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Face Recognition Using Kernel Scatter-Difference-Based
Discriminant Analysis

Qingshan Liu, Xiaoou Tang, Hanqing Lu, and Songde Ma

Abstract—There are two fundamental problems with the Fisher linear
discriminant analysis for face recognition. One is the singularity problem of
the within-class scatter matrix due to small training sample size. The other
is that it cannot efficiently describe complex nonlinear variations of face
images because of its linear property. In this letter, a kernel scatter-differ-
ence-based discriminant analysis is proposed to overcome these two prob-
lems. We first use the nonlinear kernel trick to map the input data into an
implicit feature space . Then a scatter-difference-based discriminant rule
is defined to analyze the data in . The proposed method can not only pro-
duce nonlinear discriminant features but also avoid the singularity problem
of the within-class scatter matrix. Extensive experiments show encouraging
recognition performance of the new algorithm.

Index Terms—Face recognition, Fisher linear discriminant analysis,
kernel scatter-difference-based discriminant analysis.

I. INTRODUCTION

Principal component analysis (PCA) and Fisher linear discriminate
analysis (FLDA) are two popular feature representation methods.
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PCA generates a set of orthonormal basis vectors aiming at max-
imizing the variance over all the samples. A new face image can
be represented by a linear combination of these basis vectors, i.e.,
Eigenface [1]. PCA is optimal for reconstruction but is not optimal
for discrimination. For better discrimination, FLDA tries to find a
linear projection to maximize between-class scatter SB and mini-
mize within-class scatter SW , which can be obtained by maximizing
the Fisher discriminant function J(w) = wTSBw=w

TSWw. Mathe-
matically, it is equivalent to solving leading eigenvectors of S�1

W
SB .

For the relationship between PCA and LDA, a detailed analysis is
given in [2] and [3].

There exist two key problems for face recognition using FLDA. One
is that SW tends to be singular, since face recognition often has a small
training sample size. This gives rise to a problem of unstable numerical
computation. Several techniques have been developed to alleviate this
problem [4]–[11]. For example, the well-known Fisherface employs
PCA at first for dimension reduction, and then FLDA is performed
[4], [5]. Belhumeur et al. [4] and Zhao et al. [5] showed that Fish-
erface gave a much higher recognition performance than Eigenface.
Liu et al. [10] proposed simultaneous diagonalization of the within-
and between-class scatter matrices to improve the FLDA. Direct LDA
proposed by Yu and Yang focuses on between-class scatter [8], while
the null space methods use information in the null space of with-class
scatter only [7], [9]. In [11], Wang and Tang used random sampling
strategy to handle the problem of small training sample.

Another problem with FLDA is that as a linear representation
method it cannot well describe complex nonlinear variations of images
with illumination, pose, and facial expression changes. Since the non-
linear kernel trick achieved a great success in support vector machine
(SVM) [12], recently kernel based nonlinear analysis has attracted a
great deal of attention. Mika et al. [13] and Baudat et al. [14] proposed
a kernel-based nonlinear discriminant analysis, which combines the
kernel trick with FLDA, i.e., kernel Fisher discriminant analysis
(KFDA). However, the within-class scatter in the KFDA feature space
is often singular due to small training sample size. Several techniques
have been proposed to handle the problem of numerical computation
[13]–[20].

In this letter, we propose a kernel scatter-difference-based discrimi-
nant analysis (KSDA) method to overcome both the matrix singularity
problem and the nonlinear problem for face recognition. The kernel
trick is first employed to construct an implicit feature space F , and
then a new scatter-difference based discriminant rule is defined to ana-
lyze the data in F and produce nonlinear discriminating features. The
scatter-difference-based discriminant rule is consistent with the prin-
ciple of maximizing between-class scatter and minimizing within-class
scatter. It can also avoid the matrix singularity problem. This letter is
an extension of our previous work [15], [16], [18], and it differs from
[15] and [16], in which a new discriminant rule is introduced in this
letter and expands on [18] by including more experiments and an es-
timation and analysis of a balance factor M between between-class
and within-class scatters. The proposed method approximates the null
space method [7], [9] in F whenM !1 [20]. The maximum margin
criterion proposed in [21] can also be regarded as a special case of the
method at M = 1. We conduct the experiments on the FERET, ORL,
and YALE databases and give a comparison with six popular methods
[1], [4], [15], [17], [19], [20].

The rest of this letter is arranged as follows. KFDA is reviewed in
Section II. KSDA is described in Section III. Experiments are reported
in Section IV, and conclusions are given in Section V.
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II. KERNEL FISHER DISCRIMINANT ANALYSIS

Before describing the proposed method, we briefly review KFDA
in this section. The idea of KFDA is to solve the problem of FLDA
in an implicit feature space F constructed by the nonlinear mapping
� : x 2 RN ! �(x) 2 F . In implementation, implicit feature vector
� does not need to be calculated explicitly; instead it is embodied by
computing the inner product of two vectors in F with a kernel function
k(x; y) = (�(x) � �(y)).

Let x be a vector of the input set with n elements and C classes, and
the ith class has �i samples. The mapping of xi is noted as �i = �(xi).
Performing FLDA in F means maximizing the Fisher discriminant
function J(w) = (wTS�Bw=w

TS�Ww), where S�B = C

i=1
(�i �

��)(�i � ��)T and S�W = C

i=1
(1=ni)

n

j=1
(�j � �i)(�j � �i)

T

represent the between-class scatter and within-class scatter in F re-
spectively, and �i = (1=nj)

n

j=1 �j and �� = (1=n) n

i=1
�i are

the mean of the ith class samples and the mean of all the samples in F ,
respectively.

Because w 2 F must lie in the span of all the samples in
F , w can be represented by a linear combination of �i, i.e.,
w = n

i=1
�i�i. Thus, the problem of KFDA is converted

into maximizing the function J(�) = (�TKB�=�
TKW�),

and its solution is the leading eigenvectors of K�1W KB , where
KB = C

i=1
(mi� �m)(mi� �m)T , KW = C

i=1
(1=ni)

n

j=1
(�j �

mi)(�j � mi)
T , �j = (k(x1; xj); k(x2; xj); . . . ; k(xn; xj))

T ,
mi = ((1=ni)

n

j=1
k(x1; xj); (1=ni)

n

j=1
k(x2; xj); . . . ; (1=ni)

n

j=1
k(xn; xj))

T , and �m is the mean of all of �i. For a new
sample x, its projection onto w in F can be calculated by
(w � �(x)) = n

i=1
�ik(xi; x).

III. KERNEL SCATTER-DIFFERENCE-BASED DISCRIMINANT ANALYSIS

Though KFDA can produce nonlinear discriminating features, the
problem of numerical computation for face recognition still exists, i.e.,
the matrixKW cannot be guaranteed to be nonsingular. There are some
similar techniques to deal with this problem in KFDA as in FLDA. For
example, we used KW +�I to replace KW in our previous work [15],
[16], where � is a very small constant and I is the identity matrix. Yang
[17] made KW nonsingular by performing PCA in the feature space
first (we call this method KEDA for convenience in the following). Lu
et al. adopted the idea of direct LDA to develop the KDDA method
[19]; and in [20], the idea of null space was used to develop the KNDA
method.

In this letter, KSDA is proposed for face recognition, in which non-
linear discriminating features are extracted without the numerical com-
putation problem. First, the kernel trick is performed to construct an im-
plicit feature space F . A scatter-difference-based discrimination rule
is then defined in F to produce nonlinear discriminating features as
follows:

JM (w) = wT S�B �M � S�W w (1)

where M is a nonnegative constant to balance S�B and S�W . In a sense,
maximizing JM(w) is also equivalent to maximizing S�B and mini-
mizing S�W , so it is consistent with the Fisher discriminant rule. More-
over, scatter-difference-based discriminant rule can be regarded as a
generalization of the techniques in [7], [9], [20], and [21]. When M =
0, it means to use the between-class scatter only, and it approximates
the null-space methods at M ! 1 [7], [9], [20]. The maximum

margin criterion proposed in [21] is also a special case with M = 1.
According to the description in Section II, we can rewrite (1) as

JM(�) = �T (KB �M �KW )�: (2)

Assuming k�k = 1, the maximization problem of JM(�) is equiv-
alent to solving the maximum of the Lagrange function

L(�; �) = JM(�)� � (k�k � 1) : (3)

Let (@L(�; �)=@�) = 0. We can have

(KB �M �KW )� = ��: (4)

Thus, the problem of KSDA is translated into finding the leading eigen-
vectors of KB �M �KW . Since no matrix inverse needs to be com-
puted, KSDA successfully avoids any numerical computation problem.

The factor M is used to balance the matrix KB and KW , and its
value depends on the training data. Practically M can be regarded as
balancing the energy variations of KB and KW . Assuming the energy
variation ratio between the matrix KB and KW is �, we can use the
product of � and a nonnegative constant D to approximate M , i.e.,
M = D � �, where D is independent of the matrix and KB and KW .
Then (4) is converted into

(KB �D � � �KW )� = ��: (5)

Given a database, KB ,KW , and � are known, so the optimal discrimi-
nating features are only related to the independent factor D. Therefore
we can use a good D value estimated from a database as an empir-
ical estimation of D for other databases. Certainly, how to define and
evaluate the energy variation ratio � is not trivial. For simplicity, we
use the largest eigenvalues of KB and KW to approximate their en-
ergy variations in this letter, noted as �max(KB) and �max(KW ), i.e.,
� = �max(KB)=�max(KW ). The following experiments show that
such a simplification is suitable.

IV. EXPERIMENTS

We conduct experiments on three databases, i.e., the FERET,
ORL, and YALE databases. On the FERET database, the FERET
testing method is used. We use the “leave one out” statistical testing
strategy on the ORL and YALE database. The proposed method
is compared with KFDA [15], KEDA [17], KDDA [19], KNDA
[20], and two well-known linear methods, i.e., Fisherface [4] and
Eigenface [1]. In our experiments, the polynomial kernel is chosen,
k(x; y) = (�(x) � �(y)) = (a(x � y) + b)d, for it gave good perfor-
mances in previous experiments [15]–[18], [20]. Its parameters are
set as � = 0:001, b = 0, and d = 2, the same as in [15], [16], [19],
and [20]. In [15] and [16], KW is replaced by KW + �I to deal with
the problem of numerical computation. As in [15] and [16], we set
� = 10�4 in the experiments.

A. On the FERET Database

The FERET database has been widely used to evaluate face recogni-
tion methods [6]. We test the experiments on the FA and FB images of
1195 persons. Each person has two images with expression variation.
One is in the FA set and the other is in the FB set. All the images are
normalized to 48 � 54 by eye locations. The coordinates of the two
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Fig. 1. Experimental results based on the Euclidean distance.

Fig. 2. Experimental results based on the cosine distance.

eyes are fixed at (12,14) and (36,14). No other preprocessing except
histogram equalization is performed.

The experiments are performed according to the FERET testing pro-
tocol [6]. We randomly select 400 subjects, i.e., 800 images, from FA
and FB images for learning basis vectors. We denote the number of
basis vectors as feature numbers in the following figures and tables. For
the other 795 persons, FA images are used as the gallery set and FB im-
ages are used as the probe set. Two popular distance measures are com-
puted to test the performance of the proposed method, i.e., Euclidean
distance d = kx� yk2 and cosine distance d = 1� (x � y=kxkkyk).

Figs. 1 and 2 report the comparison results based on the Euclidean
distance and the cosine distance, respectively. Here, we set � = 25

due to �max(KB)=�max(KW ) � 25, and we set D = 8, i.e., M =
25 � 8 = 200 for KSDA. The performance of KSDA with different
D values will be evaluated later. We can see that KSDA always shows
better performance than KFDA, KEDA, KDDA, and KNDA. It implies
that the numerical computation problem does affect the discriminative
ability of KFDA. KDDA assumes that the null space of KB contains
no discriminating information and is removed first. It is demonstrated
that this assumption is not true in [22], since the null space of KB also
has some discriminating information. KNDA only uses the information
of the null space of KW , so the discriminating information outside the
null space of KW is discarded. KEDA discards the information of the
null space of KW . KFDA adds a perturbation to make KW nonsin-



1084 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 4, JULY 2006

TABLE I
ERROR RATE (%) OF KSDA WITH DIFFERENT VALUES

TABLE II
ERROR RATES (%) OF SIX METHODS ON THE ORL DATABASE

TABLE III
ERROR RATES (%) OF SIX METHODS ON THE YALE DATABASE

TABLE IV
ERROR RATES (%) OF KSDA WITH DIFFERENT VALUES ON THE ORL DATABASE

TABLE V
ERROR RATES (%) OF KSDA WITH DIFFERENT VALUES ON THE YALE DATABASE

gular. Because KSDA does not need to compute any matrix inverse for
generating discriminating features, it successfully avoids the numerical
computation problem. The performance of Fisherface with the cosine
distance is better than the Euclidean distance, since the cosine distance
is in a sense a nonlinear distance measure. This also implies that the
nonlinear variations exist in real face images. Compared with the other
six methods, Eigenface is an unsupervised and linear method, and PCA
is only optimal for reconstruction, so it is understandable for Eigenface
to give the worst performance.

As for KSDA, the balance factor M plays an important role on its
performance. We decomposeM into a production of � andD, where �
represents the energy variation ratio between the matrixKB andKW .
Theoretically � is known for a given database. Thus, we investigate
the performance of KSDA with different M values, i.e., different D
values. However, it is hard to give an accurate definition of �. In this
letter, we use the largest eigenvalues of KB and KW to approximate
their energy variations, and get � = 25. The experimental results are
reported in Table I. It can be seen that the performances of KSDA for
D = 8 to 12 (M = 200 to 300) are very good. The result of maximum
margin criterion [21], i.e.,M = 1, is also given in Table I. We can see
that the performance of KSDA is poor atM = 1, with the lowest error
rate around 30%. It seems that maximum margin criterion [21] is not
suitable for face recognition.

B. On the ORL and YALE Databases

There are 40 persons in the ORL database with ten different images
for each person, including variations in pose, facial expression, and

with or without glasses, but there is little illumination variation. The
YALE database contains 11 subjects, and each subject has 11 different
front view images that include variations in facial expression (normal,
happy, sad, sleepy, surprised, and wink), illumination (left-light, center-
light, right-light) and with or without glasses. We down-sample the
image size 45� 56 to reduce computational complexity. No other pre-
processing except histogram equalization is performed.

The experiments are performed with the “leave-one-out” statis-
tical strategy, i.e., only one image is selected from the database
as testing and the remaining images are used for training. We first
compare KSDA with the other five methods. Table II shows their
best results on the ORL database, where we set � = 4 for KSDA
because of �max(KB)=�max(KW ) � 4. We set D = 8 following
the results on the FERET database, so we have M = 4 � 8 = 32.
Table III gives the best results on the YALE database, where we set
� = 1 since �max(KB)=�max(KW ) approximates one, so we have
M = 1�8 = 8 for KSDA. We can see that these results are consistent
with the results on the FERET database, i.e., KSDA gives a better
performance than the other six methods with both the Euclidean and
cosine distances. In the case of the Euclidean distance, KSDA gives
a recognition error rate of 1.0%, meaning that only four samples are
incorrectly recognized among 400 samples. On the YALE database,
KSDA has an error rate of 2.42%. The error rate of KDDA is very
high on the YALE database, because the YALE database only has 15
classes, and KDDA discards the null space ofKB , i.e., the dimensions
ofKB andKW are first reduced to ClassNum�1 = 14; thus too much
discriminating information is lost. In addition, each database embodies
different variations in our experiments. The FERET database includes
illumination and facial expression variations, and the ORL database
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has pose and facial expression variations. The variations in the Yale
database are illumination and facial expression. The experimental
results show that KSDA is robust to all these variations.

We also investigate the performance of KSDA with different D
values on these two databases. Tables IV and V illustrate the ex-
perimental results on the two databases, respectively. On the ORL
database, KSDA gives a better performance in the range of D = 4

to D = 12, i.e., M is from 24 to 48. On the YALE database, KSDA
performs well for the range of D = 6 to 10, i.e., M is from six to
ten. These results are also consistent with the results on the FERET
database. The performance of KSDA with M = 1 is poor, as are the
results on the FERET database.

V. CONCLUSIONS

In this letter, we propose a KSDA algorithm for face recognition.
First, the nonlinear kernel trick is employed to map the input data
into an implicit feature space F . Then a scatter-difference-based
discriminant rule is defined to analyze the data in F to produce non-
linear discriminating features. KSDA can not only produce nonlinear
discriminating features based on the principle of maximizing the
between-class scatter and minimizing the within-class scatter but also
avoid the problem of numerical computation. Experiments on the
FERET, ORL, and YALE databases show that KSDA can give a higher
recognition rate than existing methods.
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Analog Neural Network for Support
Vector Machine Learning

Renzo Perfetti and Elisa Ricci

Abstract—An analog neural network for support vector machine
learning is proposed, based on a partially dual formulation of the
quadratic programming problem. It results in a simpler circuit implemen-
tation with respect to existing neural solutions for the same application. The
effectiveness of the proposed network is shown through some computer
simulations concerning benchmark problems.

Index Terms—Analog circuits, quadratic optimization, recurrent neural
networks, support vector machines.

I. INTRODUCTION

Support vector machines (SVMs) have been widely used as a robust
tool for classification and regression [1]. Recently, an efficient neural
network realization for SVM learning has been proposed in [2] and ex-
tended to more general optimization problems in [3]. It consists of a
one-layer recurrent neural network whose steady-state solution satis-
fies the Karush–Kuhn–Tucker (KKT) conditions of the dual quadratic
programming problem (QP). The neural network proposed in [2] has
a lower complexity with respect to previous solutions [4]–[7] and can
be used for the analog VLSI realization of SVM learning in real-time
applications. In this letter, we propose a slightly different scheme, with
comparable performance, which results in a simpler and more efficient
circuit implementation. The letter is organized as follows. In Section II,
we briefly review the SVM learning problem in the partially dual for-
mulation. In Section III, we derive the proposed neural network and
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