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Abstract

Inspired by the underlying relationship between classifi-
cation capability and the mutual information, in this paper,
we first establish a quantitative model to describe the in-
formation transmission process from feature extraction to
final classification and identify the critical channel in this
propagation path, and then propose a Maximum Effective
Information Criteria for pursuing the optimal subspace in
the sense of preserving maximum information that can be
conveyed to final decision. Considering the orthogonality
and rotation invariance properties of the solution space,
we present a Conjugate Gradient method constrained on
a Grassmann manifold to exploit the geometric traits of the
solution space for enhancing the efficiency of optimization.
Comprehensive experiments demonstrate that the frame-
work integrating the Maximum Effective Information Cri-
teria and Grassmann manifold-based optimization method
significantly improves the classification performance.

1 Introduction

Despite the great advance of face recognition techniques
in past decades, it remains one of the most challenging top-
ics in computer vision. The crucial obstacle hindering the
improvement of recognition performance is “the curse of di-
mensionality”. To mitigate the difficulties incurred by high
dimension, a variety of subspace analysis methods are de-
veloped to reduce the representation dimension. Represen-
tative subspace analysis algorithms include Principal Com-
ponent Analysis (PCA) [7] and Linear Discriminant Analy-
sis (LDA) [10].

PCA [7] finds a subspace preserving most of the varia-
tions and decorrelating the components in the principal sub-
space. Though simple and effective in dimension reduction,
with the goal of best reconstruction, PCA is not necessarily
optimal to classification. LDA [10] and its variations [3]
[15] aim at acquiring a subspace well separating the sam-
ples of different classes by maximizing the trace-ratio of

between-class scattering matrix to within-class scattering
matrix. Though it is advocated that LDA effectively extracts
the discriminative information, however, in the formulation
of LDA, the so-called “discriminative information” is only
a notion without clear concept and quantitative description.

Outside traditional statistical learning, information the-
ory provides us with an interestingly new perspective for
viewing the classification problem. Intuitively speaking, the
more information we know about the classes from samples,
the better we can classify the new samples. This rationale is
also supported by some theoretical analysis [5] [14] in infor-
mation theory. Recently some related works have been done
to apply information theory for supervised learning. Vidal-
Naquet. et al proposed “Informative feature selection” [8]
to select features by maximizing mutual information with
greedy search; Liu. et al proposed “Kullback-Leibler Anal-
ysis” [4] to sequentially learn a set of linear features for face
detection; Wu et. al [16] advocated to employ “Balanced in-
formation gain” for feature selection; and Vasconcelos [14]
discussed the “Maximum Margin Diversity” algorithm em-
ploying an information-based ranking strategy. All of them
use an information theoretical criteria for sequential feature
selection.

However, there are two main limitations for these meth-
ods. First, although these works realized the importance
of information for classification, however, they fail to offer
an insight into how the information is utilized by classifica-
tion, which is indeed a crucial aspect affecting performance
as shown later. Second, these methods are mainly used for
sequential feature selection based on greedy search strat-
egy or ranking strategy; they fail to obtain an optimal mul-
tidimensional transform of features like that in algorithms
such as LDA. The obstacle impeding applying information
principle for feature extraction consists in the computational
difficulties in optimization due to the special form of infor-
mation theory-based objective functions, where the proba-
bility density function is explicitly involved and affected by
the variables being optimized. Recently, Torkkola [13] pro-
posed a method for feature extraction by maximizing mu-
tual information. However, it suffers several drawbacks: 1)
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To obtain a tractable mathematical expression, its formula-
tion uses Renyi entropy instead of Shannon entropy; while
such a replacement is not well justified, and what effect it
would bring is not clear; 2) The optimization is based on
a multidimensional density estimation, thus it may be inac-
curate and not robust; 3) Its effectiveness is not sufficiently
validated in real data.

In this paper, we propose a novel information-theoretical
method to address the above issues. Based on the theoret-
ical relation between information theory and classification,
we first establish a channel model quantitatively describ-
ing the classification procedure as an information transmis-
sion process where the information is delivered through cas-
caded channels. By analyzing the information propagation,
we found that the classification related information is lost
when it goes through a deterministic transforms. And the
effective information that can be finally conveyed to deci-
sion stage is determined by the distribution of metric values,
which serves as a pivot in the information flow. Based on
this rationale, we derive a maximum effective information
criteria for optimizing the projection. Exploiting the fact
that the distribution of metrics is in 1D space, we effectually
overcome the computational hurdle in applying information
theory to learning feature projection. Observing the orthog-
onality constraint of the projection matrix and the rotation
invariance of objective function, we employ the Grassmann
manifold to guide the optimization process, which is a high-
dimensional manifold consisting of all projection matrices
under homogeneity condition. Then the complicated con-
strained optimization problem is converted to an uncon-
strained problem on a curved hypersurface with much lower
degree of freedom, which follows a much more efficient
procedure. Extensive experiments convincingly support our
theoretical analysis and demonstrate the superiority of our
approach over traditional subspace algorithms.

2 Maximizing Effective Information

2.1 Relation between Mutual Information
and Classification

We first briefly review two fundamental concepts in in-
formation theory: entropy and mutual information, which
is for measuring the uncertainty of random variables and
the mutual information conveyed between two random vari-
ables respectively. In the following text, we denote the en-
tropy of variable x by H(x) and the mutual information
between variable x and y by I(x; y).

Fano established a lower bound on classification errors
in terms of class posterior entropy in the well-known Fano’s
inequality [5], and it has been realized that there exists in-
trinsic relationship between information theory and pattern
recognition. The study by Vasconcelos [14] further shows

that “infomax solutions are near-optimal in minimum Bayes
error sense”, which gives strong theoretical support to ap-
plying maximum information criteria in classification.

2.2 Linear Projection and Metric

In pattern recognition, each face is represented as a d-
dimensional vector x = (x1, x2, . . . , xd)T . In supervised
learning approach, a model is learned from a training set
{(xi, ci)}n

i=1. Here n is the number of samples, xi is the
vector representation of the i-th sample, while ci = l(xi) is
the corresponding class label.

A linear projection is characterized by an orthogonal d×
p matrix A. Here, p is the dimension of the subspace. For a
vector x, it can be projected to the subspace by y = ATx.
It is typical to measure the similarity in terms of Euclidean
distance in the projected space:

s(x1,x2|A) = ||ATx1 − AT x2||2
= (x1 − x2)TAAT (x1 − x2). (1)

Due to the large number of classes in pattern recogni-
tion, it is expensive and unreliable to build statistical model
for each individual class. To address the complexity of
the multi-class classification problem, we convert the prob-
lem into a two-class one using a simple strategy similar to
Bayesian face [9].

¿From Eq.(1), we can see that in a metric space with L2

distance, the metric depends solely on the difference vector
u = x1 − x2 between two samples but not on their abso-
lute values. Therefore, according to whether two samples
are from the same class, we categorize their difference vec-
tors into two types: intra-class difference and extra-class
difference; and the corresponding sample vector sets are
denoted as ΩI = {u = x1 − x2|l(x1) = l(x2)} and
ΩE = {u = x1 − x2|l(x1) �= l(x2)}. Consequently, the
multi-class problem is converted into a two-class one, and
the metric is computed based on u as

s(u|A) = uT AATu. (2)

2.3 Channel Model and Effective Informa-
tion

2.3.1 Information Channel Model

To gain an insight into the information transmission pro-
cess, we first review the procedure in metric-based clas-
sification as illustrated in Figure 1. The whole procedure
is divided into three stages: the transform stage which
projects the source difference vector into a low dimensional
subspace, the metric evaluation stage producing the metric
value, and the decision stage making the judgment. In the
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Figure 1. Information Channel Model.

presented channel model, each stage is modelled as an in-
formation channel with information propagated from input
variable to output variable.

¿From Figure 1, we can see that, when the transform ma-
trix A is given, the first two stages are both deterministic
channels, i.e. when input variable is given, the output is de-
termined without any uncertainty; while the last channel is
a probabilistic channel, i.e. when metric is given, there still
exists some uncertainty on final judgment. The pivot con-
necting the deterministic channels and probabilistic channel
is the metric value. In the whole process, information from
sample features are first centralized to form the metric val-
ues and then the information embedded in the metric values
is utilized to support the final decision.

2.3.2 Maximum Effective Information Criteria

Motivated by the rationale, we further analyze the channel
model in order to quantitatively describe the process of
information flow.

Lemma Suppose we have three random variables x,
y, z, information is propagated through a deterministic
channel from x to y, and then through a probabilistic
channel from y to z. Then we have

I(x; z) = I(x, y; z) = I(y; z) + I(x; z|y). (3)

The proof of Eq. (3) is given in Appendix A.
Eq.(3) reveals two important points: (1) the determinis-

tic process will not add new information; (2) in the infor-
mation channel model, the information propagated from x
to z consists of two parts: one is finally conveyed to z by y,
which is equal to I(z; y), and the other I(z, x|y) is lost in
the deterministic transform.

As to the classification process, the information is trans-
ferred through the following path: u ⇒ (v = Au) ⇒
(s = st(v) = s(u|A)) ⇒ (c). Here, c ∈ {0, 1} repre-
sents whether the vector is intra-class or extra-class. For a
given sample space, the sample distribution is fixed (though
unknown), thus the mutual information I(u; c) depending
only on class-conditional distributions is also fixed. Ac-
cording to Eq. (3), we have

I(u; c) = I(s; c) + I(u; c|s). (4)

As analyzed above, among the total information I(u; c),
only the part I(s; c), which we call Effective Information,
contributes to the final classification, while I(u; c|s) is lost
in the procedure of generating the metric value. Since the
effective mutual information is a function of A, we denote
it as I(s; c|A); and the optimal A should optimize the Max-
imum Effective Information as follows

Â = argmax
A

I(s; c|A), (5)

here
I(s; c|A) = H(s|A) − H(s|c;A). (6)

Denote ps(s|A) as probability density function (pdf) of

metrics of all difference vectors, p
(I)
s (s;A) as pdf of met-

rics of intra-class differences, p
(E)
s (s;A) as pdf of metrics

of extra-class differences, then we have

H(s|A) = −
∫

ps(s|A) log(ps(s|A))ds, (7)

H(s|c;A) = −P (ΩI)
∫

p(I)
s (s;A) log(p(I)

s (s;A))ds

−P (ΩE)
∫

p(E)
s (s;A) log(p(E)

s (s;A))ds. (8)

2.3.3 Criteria Discussions

Here, we discuss some aspects of the Maximum Effective
Information Criteria as follows:

First, conventional information theoretical approaches
directly concern I(v; c), while our method maximizes
I(s; c). That is because the information transmission from
v and c is not totally free, but restricted by the classifica-
tion procedure, which inevitably leads to information lost
during metric evaluation. Thus the actual amount of infor-
mation contributing to final classification is I(s; c), so it is
more justifiable to maximize I(s; c) instead of I(v; c).

Second, we can further show that in our formulation,

I(s; c) = P (ΩI)KL(p(s|ΩI)||p(s))+P (ΩE)KL(p(s|ΩE)||p(s))

where KL(p||q) =
∫

s p log(p/q)ds is the Kullback Leibler
divergence between distributions p and q, reflecting the dis-
crepancy between the two distributions. Hence, I(s; c) ac-
tually embodies the differences between class conditional
distribution and average distribution. A large information
means a large difference between intra-person and extra-
person distributions to average distribution, and hence they
can be better distinguished.

Third, to optimize the objection function, we only need
to estimate the 1-D distribution of the metric values, which
can be effectively accomplished in a nonparametric man-
ner. Hence, the merits brought by our formulation are two-
fold: on one hand, the difficulty of modelling the high-
dimensional distribution is inherently eliminated; on the
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other hand, by directly estimating the distribution of met-
rics, our model does not rely on any parametric distribution
assumption such as Gaussian.

2.4 Parzen Window Approximation

For 1D distribution with n observed samples denoted as
{xi}|ni=1, we can approximate its pdf by Parzen window[12]
as

pz(x; {xi}|ni=1) =
1

nh

n∑
i=1

φ

(
x − xi

h

)
, (9)

here pz is a function of x, parameterized by a set of known
samples {xi}|ni=1, and φ(x) = exp(−x2)/

√
2π.

Suppose the prior probability of intra-class difference
vectors and extra-class difference vectors are PI and PE

respectively. The difference vectors available in training
set are categorized into two sets: nI intrapersonal differ-
ence vectors: u(I)

1 ,u(I)
2 , . . . ,u(I)

nI and nE extrapersonal dif-

ference vectors: u(E)
1 ,u(E)

2 , . . . ,u(E)
nE . Their correspond-

ing metric values are denoted as s
(I)
1 , s

(I)
2 , . . . , s

(I)
nI and

s
(E)
1 , s

(E)
2 , . . . , s

(E)
nE . Then we can approximate the prob-

ability density functions as

p(I)
s (s) = pz(s; {s(I)

i }|nI

i=1), (10)

p(E)
s (s) = pz(s; {s(E)

i }|nE

i=1), (11)

ps(s) = PIp
(I)
s (s) + PEp(E)

s (s). (12)

Based on the Large Number Law, we can approximate
the mathematical expectation by sample mean as

H(s|A) = −PI

nI

nI∑
i=1

log
(
ps(s

(I)
i )

)
− PI

nE

nE∑
i=1

log
(
ps(s

(E)
i )

)
(13)

H(s|ΩI ;A) = − 1
nI

nI∑
i=1

log
(
p(I)

s (s(I)
i )

)
, (14)

H(s|ΩE ;A) = − 1
nE

nE∑
i=1

log
(
p(E)

s (s(E)
i )

)
. (15)

And the approximation of effective information is

I(s; c|A) = H(s|A)−P (ΩI)H(s|ΩI ;A)−P (ΩE)H(s|ΩE ;A)
(16)

Eq. (16) is the objective function that we are to maximize
for the optimal solution.

3 Parameter Optimization on Grassmann
Manifold

In this section, we introduce the algorithm to efficiently
optimize the Maximum Effective Information Criteria.

3.1 Grassmann Manifold

3.1.1 Basic Concepts

¿From Eq. (16), we can see that the objective function is
nonlinear and commonly there is no closed form solution.
Moreover, the solution space of the objective function has
the following two characteristics:

1. Orthogonality Constrained: As mentioned above,
the matrix A characterizing a projection satisfies the or-
thogonality: ATA = I. Thus, the problem is an con-
strained optimization problem.

2. Rotation Invariance: Reviewing the calculation of
metric value as in Eq.(2), we have that for any p×p orthog-
onal matrix R,

s(u|AR) = uTARRTAT u = uT AATu = s(u|A).
(17)

From the geometric view, multiplying an orthogonal matrix
on the right is equivalent to rotating the column vectors of a
matrix, thus s(u|A) is invariant w.r.t rotation.

Grassmann manifold offers an efficient mean to address
the the optimization problem by exploiting the particular
geometric properties of orthogonality and rotation invari-
ance.

Considering that each subspace projection is character-
ized by an n×p matrix. From the view of differential geom-
etry, in the n×p-dimensional matrix space, all the n×p or-
thogonal matrices A satisfying AT A = Ip constitute a con-
tinuous curved hypersurface in the np-dimensional space,
called Grassmann Manifold, under the assumption that the
objective function F (A) defined upon it meets the Homo-
geneity Condition F (A) = F (AR), here R is a p × p
orthogonal matrix satisfying RTR = RRT = I.

On the Grassmann manifold, if for two n× p orthogonal
matrices A and B, there exists a p × p orthogonal matrix
R so that B = AR, then we call A and B homogeneous,
denoted as A ∼ B. It is obvious that the objective func-
tion F keeps its value unchanged for all matrices that are
homogeneous, thus F can also be regarded as a function of
equivalent classes of homogeneous matrices. An elaborate
mathematical analysis of Grassmann manifold can be found
in [1].

3.1.2 Tangent Space and Horizontal Space

As a curved hyper-surface, the movement of any point on
the manifold always follows a direction on the Tangent
space, which consists of all matrices T (the matrix space is
a vector space, each matrix is a vector on it) that are tangent
to the sub-manifold at the point. In mathematics, all the ma-
trices in the tangent space at A satisfy ATT + TT A = 0
and for any matrix Z, its projection on tangent space is [1]

πT (Z) =
1
2
A(AT Z− ZT A) + (I − AAT )Z. (18)
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Figure 2. An illustration of Grassmann Manifold and re-
lated spaces. In optimization, the point should move on
geodesics along the direction on the horizontal space. And
the movement along direction on the vertical space will not
change the value of objective function.

Considering the homogeneity condition, not all variations
on the tangent space will result in the change of the objec-
tive function value. It can be shown that the tangent space
can be orthogonally decomposed into the direct sum of a
vertical space and a horizontal space, where only the di-
rections in the horizontal space actually contribute to the
change of objective function value. It is proved that the pro-
jection of any vector Z on the horizontal space at A is [1]

πH(Z) = (I − AAT )Z. (19)

3.1.3 Geodesics and Parallel Translation

In a flat plane, the shortest path from one point to another
point is the straight line connecting these two points, and
during the movement of a point, the tangent direction will
not change. However, in a curved manifold, the situation is
more complicated.

In differential geometry, the shortest path from one
point to another point on the manifold is a curve, called
Geodesics. On the Grassmann manifold, the geodesics go-
ing from the point A along the direction H can be repre-
sented by the following Geodesic Equation [1]:

A(t) = [AV cos(Σt) + U sin(Σt)]VT , (20)

where U, Σ and V can be obtained by performing Compact
SVD on A as A = UΣVT . Here U is an n × p matrix,
while Σ and V are p × p matrices.

Moreover, a tangent vector Δ at that point will also be
changed when moving along the geodesic, which can be
computed by Parallel Translation as follows [1]:

Δ(t) =
(
(−AV sin(Σt) + U cos(Σt))UT + (I − UUT )

)
Δ

(21)

In the following description, the objective function is denoted as
F (A), while its gradient in the Euclidean space is denoted as
∇F (A)
Step.1 Initialize with an n × p orthogonal matrix A(0), and set
G(0) = (I− A(0)A(0)T )∇F (A(0)), H(0) = −G(0).
Step.2 Repeat the following steps until converged. At the k-th
iteration (k = 0, 1, . . .):
Step.2.1 Using linear search to find t(k) such that

t(k) = argmax
t

F (A(k)(t))

Here, A(k)(t) is computed as

A(k)(t) = [A(k)V cos(Σt) + U sin(Σt)]VT ,

where U, Σ and V are obtained by performing Compact SVD on
H(k).
Step.2.2 Update: A(k+1) = A(k)(t(k))
Step.2.3 Compute G(k+1) by projecting the gradient on horizontal
space at A(k+1)

G(k+1) = (I− A(k+1)A(k+1))∇F (A(k+1))

Step.2.4 Parallel transport the tangent vectors H(k) and G(k) as
H(k)(t(k)) = (−A(k)V sinΣt(k) + U cosΣt(k))ΣVT

G(k)(t(k)) = G(k) − (A(k)V sin Σt(k)

+U(I− cosΣt(k)))UT G(k)

Step.2.5 Update the tangent vector for next search as
H(k+1) = −G(k+1) + γ(k)H(k)(t(k))

where γ(k) =
tr

“
G(k+1)T (G(k+1) − G(k)(t(k)))

”

tr (G(k)T G(k))

Step 2.6 Set H(k+1) = −G(k+1) for every p(n − p) iterations.
The rationale is that the dimension of horizontal space is p(n−p),
thus there are p(n − p) conjugate directions on it.

Table 1. Conjugate Gradient Optimization on
Grassmann Manifold

The geometric explanation of a Grassmann manifold is
illustrated in Figure 2.

3.2 Conjugate Gradient Optimization on
Grassmann Manifold

By explicitly accounting for the geometric property em-
bedded in the orthogonality constraint and rotation invari-
ance, the original constrained optimization problem in the
whole Euclidean space is converted to an unconstrained one
on the Grassmann manifold.

Considering that in our maximum effective information
criteria, it is difficult to compute the Hessian matrix, we
adopt the conjugate gradient method for optimization and
extend it to the Grassmann manifold with some critical
changes: 1. The gradient should be projected to be along
the horizontal space at current submanifold as Eq. (19). 2.
In the 1-D searching step, the search is along a geodesic as
Eq. (20) instead of a straight line. 3. When the point is
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moved, the tangent vector should be simultaneously paral-
lel translated as Eq.( 21). The whole procedure to maximize
objective function using Conjugate Gradient Optimization
on Grassmann manifold is briefly described in Table. 1.

3.3 Computation of Gradient

For the objective function of “Effective information”, the
gradient of the function is derived as follows:

∂I(s; c|A)
∂A

=
n∑

i=1

∂H(s|A)
∂si

∂si(ui|A)
∂A

−P (ΩI)
nI∑
i=1

∂H(s|ΩI ;A)

∂s
(I)
i

∂s
(I)
i (u(I)

i |A)
∂A

−P (ΩE)
nE∑
i=1

∂H(s|ΩE ;A)

∂s
(E)
i

∂s
(E)
i (u(E)

i |A)
∂A

. (22)

For a training set of n samples, we can acquire 1
2n(n−1)

difference vectors, which is a huge quantity. Thus directly
computing gradient is computational unaffordable. How-
ever, considering that the difference vectors available are far
beyond sufficiency, it is enough to approximate the expecta-
tions with sufficient accuracy based on a set of subsampled
metrics:

∂H(s)
∂si

= f(si; {sj}|nj=1), (23)

∂H(s)
∂si

= f(s(I)
i ; {s(I)

j }|nI

j=1), (24)

∂H(s)
∂si

= f(s(E)
i ; {s(E)

j }|nE

j=1), (25)

∂s(u|A)
∂A

=
∂(uATAu)

∂A
= 2uuTA. (26)

Here the function f is

f(y; {xj}|nj=1) =
1

nh

{
−

∑n
k=1 φ′(y−xk

h )∑n
k=1 φ(y−xk

h )

+
n∑

j=1

φ′(xj−y
h )∑n

k=1 φ(xj−xk

h )

⎫⎬
⎭ . (27)

{s(I)
j }|nI

j=1 and {s(E)
j }|nE

j=1 are obtained by subsampling the
intrapersonal differences set and extrapersonal differences
set respectively; while {si}|nj=1 is obtained by subsampling
both sets with probability PI and PE .

4 Experiments

4.1 A Toy Problem

First of all, we consider a simple problem as depicted
in Figure 3, where two classes of Gaussian distributed 2D

Figure 3. Illustration of Effective Information Principle
in Toy Problem
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Figure 4. Effective Information vs. Correct Rate

samples are randomly generated. We would like to learn
a projection direction, along which the samples from two
classes can be best discriminated. Since the 1D projection
is represented by a unit-length vector w, thus the equation
for Grassmann manifold is wT w = 1, which is a circle
on the 2D plane. The 3D curve in the figure represents the
effective information on the manifold.

¿From the toy example, we can have two observations:
(1) Effective information and classification is closely re-
lated. We see that the effective information varies as the
projection direction rotates along the manifold. When the
direction is beneficial to discrimination, the effective infor-
mation tends to be higher, which is shown more clearly in
Figure 4, where we can see that the correct rate basically
rises as the effective information increases. (2)Effective in-
formation also reflects the degree of divergence between
the distributions of intra-class difference and extra-class
difference. It can be seen in Figure 3 that, when effective
information is high, the distributions are relatively far from
the other and the overlap is small; when effective infor-
mation approaches zero, the distributions are totally over-
lapped and the correct rate is near random guess.
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4.2 Face Recognition

We test the proposed algorithm in the practical face
recognition problem, which is a challenging arena to com-
pare the effectiveness of different feature extraction meth-
ods. To clarify the following discussion, we first introduce
the basic experiment procedure and how to evaluate the per-
formance. There are two major tasks in face recognition:
face classification and face verification. For both of the
tasks, we divide all samples into three sets: training set,
client set and probe set. Training set is employed to train
the model. For our algorithm framework, the training pro-
cess is simple. First we use LDA to estimate an initial pro-
jection matrix, then optimize it by maximizing the Effective
Information using Conjugate Gradient on Grassmann Man-
ifold. In testing, for face classification, each probe sample
is compared with samples in the client set and classify the
sample to the closest class in the projected subspace; while
for face verification, each face is compared with samples
in the client set and a judgement on whether the client face
and probe face is from the same person is made based on
the whether their distance in projected space is smaller than
a threshold. The threshold value is adjusted so that the false
reject rate and false accept rate on the ROC is the same. For
both face classification and face identification, the perfor-
mance is measured in terms of error rate, that is the ratio
of the number of erroneous decisions to the number of all
decisions made.

In our experiments, three databases are used for a thor-
ough testing. The first is from FERET [11], where we select
995 samples from 298 persons for training with each person
having 3 to 4 samples. 800 samples (fa) from 800 different
persons comprise the client set, while the probe set consists
of 800 samples (fb) from the same 800 persons captured in
another session. The second is from XM2VTS [6], where
there are 295 persons and each person has 4 samples cap-
tured in 4 different sessions. We use the first 3 sessions for
training. The client samples are from the 1st session, while
the probe samples are from the 4th session. The third is
PURDUE [2], where there are 90 persons. For each person,
we select 3 samples with various expressions for training,
and select another 3 samples for testing. Among the 3 test-
ing samples, one serves as the client sample, while the other
two serve as probe samples.

Before training and testing, we first extract features from
images to form vector representation as: (1) geometric nor-
malization by cropping each image to a smaller image of
size 64 × 72 pixels with eyes fixed at certain positions; (2)
photometric normalization by histogram equalization and
masking; (3) use appearance-based representation by taking
the gray levels in order as vector components; and (4)use
PCA to reduce dimension, where the dimension of princi-
pal subspace is determined by cross validation.

Database Algorithm Eff. Info. Classific. Verific.

FERET PCA 0.2795 29.9% 9.56%
LDA 0.4914 18.8% 6.40%

ELDA 0.5989 8.50% 3.52%
MEI 0.7082 3.50% 2.85%

XM2VTS PCA 0.4626 27.5% 7.61%
LDA 0.6291 9.49% 3.59%

ELDA 0.6867 3.73% 3.08%
MEI 0.7571 2.71% 1.26%

PURDUE PCA 0.3286 19.4% 10.7%
LDA 0.6388 7.22% 3.59%

ELDA 0.7034 3.33% 2.57%
MEI 0.8102 1.67% 1.38%

Table 2. Best Performance and Correspond-
ing Effective Information Value.

In our experiments, we compare the performance of
Maximum Effective Information (MEI) algorithm and other
mainstream algorithms: PCA [7], LDA [10] and Enhanced
LDA (ELDA) [3]. The comparative results in both face clas-
sification and face verification are illustrated in Figure 5.
The detailed values of lowest error rates are listed in Table
2. To examine the relationship between effective informa-
tion and performance, we also show the corresponding ef-
fective information value for the projection matrix trained
by every algorithm. From the results, we see that our al-
gorithm which maximizes the effective information consis-
tently outperforms other state-of-the-art algorithms in face
recognition literature for both face classification and face
verification. Moreover, according to Table 2, the effective
information has a close relationship with the performance,
the higher effective information often follows by better ac-
curacy.

For the experiments, it worths a discussion of the follow-
ing points: 1. Both the toy problem and face recognition
experiments demonstrate the close relationship between ef-
fective information and classification performance, which
validates the theoretical expectation. And the algorithm
guided by MEI criteria also shows its remarkable superi-
ority over other state-of-the-art algorithms. 2. With assis-
tance of Grassmann manifold, the freedom of optimization
is drastically brought down and only 30 to 80 iterations are
required to reach convergence.

5 Conclusion

In this paper, a novel channel model to interpret the
classification process is formulated under the information
theoretical perspective. Based on this model, we derive the
maximum effective information principle and successfully
tackle the computational obstacle. By employing Grass-
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Figure 5. Comparative Results of algorithms on 3 databases: Performance vs. Number of features

mann manifold to exploit the geometric characteristics of
solution space, the optimization procedure is significantly
accelerated. The toy problem and extensive assessments
in practical face recognition tasks convincingly show the
significant improvement achieved by our algorithm.
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A Appendix

Proof of Eq. (3)
From information theory, we have

I(x, y; z) = H(z) − H(z|x, y)
= H(z) − [H(z|x) − I(y; z|x)]
= I(x; z) + I(y; z|x) (a.0.1)

Because the y is uniquely and deterministically determined
by x, i.e. H(y|x) = H(y|x, z), we have

I(y; z|x) = H(y|x) − H(y|x, z) = 0. (a.0.2)

With (a.0.1) and (a.0.2), we have

I(x, y; z) = I(x; z) = H(z) − H(z|x, y)
= H(z) − [H(z|y) − I(x; z|y)]
= I(y; z) + I(x; z|y). (a.0.3)

Combine (a.0.3) and (a.0.3), the proposition in Eq. 3 is
proved. �
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