face images may have
explicit perception semantics, like eyes and mouths; and 4)
the importance maps of NMF and dlb are different, or even
contrary to each other, which indicates that the most repre-
sentative features are usually not the best in classification
capacity and also show why dlb can work better than NMF
in classification tasks. Also, we plot the bases with different
cardinalities in Fig. (6) with the 210 images of 70 persons
from the FERET [14] database. From these results, we can
observe that when the cardinality of the projection vector is
small, the first six bases mainly focus on the eye area, and
when the cardinality increases, the mouth and nose are also
included. When the cardinality is small enough, the bases
are localized and have explicit perceptive semantics; and
when the cardinality increases, the bases exhibit high level
structure information of a face, and multiple components
are combined to constitute a basis.

(a) dlb (b) NMF
Figure 3. The first 20 bases of dlb (bottom left) and NMF (bottom
right) from the XM2VTS database with well aligned frontal faces.
The top row images are: importance map image of dlb, nine sam-
ple images from the XM2VTS database, and the importance map
image of NMF.

(a) dlb (b) NMF
Figure 4. The first 20 bases of dlb (bottom left) and NMF (bottom
right) from the MNIST digital number database. The top row im-
ages are: importance map image of dlb, ten sample images from
the MNIST database, and the importance map image of NMF.

(a) dlb (b) NMF
Figure 5. The first 20 bases of dlb (bottom left) and NMF (bottom
right) from the PIE database with multi-view faces. The top row
images are: importance map image of dlb, nine sample images
from the PIE database, and the importance map image of NMF.

3.2. Face Recognition

We evaluate the classification power of the derived low-
dimensional representations from PCA, U-Subspace, NMF,
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Figure 6. The first six bases (from left to right) of dlb from the
FERET database with different cardinalities (from the second row
to the bottom row with the cardinality from 4 to 180); and the top
row are the importance map of dlb, ten sample images and the
importance map of NMF. The results show that the bases have ex-
plicit human perceptive semantics, like eyes, mouth and nose; and
when the cardinality increases, the bases can show high level struc-
ture information of a face by combining multiple components.

and dlb on two face databases: FERET [14] and CMU PIE.
In this experiment, we used 70 persons from the FERET
database with six images for each person and the images
are aligned by fixing the locations of two eyes to the size
of 56 × 46 pixels. Three images per person are randomly
selected for training and the remaining three images are for
testing. In CMU PIE database, the nine images for each
person as shown in Fig. 5 are used for training and other
twelve images each person are selected from poses 05, 07,
09 and 29 with three different illuminations for testing. The
detailed experimental results are displayed in Fig. 7 and
Fig. 8. In all the experiments, the projection vectors are
learned from the training images and the Nearest Neighbor
approach is used for classification; we explored all the pos-
sible feature dimensions for all the algorithms and report
the best results. For a fair comparison, we implemented
the Unified Subspace (U-Subspace) method, similar to the
unified subspace method in [20], by exploring all possible

PCA U-Subspace NMF dlb

88.6%(206) 96.2%(136,66) 89.5%(42) 97.1%(73)
≈ 2.85 ms ≈ 0.91 ms ≈ 0.58 ms ≈ 0.01ms

(a) U-Subspace (b) PCA, NMF, dlb
Figure 7. Face recognition results on the FERET database. Note
that, in the table above the two images, the first line lists the
best results from the four algorithms, and second line lists the ap-
proximate time (in Matlab 7.0 on PIV computer with CPU 3.0G)
required for computing the optimal low dimensional representa-
tion with corresponding feature dimensions in the brackets (for
U-Subspace method, the two numbers in the bracket are PCA di-
mension and LDA dimension respectively); the left image shows
the recognition rates of U-Subspace algorithm on different combi-
nations of PCA and LDA dimensions; and the right image shows
the face recognition rates of PCA, NMF and dlb on different fea-
ture dimensions.

combinations of PCA dimensions and LDA dimensions; for
NMF, we implemented the versions with bases numbers of
20, 50, 100, 200 and reported the best results; for dlb, we
implemented the versions with cardinality Ns as 5, 15 and
25 respectively and reported the best results. From these
results, we have the following conclusions: 1) U-Subspace
consistently outperforms PCA and NMF when all feature
dimensions are explored; 2) dlb is comparable to the U-
Subspace algorithm in recognition accuracy with signifi-
cantly improved processing speed; and 3) when there are
large pose variations, NMF is not so good as PCA, yet it
can outperform PCA in the cases with frontal faces. We
also evaluate the performance of dlb with different cardinal-
ities in comparison to that of NMF with different numbers
of bases for training, and the results on the FERET database
are shown in Fig. 9. These results show that dlb is relatively
more robust to model parameter variations than NMF.

4. Discussions and Future Work

In this paper, we proposed a novel supervised dimension-
ality reduction algorithm which pursues discriminant local-
ized binary projections. The pursuit of these projections is
simplified into a supervised feature clustering problem; and
a greedy procedure is proposed to hierarchically combine
projection vector pairs into single ones. dlb can derive lo-
calized bases with explicit perceptual semantics and strong
classification power. The binary property of dlb brings the
advantages of low computational complexity and robust-
ness. One possible future work in this direction is to train
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PCA U-Subspace NMF dlb

69.7%(264) 72.0%(62,61) 65.6%(88) 75.4%(314)
≈ 5.75 ms ≈ 1.34 ms ≈ 1.93 ms ≈ 0.04ms

(a) U-Subspace (b) PCA, NMF, dlb

Figure 8. Face recognition results on CMU PIE database. The
contents shown in the table and two images are similar to those at
Fig. 7

Figure 9. Face recognition rates of dlb with different cardinal-
ity numbers, and those of NMF with different basis numbers, for
training on the FERET database.

a specific classifier within each local patch instead of man-
ually separating the image into multiple patches for parts-
based face recognition. Another possible extension is to
explore other forms of objective functions in dlb for better
classification power while preserving localized and binary
properties.
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