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Abstract

Human faces manifest distinct structures and character-
istics when observed in different scales. Traditional face
recognition techniques mainly rely on low-resolution face
images, leading to the lost of significant information con-
tained in the microscopic traits. In this paper, we introduce
a multilayer framework for high resolution face recognition
exploiting features in multiple scales. Each face image is
factorized into four layers: global appearance, facial or-
gans, skins, and irregular details. We employ Multilevel
PCA followed by Regularized LDA to model global appear-
ance and facial organs. However, the description of skin
texture and irregular details, for which conventional vec-
tor representation are not suitable, brings forth the need of
developing novel representations. To address the issue, Dis-
criminative Multiscale Texton Features and SIFT-Activated
Pictorial Structure are proposed to describe skin and sub-
tle details respectively. To effectively combine the informa-
tion conveyed by all layers, we further design an metric fu-
sion algorithm adaptively placing emphasis onto the highly
confident layers. Through systematic experiments, we iden-
tify different roles played by the layers and convincingly
show that by utilizing their complementarities, our frame-
work achieves remarkable performance improvement.

1 Introduction

Human face is an architecture consisting of distinct
structures and characteristics when observed in different
scales. As illustrated in figure 1, from macrocosm to micro-
cosm, the views in different scales show greatly different
pictures: a macroscopic view presents a basic configura-
tion of facial organs, such as eyes, nose and mouth; while
a microscopic perspective leads us to subtle details. Mo-
tivated by the belief that informations contained in these
scales have their special roles respectively, we approach the
face recognition problem by utilizing the features in all per-
ceptible scales.

Figure 1. The Decomposition of Face: A face
is composed of organs and skin, the skin is
composed of organized textures.

We first give a brief review of current progress in face
recognition techniques. The well-known Eigenfaces[14] in-
troduces PCA to face representation, which effectively al-
leviates the high dimensionality difficulties in appearance-
based approaches, and thus makes subspace methods in-
creasingly popular. Thereafter, a number of dimension re-
duction algorithms are proposed, in which LDA[18] and
its improved versions[25][4][13][26][27] are among the
most successful. To cope with more complex intra-class
variations, efforts have been devoted to their nonlinear
extensions[7][19], and improved face descriptors includ-
ing shape-texture-decomposition[23] and Gabor wavelet
features[5].

Despite the success achieved by these methods, they still
suffer from drastic performance degradation in the situa-
tions of remarkable environmental change. A fundamental
limitation originates from that most of current approaches
are based on low-resolution images. In these images, only
a global appearance of the faces can be seen, while sub-
tle details are blurred, thus important information embed-
ded in these micro-structures are lost. Recent advancement
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Figure 2. The multilayer framework.

of high-definition cameras and high-performance comput-
ers makes high-resolution face analysis possible and conse-
quently brings us a great opportunity to break the limitation
by making use of the microscopic features.

In this paper, we develop a multilayer framework for
high resolution face recognition with information in mul-
tiple scales utilized. In the framework, each face is decom-
posed into 4 layers: global appearance, facial organs (eyes,
nose, and mouth), skins (forehead skin, and cheek skin), and
irregular details. We propose different feature description
schemes for these layers, specially tailored to their different
characteristics. They are listed below.
Global appearance & Facial Organs The global appearance
and main organs of faces are highly structured, hence, a subspace
model is appropriate. We first adopt Multilevel PCA for dimen-
sion reduction. Then Regularized LDA is proposed to transform
the features to a discriminative subspace.
Skins Skin does not possess a general spatial structure, instead,
it is textured. A typical skin is formed by repetition of texture
units (textons). We propose the Discriminative Multiscale Texton
Features: firstly a common skin texton dictionary is established,
based on which, we describe the texture by texton distribution with
soft histogram. R-LDA ensues to reduce the irrelevant variations.
Irregular details They have neither a regular appearance nor a
spatial order. However, for each person, existence of some inherent
irregular details is a strong personal distinction. We proposes SIFT-
Activated Pictorial Structure, which unifies SIFT[6] for detecting
and describing local interest regions and an elastic graph[17] for
modelling their spatial configuration. Thereby, we can effectively
express the distribution of irregular details on faces, and compute
the similarity in a probabilistic manner.

Furthermore, we develop an adaptive metric fusion algo-
rithm to combine the features in all layers. It constructs
the final decision in a probabilistic way based on layer-
confidences and emphasizes the highly distinctive layers.
The integrated framework is shown in figure 2.

The major contributions of our framework lie in the fol-
lowing aspects. First, compared to most current face recog-
nition techniques based on low resolution images (or down-
sampled version of high resolution images), our work gives

a comprehensive solution to true-sense high resolution face
recognition. Second, we take the lead in making use of
microscopic structures, including skin textures and irregu-
lar details. Novel representations tailored to their particular
natures are proposed, which are completely different from
the conventional models based on fixed-dimensional vec-
tor space. To our best knowledge, both the Multiscale tex-
ton features and SIFT-activated pictorial structure are new
methodologies in the field. They open up the microcos-
mic realm for face recognition. Third, we devise a flexible
metric-fusion method with the layers adaptively weighted
for different persons and under different conditions. Fourth,
through systematic evaluations of different layers as well as
the whole framework, we identify different roles played by
these layers and present a new insight into face recognition.

2 Layer Models

2.1 Global Appearance and Facial Organs

The global appearance and facial organs are highly struc-
tured, thus they can be well represented by a fixed-length-
vector, and it is reasonable to assume that the sample vectors
reside on a subspace of much lower dimension. Hence, we
learn subspace models for the global appearance and four
facial organs (left and right eyes, nose, and mouth) respec-
tively. For a high resolution image, the prohibitively high
dimension (over 50000) of appearance-based representa-
tion renders traditional dimension reduction methods infea-
sible. To tackle this difficulty, the multilevel PCA strategy is
adopted: we first partition the target area into sub-regions,
so that each sub-region contains about 1000 ∼ 2000 pix-
els. Then PCA models are trained and applied to these sub-
regions respectively. Finally, a high-level PCA is learned
on the stacked vectors concatenating principal components
for all sub-regions, in order to attain a more compact repre-
sentation. For images in a higher resolution, such a PCA-
hierarchy can be easily extended to more levels.

However, the main target of PCA is for compression,
thus it may not lead to optimal discrimination. To extract
the discriminant features, LDA[18] is further applied to the
top-level principal components. It pursues a linear trans-
form W maximizing the ratio of between-class scattering
to within-class scattering.

W = argmax
W

|WTSbW|
|WT SwW| . (1)

Suppose the training set has n images from C different per-
sons, denoted by {(I1, c1), (I2, c2), . . . , (In, cn)}, where
ci is the label of the i-th sample. Denote the principal-
component-vector for Ii by xi, then the between-class scat-
ter matrix Sb and the within-class scatter matrix Sw are re-
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spectively defined as

Sb =
1
n

C∑
k=1

nk(mk − m)(mk − m)T , (2)

Sw =
1
n

∑
k=1

∑
i:ci=k

(xi − mk)(xi − mk)T , (3)

where mk is the mean vector of the k-th person, and m
is the overall mean. It is known that LDA tend to suffer
from the singularity of Sw in a high dimensional space. A
series of improved LDA algorithms are proposed to address
the difficulty, including PCA+LDA[25], Enhanced Fisher
Model[4], Unified Subspace Analysis[26], and Null-space
LDA[13]. They resolve the problem at the expense of
losing information in either principal subspace or null
space of Sw. Inspired by the works in[27][2], we derive the
Regularized LDA as follows:

1. Perform eigen-decomposition on Sw as Sw = UΛwUT .
Here D = diag(λ1, . . . , λd) are diagonal matrix of eigenval-
ues in descending order, U is orthogonal matrix composed of
corresponding eigenvectors;
2. Determine the dimension or principal subspace of Sw, de-
noted by r, so that 95% of the intra-class variation energy is
preserved in the principal subspace Ωp;
3. Divide U into [Up, Uc], which are the basis of Ωp and Ωc

(the orthogonal complement of Ωp);
4. Compute ρ = 1

d−r

Pd
i=r+1 λi;

5. Compute the regularized whitening transform: T1 =

[UpΛ
− 1

2
p , ρ− 1

2 Ur], then Kb = TT
1 SbT1;

6. Apply PCA on Kb to get T2, finally get W = T1T2.

Compared with other LDA-based methods, there are two
improvements: 1) Both the principal subspace and its com-
plement are retained in step.5, thus no information would
be lost in the whitening stage. Different from dual-space
LDA[27], in which the two complementary subspaces are
separately treated in ensuing steps, in our method they are
combined before the second-stage diagonalization, thus can
be utilized more effectively. 2) Our method has its theo-
retical root in statistics: it is equivalent to approximating
Sw by a regularized nonsingular matrix S̃w, and it can be
proved[2] that such an approximation is optimal in sense of
minimizing the K-L divergence between the Gaussian dis-
tributions induced by covariance matrices Sw and S̃w. With
the Regularized LDA model learned, we can compute the
discriminant feature vectors by y = WT x. Hence, for two
faces represented by x1 and x2, the distance in this layer is
given by d = ||WT x1 − WTx2||.

2.2 Skin Textures

The face skin is a textured surface consisting of repeti-
tive texture units, which we call textons. Such a textured

nature prefers a texture-based description. There are gen-
erally three families of texture models. A typical family of
methods are based on filter bands, they apply FIR filters to
the images. Merely relying on power spectrum, they lacks
ability of describing local spatial relation. Later, MRF is
brought to the domain[9][15], which is inherently suitable
for modeling local spatial structures. However, the size of
MRF model increases exponentially with the neighborhood
size, which confines its capability in capturing large-scale
patterns. Zhu et. al propose the the “FRAME”[22] to unify
these two families. But the Gibbs sampling involved makes
it too slow for practical applications. Since the concept tex-
ton[24][16][21] becomes popular in computer vision, it has
achieved great success. The key rationale is to characterize
the textures by texton-distribution.

We establish the skin texture representation based on
texton-distribution. As illustrated figure 3, the procedure
given as follows comprises three stages: Filtering, Dictio-
nary Building, and Discriminant Learning.

Training Phase: Learning Models
a. Apply Gabor-filters (5 scales and 8 orientations) to extract

a set of 40-dim response vectors for all pixels in skin region.
b. The response vectors over all pixels in skin regions in all

training images are accumulated to form a vector pool.
c. Progressively build the texton-dictionary: continue ran-

domly sampling from all response vectors, if the sampled is
close to some cluster, then put it to the cluster and update the
center(texton), otherwise, create a new cluster centered at new
sample. The process continues until no new textons are found
and all cluster centers become stable.

d. For each image, categorize its skin pixels to the K-texton
clusters, then get the K-bin histograms by counting vectors
classified to each cluster. Normalize the histogram so that the
sum of scalars in the bins equals 1. This histogram character-
izes the texture of an image.

e. Regard these histograms as K-dim vectors, and apply
Regularized LDA on them, to solve the transform matrix Wh.
Testing Phase: Extracting features for a new image

a. Filter the skin region with Gabor filter bands to acquire
response vectors.

b. Categorize the compressed vectors on all pixels to clusters
and compute the K-bin histogram.

c. Transform the histogram to discriminant vector by Wh.

Compared to conventional texton-based methods, our
method has two improvements specially made for skin mod-
eling. First, motivated by the observation that structure
of skin textures in a high-resolution image is consisting
of multiple levels, we obtain the texton description by the
inherently-scalable Gabor wavelet. Second, because there
are tremendous amount of pixels in a set of high resolution
images, conventional clustering methods such as K-Means
are infeasible. We develop an efficient scheme to build tex-
ton dictionary: instead of exhausting all samples, we pro-
gressively sample from the patch pool until the clusters are
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Figure 3. Illustration of Discriminant Multi-
scale Texture Feature

stable. Thereby, much less samples are required. Third, ob-
serving that the texton histogram encodes not only essential
features but also variations cause by illumination change,
we learn regularized LDA to extract the intrinsic informa-
tion, and reduce the interference. The features extracted in
this way is called Discriminant Multiscale Texture Feature.

2.3 Irregular Details

Irregular details refer to the subtle yet distinctive local
marks on a face image, such as naevus. Face recognition
can substantially benefit from the use of the irregular details
owning to their two significant properties: 1) The special ar-
rangement of irregular details constitute a strong distinction
of a person; 2) The local details are insensitive to illumi-
nation change. Realizing that there exist a vast number of
irregular details caused by temporary contamination, we re-
strict our model to only utilizing the local details satisfy-
ing the following conditions: 1) distinctiveness: they have
special local pattern and do not resemble other parts of the
faces such as skin texture. 2) stability: they should stably
occur in nearly all images of a person, and can be repeatedly
detected.

Recently, a trend of using local feature based descrip-
tion arises in the field of generic object recognition, which
comes in three lines: 1) the approach matching two sets
of local features[6]; 2) the approach using statistics of lo-
cal features without correspondence[3][8]; 3) the statisti-
cal models formulating both the local features and their
interrelations. Representative works include Constella-
tion models[20][1], Graphical models[10], and Pictorial
structure[17]. The third family is superior to the other two
in that it utilizes the spatial relation of the local features.

Inspired by these works, we consider two aspects of the
irregular details: local appearance and spatial configuration,
as shown in fig.4. Assume that a face image has m lo-
cal interest regions, we represent them by a size-variable
set, denoted by S = {(a(l),x(l), θ(l), s(l))}m

l=1. Here, a(l)

describes the shape-free local appearance of the l-th inter-
est region; x(l) is the position of region center; θ(l) is its

principal orientation; and s(l) is the scale of the region. A
person is represented by center values of these quantities,
i.e. M = {(ā(l), x̄(l), θ̄(l), s̄(l))}m

l=1. Firstly, we derive a
probabilistic formulation modeling the local characteristics.
With the assumption that they independently satisfy normal
distributions, and that the correspondence have been estab-
lished between a face S and a personal model M, we have

p(lc)(S|M) =
m∏

l=1

p(a(l)|ā(l);Σa)p(x(l)|x̄(l);Σx)

p(θ(l)|θ̄(l); σθ)p(s(l)|s̄(l); σs); (4)

p(a(l)|ā(l);Σa) ∝ exp
(
− (a(l) − ā(l))TΣ−1

a (a(l) − ā(l))
2

)
,

p(x(l)|x̄(l);Σx) ∝ exp
(
− (x(l) − x̄(l))TΣ−1

x (x(l) − x̄(l))
2

)
,

p(θ(l)|θ̄l; σθ) ∝ exp
(
−1

2
(θ(l) − θ̄(l))2

σ2
θ

)
,

p(s(l)|s̄(l); σs) ∝ exp
(
−1

2
(s(l) − s̄(l))2

σ2
s

)
.

Moreover, the spatial configuration of the interest re-
gions also play an important role in describing a face. We
formulate the spatial configuration with an Elastic Graph, in
which the pairwise distances are assumed to satisfy Gaus-
sian distribution:

p(sc)(S|M) ∝
∏
l1,l2

exp
(−(||x(l1) − x(l2)|| − ||x̄(l1) − x̄(l2)||)2

2σ2
sc

)
.

(5)
With the formulation above, the model for the k-th person
can be learned by Maximum Likelihood(ML) incorporating
both local characteristics and spatial configuration,

Mk = argmax
M

nk∏
j=1

p(lc)(Skj |M)p(sc)(Skj |M). (6)

Taking logarithm of Eq.(6), we see that it is in essence an
energy minimization problem with the energy given by

Ek =
nk∑
j=1

E(Skj |Mk), (7)

E(Skj |Mk) =
m∑

l=1

El(l)(Skj |Mk)+
m∑

l=1

m∑
l=1

Es(l1,l2)(Skj |Mk).

(8)
Here El and Es respectively reflect the fidelity of local
characteristics and spatial configurations, given by

El(l)(S|M) = (a(l) − ā(l))T Σ−1
a (a(l) − ā(l))

+ (x(l) − x̄(l))T Σ−1
x (x(l) − x̄(l))

+ σ−2
θ (θ(l) − θ̄(l))2 + σ−2

s (s(l) − s̄(l))2, (9)
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Es(l1,l2)(S|M) = σ−2
sc (||x(l1)−x(l2)||−||x̄(l1)−x̄(l2)||)2.

(10)
Solving Mk is a convex quadratic programming problem
guaranteeing global optima. Note that in our formulation,
all personal models share the same covariances and vari-
ances, which is justified by two reasons: 1) The number of
samples of each person is small, and is insufficient to give
a reliable estimation of the covariances. 2) The variations
are mainly caused by external condition changes. Due to
the limited samples for each person, they may not capture
all types of variations. Hence, it is proper to pool all regions
in all samples to robustly evaluate the covariances and vari-
ances. The rationale is similar to that of LDA, where Sw is
calculated by pooling the variations of all classes.

Under the formulation, we first need to select a set of
interest regions satisfying the aforementioned requirements
and give their descriptions. Mikolajczyk et. al have given
a comparative study on state-of-the-art interest region
detectors and local descriptors[12], and shown that Scale
Invariant Feature Transform (SIFT)[6] outperformed
the others in terms of repeatability. In this paper, we
use the Hessian-Laplace detector (the detector used in
SIFT) for interest region detection, which localizes the
scale-space maxima of the DoG and is claimed to achieve
scale-invariant detection[6]. The detection process would
evaluates the position x, scale s, and principal direction θ
of every interest region. Then for each region, we employ
SIFT to give a local description a. It is a 128-bin histogram
characterizing the local gradient distribution in 16 relative
locations and 8 relative orientations. Such a description is
scale- and rotation-invariant and highly distinctive. Based
on SIFT, we devise the following scheme to select the valid
interest regions:

1. Use SIFT to detect interest regions as candidates and give
local descriptions on them.
2. For each person, perform agglomerative clustering to cluster
the candidate regions detected on all his images:

a. Initialize by considering each region as a cluster;
b. Progressively combine two clusters with the condition that

every pair of regions in a cluster should be similar and close
enough, i.e. the differences of local appearances, positions,
orientations and scales should be below some thresholds;

c. Repeat the process until no more combinations found.
3. Refine clusters by reassigning each region to the best cluster.
4. Filtering: retain the clusters meeting following constraints:

a. (Stability) the regions in the cluser should appear in no
less than 90% of the samples of the person;

b. (Distinctiveness) the region are not similar to any skin
textons, and its entropy should be higher than some threshold.
5. If a cluster contains more than one regions from the same
image, only keep the one closest to the cluster center.

After the interest region is selected, we can learn the
personal models for each person as follows:

Figure 4. The SIFT-Activated Pictorial Struc-
ture.

1. For each person, set m to be the number of selected clus-
ters. If m > 0, we continue the following steps; otherwise it
indicates that the irregular models cannot be built, then we will
not use irregular details for this person.
2. For l-th cluster, compute the means for local descriptions.
3. Compute the covariances and variances for local descrip-
tions for all clusters of all persons.
4. Estimate Σa, Σx, σθ , σs by averaging all the computed
covariances and variances on local appearances, positions, ori-
entations, and scales respectively.
5. Estimate σsc by computing the variances of distances in
each pair of regions and avaerging them.
6. With the covariances and variances estimated, we can learn
the personal models M1, . . . ,MC by minimizing Ek with
convex quadratic programming.

To match a learned model M to a new image, that is
to determine the positions, scales, and orientations for each
model-region on the new image. It can be implemented by

Ŝ = argmax
S

E(S|M). (11)

The formulation given in Eq.(6) is an extension of Pictorial
Structure(PS)[17]. In [17], a dynamic programming
method is introduced for matching a PS model to a new
image, which can give an approximately global optimal
solution by first pruning the elastic graph to a minimum
spanning tree and then searching the optimal configurations
by forward-backward tracing. Targeting our problem,
we make two important improvements to the matching
algorithm.
First, the algorithmic complexity is O(nh2), where h
is the number of possible positions for each region. It
is typical to impose a grid over the image as candidate
positions, incurring large computational cost. To address
the difficulty, we combine SIFT detector with PS model.
Only the SIFT-detected candidates, instead of dense grid
points, are activated in the searching process, thereby h is
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drastically reduced and thus the efficiency is increased.
Second, it is possible that for some regions, there may
be no correspondence detected in the input image. As to
this issue, we preset a threshold Elmax. For a region, if
the matching energies between it and all detected regions
are higher than Elmax, it is considered to have no cor-
respondences. In this case, we just set El(l) = Elmax.
By imposing an upper bound on the local matching
energies, the model is robustly accommodated to the
situation without suitable correspondences. The process
of matching a person to a new image is given below

1. For an input image, use SIFT to detect interest regions, and
give local description.
2. Filter out the regions not meeting distinctiveness condition.
3. Apply the dynamic programming procedure[17] with our
Elmax upper-bound to establish region correspondence.

4. Use Eq.(8) to compute the matching energy. (E(S|M)
m

)
1
2 is

considered as the model-sample-distance.

Through the integration of SIFT and Pictorial Structure
formulation, we develop a novel and effective paradigm to
model the irregular details, called SIFT-Activated Pictorial
Structure (SAPS).

3 Adaptive Metric Fusion

As shown in figure 2, our framework consists of totally
L = 8 channels in all the layers, which respectively evaluate
distance metrics based on their special models. We develop
an adaptive metric fusion algorithm to give final decisions
by integrating all layers. Let d

(l)
k (x) denote the distance

between a sample x and the k-th person.1 With a simpli-
fied assumption that the samples satisfy an isotropic normal
distribution in the discriminant space, we get

x ∼ N (m, σ2I) ⇒ d(x;m) ∼
√

2
πσ2

exp
(
− d2

2σ2

)
.

(12)
Let Ll denote the l-th layer, d

(l)
k (x) denote the distance be-

tween the sample x and the k-th person in Ll. Suppose
each layer serves as an “expert”, and independently makes
decision. The decisions from Ll are expressed by posteriori
based on distances

p(k|d(l)
k ;Ll) =

P (k)p(d(l)
k |k;Ll)∑C

q=1 P (q)p(d(l)
q |q;Ll)

, (13)

here, p(d(l)
k |k;Ll) =

√
2

πσ2
l

exp

(
−d

(l)2
k

2σ2
l

)
. (14)

1For the first 3 layers, d is the distance between the sample vector and
the center vector of the k-th person in the discriminant space; while for the
4-th layer, it is the sqrt root of the average matching energy.

We just assume all classes share equal priors: P (k) =
1
C , k = 1, . . . , C, while σl is the standard deviation of sam-
ples in the l-th layer. We then introduce a concept called
confidence to reflect the expert’s certainty on its decision,
denoted by c(l). Hence, the combined decision is

p(k|{L}L
l=1) =

L∑
l=1

c(l) · p(k|d(l)
k ;Ll). (15)

A straightforward way to define the confidences is setting
c(l) to be the average correct rate obtained in Ll. A separate
evaluation set is used to give an objective assessment on the
correct rates. Carefully examining the faces, we find that
different faces possess different distinctions. For the faces
with special eyes, we should emphasize the eye-channel;
while for the faces with conspicuous naevus, the irregular-
detail-layer should be heavily weighted. Motivated by the
rationale, we derive the adaptive confidence, given by

c(l) =
log C − H(k|Ll)

log C
, (16)

here the H(k|Ll) is the entropy of classes conditioned on
distances evaluated in Ll, defined by

H(k|Ll) =
C∑

k=1

p(k|d(l)
k ;Ll) log p(k|d(l)

k ;Ll). (17)

We see that when the distances to all classes are equal, the
expert completely fail to make judgment; then H(k|Ll) =
log C, i.e. c(l) = 0; while if the expert evaluates that
p(k|Ll) = 1, it definitely make sure that the sample be-
longs to the k-th class, then H(k|Ll) = 0, i.e. c(l) = 1. By
this way, emphasis is placed on the layers that can clearly
distinguish between the classes. Furthermore, according to
the Fano’s inequality in information theory, Eq.(16) gives
an upper bound on the average correct rate.

4 Experiments

To systematically investigate the layer models and the
whole framework, we conduct experiments on two high res-
olution face databases. The first one is XM2VTS[11]. It
consists of 1180 images of size 720 × 576 pixels, which
are from 295 persons with each person having 4 samples
captured in different sections. For each person, we take the
first two sections for training, while other two sections for
testing. Thus, we have 590 training samples, and 590 probe
samples. The other database is collected by our lab, which
comprises 1600 images from 200 persons. For convenience,
we call this high resolution database HRDB. The images are
of size 1024× 768, and captured with obvious illumination
and expression change. For each person, 4 images are used
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XM2VTS HRDB
Part PCA LDA NDA EFM GDA R-LDA PCA LDA NDA EFM GDA R-LDA

global 0.836 0.883 0.871 0.907 0.897 0.942 0.548 0.841 0.896 0.868 0.884 0.935
lefteye 0.527 0.556 0.353 0.564 0.614 0.636 0.561 0.843 0.703 0.870 0.854 0.901

righteye 0.515 0.553 0.393 0.554 0.534 0.614 0.573 0.836 0.688 0.856 0.863 0.896
nose 0.290 0.320 0.112 0.324 0.320 0.369 0.260 0.423 0.300 0.449 0.433 0.493

mouth 0.397 0.431 0.241 0.436 0.449 0.485 0.194 0.448 0.248 0.469 0.399 0.499

Table 1. Correct rates on global appearance layer and facial organs layer.

XM2VTS HRDB
Combination vote dist.sum prob.sum FCMF Ada.MF vote dist.sum prob.sum FCMF Ada.MF

all organs 0.707 0.763 0.756 0.775 0.841 0.873 0.906 0.914 0.933 0.959
global+organs 0.863 0.878 0.892 0.910 0.953 0.919 0.930 0.935 0.945 0.955

skins(cheek+forehead) 0.380 0.547 0.612 0.620 0.669 0.351 0.560 0.521 0.538 0.573
organs+skins 0.780 0.859 0.864 0.883 0.917 0.889 0.940 0.954 0.963 0.970

global+organs+skins 0.908 0.951 0.933 0.959 0.985 0.936 0.946 0.951 0.955 0.976
global+irregu. 0.946 0.951 0.953 0.956 0.963 0.941 0.943 0.953 0.959 0.962

organs+skins+irregu. 0.797 0.890 0.905 0.922 0.969 0.904 0.904 0.943 0.960 0.960
all layers 0.929 0.978 0.978 0.986 0.990 0.959 0.944 0.954 0.964 0.986

Table 2. Correct rates on combinations of layers. Five fusion schemes are compared. From left to right, they are majority
voting, summing of distances, sum of probabilities of Eq.(13), confidence-fixed metric fusion, adaptive metric fusion.

for training, while the other 4 are for testing. Note that in
both databases, the training set and testing set are disjoint.

To reduce the effect of affine photometric transform, ev-
ery face image is first normalized so that the mean intensity
value is shifted to zero, and the standard deviation of pixel
values is unified to 1. The 4 layers are respectively con-
structed by applying different masks to extract the target
region as illustrated in fig.1. Note that the irregular-detail-
layer is based on whole face region with the facial organs
removed. The global appearance is down-sampled from the
initial image by a factor of 4, while all other layers are in the
original resolution. A two-level PCA hierarchy is applied to
the global appearance for dimension reduction, while stan-
dard PCA is used for facial organs. In each PCA model,
95% of the variation energy is preserved.

Test Models of Global Appearance and Facial Or-
gans. We first test the global appearance layer and the fa-
cial organs layer, where representative algorithms including
PCA[14], LDA[18], Kernel LDA(GDA)[7][19], Nullspace
LDA(NDA)[13], Enhanced Fisher Model(EFM)[4], and our
regularized LDA(R-LDA) are compared. The parameters
are determined by cross-validation, and the best results ob-
tained are shown in table 12. From the results we observe
that: (1) Global appearance outperforms the layers based
on individual organs by a large margin, which indicates that
it contains most discriminant information. (2) As to the

2In the table, Dict.size is the number of textons in dictionary, Hist.cr
and Disc.cr are the correct rates acquired by direcly using χ2-distance on
original histograms and using L2-distance on the discriminant vectors.

Database Part Dict.size Hist.cr Disc.cr
XM2VTS cheek 11 0.234 0.417

forehead 19 0.227 0.349
HRDB cheek 13 0.060 0.349

forehead 20 0.120 0.385

Table 3. Results of Skin Texture Models

organs, eyes lead to the best performance. Compared to
other parts, they convey more information. The accuracy
of mouth-channel is not very good, just slightly better than
nose, which is due to its significant variation across differ-
ent images of a person. (3) The proposed Regularized LDA
shows very good accuracy and robustness, and consistently
surpasses other algorithms.

Test Skin Texture Models. We use texton-based ap-
proach to model the skins. By employing the progressive
sampling strategy, only about 3 × 105 patches are needed
to build a stable texton dictionary. Considering that there
are totally 4 × 107 patches available in the training pool, it
really leads to a great computational saving. The results are
shown in table 3. We can see from the results that: (1) The
texton dictionary is small, containing about 10 ∼ 20 tex-
tons, which confirms the rationale that the skins are formed
by repetition of a small set of units. (2) Directly comparing
texton-histograms yields a very poor accuracy. It is due to
two reasons: on one hand the skin appearance is seriously
affected by illumination change; on the other hand the skins
of different person are similar. (3) The accuracies achieved
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merely based on skin are far beyond random-guess, which
tells us that the skin texture indeed contains important dis-
criminant information.

Test Irregular Details Models. For XM2VTS and
HRDB, there are respectively 38% and 56% of the per-
sons have stable irregular details. However, merely based
on matching the irregular details, we can achieve very high
accuracy (98.5% and 99.2%) on these subset of persons.

Test Layer Combinations. Finally, we employ differ-
ent schemes to combine the channels to see their compound
performances. From the results given in table 2, we have the
following observations: (1) The combination of all facial
organs results in a higher accuracy than any individual per-
formance (given in table 1). This reflects the complementar-
ities between different organs. (2) The combination of two
types of skins also notably increases the performance. It is
somewhat surprising that only the skin models can lead to
accuracies up to about 60%. This sufficiently manifests the
fact that the skin texture embeds discriminant information.
Such a performance is also owning to the effectiveness of R-
LDA and the fusion scheme. (3) By incorporating other lay-
ers with the global layer, the performance is remarkably en-
hanced. When all 4 layers are integrated, the performances
attain nearly perfect: 99.0% and 98.6%. The results con-
vincingly reveal the complementary nature of these layers.
(4) The adaptive fusion scheme consistently exhibits better
performance than other schemes, owning to its adaptability
and flexibility.

5 Conclusion

The paper establishes a novel and effective paradigm
for high resolution face recognition, incorporating new
representations for modeling skin texture and irregular
details and a flexible fusion scheme. The systematic
experiments on the framework lead to interesting views
into the complementarities of the layers, which hopefully
inspires a rethinking in the face recognition methodologies.
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