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Abstract. The paper introduces a new framework for feature learning
in classification motivated by information theory. We first systematically
study the information structure and present a novel perspective revealing
the two key factors in information utilization: class-relevance and redun-
dancy. We derive a new information decomposition model where a novel
concept called class-relevant redundancy is introduced. Subsequently a
new algorithm called Conditional Informative Feature Extraction is for-
mulated, which maximizes the joint class-relevant information by explic-
itly reducing the class-relevant redundancies among features. To address
the computational difficulties in information-based optimization, we in-
corporate Parzen window estimation into the discrete approximation of
the objective function and propose a Local Active Region method which
substantially increases the optimization efficiency. To effectively utilize
the extracted feature set, we propose a Bayesian MAP formulation for
feature fusion, which unifies Laplacian Sparse Prior and Multivariate
Logistic Regression to learn a fusion rule with good generalization ca-
pability. Realizing the inefficiency caused by separate treatment of the
extraction stage and the fusion stage, we further develop an improved
design of the framework to coordinate the two stages by introducing
a feedback from the fusion stage to the extraction stage, which signifi-
cantly enhances the learning efficiency. The results of the comparative
experiments show remarkable improvements achieved by our framework.

1 Introduction

Pattern recognition in a high dimensional space, such as face recognition, is a
challenging problem due to the difficulties brought by “the curse of dimension-
ality”. Hence, it is crucial to extract a compact set of features to describe the
samples so that the classification can be performed efficiently and robustly in a
feature space of much lower dimension.

In the literatures of learning, feature extraction has been studied extensively.
PCA[1] and LDA[2][3][4] are among the most popular algorithms. The former
finds a subspace best preserving the sample variations, while the latter seeks
a feature space where the ratio between the between-class scattering and the
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within-class scattering is maximized. Though some improved variants[5][6] are
proposed, the fundamental limitation of PCA and LDA are yet to be solved:
they are solely based on the second order statistical moments, thus may not
work well in the practical cases where the distributions are nongaussian.

To break the limitation, we need a method which does not rely on parametric
assumptions on the sample distribution. The intrinsic relationship between in-
formation theory and pattern recognition, established by the well known Fano’s
inequality[7], inspires a new way to the feature learning. In the past decade,
many works have been done to apply information theory to the learning prob-
lems. Some [8][9][10][11] use infomax principle for sequential feature selection.
However, they only concern the information conveyed by each individual feature
without considering their relation, thus often produce feature sets with a large
amount of redundancy. Some improved feature selection algorithms[12][13][14]
try to tackle the problem by taking the diversity among the features into consid-
eration. Nonetheless, the criteria of these methods are based on either heuristic
rules without convincing justification or some very loose approximations. Hence,
the improvement achieved is not significant.

So far the use of information theory in pattern recognition is basically re-
stricted to the feature selection due to two difficulties: 1) No rigorous theory
is available to study the inter-feature relation and how the relation affects the
performance of the whole feature set; 2) The evaluation of entropy and mutual
information incurs great computational difficulties in the optimization. Recently,
Torkkola et al.[15][16] propose an infomax feature extraction method to learn a
joint set of orthogonal features based on Renyi entropy. However, it suffers from
the following drawbacks: 1) The Renyi approximation is not sufficiently justified
and what effects it brings to the solution is unclear; 2) It is based on density
estimation in a multi-dimensional space, which is computationally expensive and
not robust; 3) It does not account for the inter-feature relations.

In this paper, to address the two difficulties, we first systematically investi-
gate the structure of information conveyed by the feature set and present an
information decomposition model. It shows that the effectiveness of the feature
set is influenced by two key factors: the class relevance and the inter-feature re-
dundancy. As a novel approach, our model also points out that the redundancy
can be factorized into class-relevant and irrelevant ingredients and introduces
the concept class-relevant redundancy with theoretically well-founded formula-
tion. We then derive the Conditional Informative Feature Extraction algorithm
which maximizes the information conveyed by the whole feature set by explicitly
reducing the class-relevant redundancies. To attack the computational difficulty,
we couple the discrete approximation with the 1D Parzen window technique and
further propose a Local Active Region method, which substantially reduces the
computational cost from O(n2) to O(n) and thus enables large-scale application
of the method.

We also develop the Bayesian Feature fusion algorithm to effectively utilize
the feature set by incorporating Laplacian sparse prior and Multivariate logistic
regression into the Bayesian MAP formulation, where the features are adap-
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tively weighted. Considering that the separate treatment of feature extraction
and fusion incurs inefficiency, we finally improve the framework architecture to
coordinate the two stages by introducing a feedback from the fusion stage to
the extraction stage. By the new design, both the learning efficiency and the
effectiveness of the resultant feature set are greatly enhanced.

2 Conditional Informative Feature Extraction

2.1 Problem Formulation and Features

Consider a multiclass classification problem: the training set consists of n samples
from C classes, which is denoted by {(xi, ci)}n

i=1, where xi ∈ X is a d-dimensional
vector representing the i-th sample, ci is its class label. For discrimination, we
extract a set of features, denoted by F = {y(1), y(2), . . . , y(m)}. Each feature
is a functional: y(t) : X → R, which maps a sample vector to a scalar. For
each sample x, all the m feature values constitute a feature vector, denoted by
y(x) =

[
y(1)(x), y(2)(x), . . . , y(m)(x)

]T
. For succinctness, we denote the features

for the i-th training sample by yi = [y(1)
i , y

(2)
i , . . . , y

(m)
i ]T .

Linear features are the most widely used features in the literature owning
to its simplicity and effectiveness. Each linear feature is parameterized by a
projection vector w subject to ||w|| = 1, and the feature value for the sample
x can be extracted by y = wT x. In the cases where the sample distribution is
highly nongaussian, linear features are insufficient to classify the samples well.
To tackle the difficulty, we can extract nonlinear features by kernelization, where
a nonlinear mapping φ is employed to map the original vector space to a Hilbert
space of much higher dimension. Each feature can be regarded as a projection
of such mapping. Assume that the projection vector in the Hilbert space can be
expanded by wφ =

∑n
i=1 aiφ(xi), then with the kernel trick, the feature value

can be computed by y = aT [k(x,x1), . . . , k(x,xn)]T , where a = [a1, . . . , an] is
the vector of expansion coefficients.

2.2 The Information Maximization Principle

In information theory, the entropy of a random feature y, denoted by H(y),
contains two-fold meanings: 1) H(y) measures the uncertainty on y, 2)H(y)
represents the total information conveyed by y. Based on the notion that in-
formation stems from uncertainty, the mutual information I(x;y) is defined by
I(x;y) = H(x) − H(x|y), which indicates that the information delivered from
x to y equals the reduction of uncertainty of y when x is known. [7] gives a
comprehensive treatment to the concepts of information theory.

Intuitively, when we know more about the classes, we can classify the objects
more accurately. This rationale leads to the infomax principle for feature learn-
ing, which advocates to learn features by maximizing the mutual information
between the features and the classes. The principle is validated theoretically by
Fano’s inequality[7]
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P (ĉ �= c) ≥ H(y|c) − 1
log C

=
H(c) − I(y; c) − 1

log C
, (1)

where ĉ is the decision made based on the feature vector y, c is the true un-
derlying class. This inequality relates the lower bound of the Bayes error to the
mutual information between the features and the classes. Vasconcelos[10] rein-
forces the relation by showing that: The infomax solution is near optimal in the
minimum Bayes error sense.

2.3 The Information Decomposition and the Conditional Objective

Since each sample is usually described by multiple features, there may exist
some relations between the features. How do the inter-feature relations affect
the process of information utilization? To answer this question, we first study
the structure of the joint information by examining the two-feature case.

H(y(1)) = I(y(1); c) + H(y(1)|c) (2)

H(y(2)) = I(y(2); c) + H(y(2)|c) (3)

H(y(1)y(2)) = I(y(1)y(2); c)

+H(y(1)y(2)|c) (4)

H(y(1)y(2)) = H(y(1)) + H(y(2))

−I(y(1); y(2)) (5)

I(y(1)y(2); c) = I(y(1); c) + I(y(2); c)

−[I(y(1); y(2)) − I(y(1); y(2)|c)] (6)

Fig. 1. The important formulas characterizing the information structure

Suppose we have two features y(1) and y(2) to represent the samples. Then
the information carried by y(1) and y(2) are H(y(1)) and H(y(2)) respectively.
The information conveyed by the joint set of two features is H(y(1)y(2)). Based
on information theory, we deduce the formulas given in fig.1, which characterize
the relations between these quantities and those between information and clas-
sification. Though they are simple, however, careful analysis of them leads us to
an insightful perspective on the information structure:

1) Eq.(2-4) indicate that the information conveyed by the features consists of
two parts: the class-relevant part I(y; c) and the irrelevant part H(y|c). Only
the former contributes to classification.
2) Eq.(5) gives another view: when two features are used, the joint information of
the feature set would be less than the sum of information conveyed by individual
features due to the redundancy, which is measured by the mutual information
between the two features.
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Fig. 2. Illustration of Joint Information Decomposition

3) Eq.(6) combines the class-relevance factor and the redundancy factor to depict
the information structure: the class-relevant information conveyed by the joint
set is equal to the sum of the individual class-relevant information delivered by
y(1) and y(2) minus the class-relevant redundancy. For conciseness, we denote it
by Rc(y(1); y(2)) = I(y(1); y(2)) − I(y(1); y(2)|c), then Eq.(6) can be rewritten as

I(y(1)y(2); c) = I(y(1); c) + I(y(2); c) − Rc(y(1); y(2)). (7)

The fig.2 illustrates the two-feature information decomposition model and gives
a clear picture to the information structure.

The Eq.(7) can be generalized to the case of multiple features with mathe-
matical induction. It results in the following theorem:

Theorem 1. Assume that ∀i �= j, k1, k2,. . . /∈ {i, j} I(y(i); y(j)|y(k1), y(k2),. . .)=
I(y(i); y(j)) and I(y(i); y(j)|c, y(k1), y(k2), . . .) = I(y(i); y(j)|c), then

I(y; c) = I(y(1)y(2) · · · y(m); c) =
m∑

t=1

I(y(t); c) −
m−1∑

t=1

m∑

u=t+1

Rc(y(t); y(u)). (8)

The theorem states that when the communication of any two features is not
affected by other features, the joint class-relevant information equals the sum
of the individual feature information minus the total pairwise redundancies. We
can rewrite Eq.(8) by

I(y; c) =
m∑

t=1

[

I(y(t); c) −
t−1∑

u=1

Rc(y(u); y(t))

]

. (9)

This form enables us to extract features sequentially, given that t − 1 features
are extracted, the t-th feature can be extracted by optimizing the Conditional
Informative Objective as

θt = argmax
θt

{

I(y(t); c) −
t−1∑

u=1

Rc(y(u); y(t))

}

, (10)
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where θ is the parameter for the t-th feature. Accordingly, the feature extraction
algorithm based on Eq.(10) is called Conditional Informative Feature Extraction.

Discussion
The significance of the information decomposition model lies in three aspects:

First, it is the first work to present an insightful view into the composition of
information with a classification context, where two key factors: class-relevance
and inter-feature redundancy are revealed and analyzed with solid theoretical
foundation.
Second, a novel concept called class-relevant redundancy is introduced, which
serves a key role in the information-oriented classification. This concept reflects
the compound influence of class-relevance and redundancy, which has not been
discussed in previous literatures.
Third, Eq.(8) integrates the two factors to form an approximation of joint in-
formation with the second-order interactions taken into account. The condition
when the approximation is exact is also given. This formulation on one hand
explicitly exploits the redundancies among features, which plays an important
role in learning, on the other hand ignores the higher-order interactions which
will lead to exponentially increasing complexity. In this sense, it achieves a good
trade-off between the accuracy and the complexity.

3 The Efficient Optimization

According to the Asymptotic Equipartition Property[7], when a reasonably large
set of samples are available, the entropy can be approximated by the sample
mean as

H(y) = −
∫

R
p(y) log(p(y))dy = −E {log(p(y))} ≈ − 1

n

n∑

i=1

log(p(y)). (11)

To evaluate p(y), we apply the nonparametric Parzen window technique instead
of relying on any parametric assumptions that are often violated in practical
cases. Here, we use a Gaussian kernel, defined by φ(r) = (2πσ2)−

1
2 exp(− r2

2σ2 ),
and σ controls the width of the kernel. Then the approximation is given by

p(y) ≈ 1
n

n∑

i=1

φ(y − yi) (12)

In the following text, we try to unveil the underlying working mechanism of
conditional infomax learning by studying the terms in the objective function
given in Eq.(10).

1) Class-relevant Information. From Eq.(11) and Eq.(12), we have

I(y(t); c) =
1
n

n∑

i=1

⎧
⎨

⎩
log

∑

j:cj=ci

1
nk

φ(y(t)
i − y

(t)
j ) − log

n∑

j=1

1
n

φ(y(t)
i − y

(t)
j )

⎫
⎬

⎭
. (13)
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We observe two types of terms: the terms representing the interactions between
the samples in the same class gathered together by log-sum, and the terms rep-
resenting the interactions between any pair of samples accumulated by negative
log-sum. Considering that φ(y(t)

i , y
(t)
j ) increases when y

(t)
i and y

(t)
j become closer,

maximizing such an objective will agglomerate the feature values from the same
class and disperse those from different classes. In this sense, the optimization
process pursues a feature space beneficial to discrimination.
2) Redundancy. We have discussed that I(y(u); y(t)) represents the inter-
feature redundancy between y(u) and y(t). In the evaluation of the joint dis-
tribution p(y(u), y(t)), we employ the parzen window technique with an isotropic
2D gaussian kernel, which can be expressed as φ(y(u)y(t)) = φ(y(u))φ(y(t)). Then
we have

I(y(u); y(t)) =
1
n

n∑

i=1

log
1
n

∑n
j=1 φ(y(t)

i − y
(t)
j )φ(y(u)

i − y
(u)
j )

[
1
n

∑n
j=1 φ(y(t)

i − y
(t)
j )

] [
1
n

∑n
j=1 φ(y(u)

i − y
(u)
j )

] . (14)

We find that the unit of the formula is “normalized” correlation between the
kernel values for feature y(u) and y(t). Considering that the inter-sample rela-
tionship are characterized by the kernel values, and the correlation is a typical
measurement of similarity, the redundancy is actually represented by the simi-
larity between the inter-sample relations induced by the two features.

To further clarify how it affects the optimization, we introduce the affinity co-

efficients λ
(u)
ij =

φ(y(u)
i −y

(u)
j )

∑
n
j=1 φ(y(u)

i −y
(u)
j )

, which reflects the affinity between the sample

i and j in the u-th feature space. Then Eq.(14) can be simplified to be

I(y(u); y(t)) =
1
n

n∑

i=1

⎧
⎨

⎩
log

n∑

j=1

λ
(u)
ij φ(y(t)

i − y
(t)
j ) − log

n∑

j=1

1
n

φ(y(t)
i − y

(t)
j )

⎫
⎬

⎭
.

(15)
We can see that the formula assigns heavy weights on the sample-pairs which
are close in the u-th feature space. Therefore minimizing the redundancy will
encourage these pairs of samples go farther from each other, thus to create an
inter-sample relationship in the t-th feature space, which are distinct from that
in the u-th feature space.

As discussed before, some part of the total redundancy is irrelevant to clas-
sification, we need to subtract the term I(y(u); y(t)|c) to compensate its effect.
Similar analysis can be applied to this term.
3) Derivative. The analysis above shows that all the terms in the objective
function can be written in the following form:

f(y(t)) = ±
n∑

i=1

log
n∑

j=1

ωijφ(y(t)
i − y

(t)
j ), (16)

where ωij are some coefficients dependent on the specific term. For the terms
with

∑
j:cj=ci

, they can be expressed by Eq.(16) by setting ωij = 0 when cj �= ci.
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When φ(·) is an even function, the derivative w.r.t the feature values is derived
as follows

∂f

∂y
(t)
i

= ±
n∑

k=1

[
ωik

∑n
j=1 ωijφ(y(t)

i − y
(t)
j )

+
ωki

∑n
j=1 ωkjφ(y(t)

k − y
(t)
j )

]

ψ(y(t)
i − y

(t)
k ).

(17)
With the derivatives given, we can use stochastic gradient descent to optimize
the objective function.

3.1 Local Active Region Method

As shown in fig.3, both the potential and the force attenuates drastically as the
distance increases. This observation implies that the interactions within a certain
region centered at each sample dominates the objective function, which we call
“Local Active Region”. As a consequence, we can approximate the objective
function and its derivative by retaining only the terms reflecting the interactions
with the local regions.

potential

force

Active
Region

Fig. 3. The potential and the force

Retrieving the neighborhood of every sample is computationally expensive, es-
pecially when the sample number is large. Fortunately, we are handling the feature
values in a 1-D space, therefore it is feasible to partition the whole value-range into
small sections. Here we propose a simple scheme to establish the neighborhoods:
suppose theminimumandmaximumvalue of the current feature are ymin and ymax

respectively. Then we divide the range [ymin, ymax] into sub-sections. The feature
values of all samples are categorized into one of the sub-sections. For each sample,
the samples residing in the same sub-section constitute its neighborhood.To attain
a satisfactory level of accuracy and robustness, the section length is determined so
that the average number of samples in each section is about 5.

By employing the simplified way to build neighborhood and discarding the non-
neighboring interactions, the time complexity is reduced from O(n2) to O(n). Such
a great improvement in computational efficiency makes the large scale application
of infomax learning feasible. Moreover, our algorithm has two important advan-
tages: 1) The Parzen window estimation is performed in 1D and 2D spaces instead
of a multidimensional space such as in MMI[15][16], thus it is robust and accurate.
2) The system with only local interactions favors the preservation of local consis-
tency and hence effectively reduces the risk of overfitting.
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4 Bayesian Feature Fusion with Sparse Prior

After obtaining the set of features, a question arise naturally: how to combine the
features to give the final decision? In many literatures, it is a typical approach
to directly compute the Euclidean distance in the feature space, and classify a
sample to the nearest class. Though simple, these methods neglect the different
contributions of different features thus fails to optimally utilize the features.

In our framework, we assign different weights to different features and evaluate
the dissimilarities between samples in the following weighted form:

d(yi,yj) =
m∑

t=1

bt

(
y
(t)
i − y

(t)
j

)2
. (18)

It is known that to achieve a good generalization capability, it is crucial to con-
trol the model complexity in order to prevent over-fitting, thus it is desirable
to reduce the redundant components by giving a sparse estimating on the co-
efficients. It has been shown[17] that the Laplacian prior is favorable to sparse
estimation.

p(b) ∝ exp

(

α
m∑

t=1

|bt|
)

. (19)

Considering the discriminant learning context, we employ the multivariate lo-
gistic regression model to give the conditional likelihood of b = [b1, . . . , bm]T as
follows

p(y1, . . . ,yn|b) ∝
n∏

i=1

p(ci|yi;b) =
n∏

i=1

exp (−d(yi,mci))∑C
k=1 exp (−d(yi,mk))

, (20)

where mk is the mean vector of the k-th class. By incorporating Laplacian prior
and logistic likelihood into the Bayesian MAP learning formulation, we have

b = argmax
b

p(y1, . . . ,yn|b)p(b). (21)

A well balance can be achieved between the sparsity and the discriminative
power in the learning process. The optimization can be accomplished by Sparse
Regression[17][18] proposed by Figueiredo et al.

5 The Integrated Framework for Feature Learning

Traditionally, there are two typical paradigms for feature learning: one first gen-
erates a large pool of simple features and then selects a subset from it[8][11][12],
while the other directly learns discriminant features from the raw representation
and then combines them[1][2][19][15]. They both suffers from a limitation: due
to the separate treatment of the two stages, the feature extracted or selected in
the 1st stage may not be useful in the fusion or decision stage. Though we can
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Fig. 4. The Architecture of the Integrated Framework

tackle the problem by extracting a sufficiently large set in the first step, it will
inevitably incur considerable waste.

To achieve high efficiency while guaranteeing sufficient expressive power in the
feature set, we develop a new framework to coordinate the two stages so that
they can intimately cooperate. The whole procedure is introduced as follows:

1. Initialize an empty feature set F ← {}.
2. Learn the first feature y(1) by the infomax principle; F ← F ∪ {y(1)}.
3. Repeat the following steps until the stop criterion is met:

(a) Extract the feature y(t) with the redundancy evaluated on F .
(b) Add the new feature: F ← F ∪ {y(t)}.
(c) Optimize the fusion weights b.
(d) Discard the features with weights smaller than ε.

In each step of iteration, we keep monitoring the value of Eq.(8) and stop the
loop when the objective function keeps basically unchanged for several iterations.

In the framework, the results of fusion stage are fed back to the extraction
stage in order that the extractor can make use of it to evaluate the redundancies
based on the fused set and produce an complementary feature as illustrated in
fig.4. By eliminating the inactive features, the extractor can find new features
adapted to the true demand of the fusion stage without being affected by the
unused features, otherwise, the feature set will be gradually filled by the obsolete
features and mislead the optimization process by the redundancy terms, thus
seriously hinder the effective renewal.

6 Experiments

6.1 A Toy Problem

First, we design a toy problem to give an intuitive insight to the relation be-
tween class-relevant information and feature learning in pattern recognition as
illustrated in Figure 5. In this experiment, two classes of Gaussian distributed
samples are randomly generated, with each class having 500 samples. We extract
a series of 1D features by linearly projecting the samples onto 64 different direc-
tions. The results clearly show that the class-relevant information, which is the
difference between the total entropy and the class conditional entropy, closely
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Fig. 5. The Toy Problem. The figure illustrates the relationship between information
and feature distribution. The upper part shows a 2D feature space and the 1D distri-
butions of feature values along 3 different directions. The lower part shows the values
of the entropy, class-conditional entropy, and mutual information for the features along
64 consecutive directions.

relates to discrimination. From the figure, we can see that for the features with
large information values, the distributions of the feature values of the two classes
are well separated, while for the features with information values approximating
zero, the distributions of the feature values are basically overlapped so that it is
difficult to distinguish one class from the other based on that feature. Though
the example is simple, it sufficiently exhibits the strong connections between
information and classification.

6.2 Face Recognition

Experiment Settings. Face recognition problems is a challenging pattern
recognition problem in computer vision, which is a good testbed to evaluate the
practical performance of the feature extraction algorithms. To thoroughly test
the algorithms, we compare our algorithms with other representative algorithms
in face recognition literatures on three standard face databases: FERET[20],
XM2VTS[21] and PURDUE AR[22]. To examine the generalization capabilities,
for each database, we divide the selected samples into three disjoint datasets: the
training set, the gallery set, and the probe set. The training set is for learning
the features in the training stage. In the testing stage, every sample in the probe
set is compared with each sample in the gallery set, and classified to the person
whose gallery sample is most close to it in the feature space. We employ the
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Fig. 6. The Face Recognition Performances for Linear Features

Table 1. The Best Performances of algorithms with Linear Features

Error rate PCA LDA UniSA MMI CIFE CIFE+BFF
FERET 0.299 0.175 0.087 0.079 0.065 0.044

XM2VTS 0.275 0.095 0.037 0.034 0.017 0.007
PURDUE 0.235 0.148 0.057 0.052 0.031 0.022

error rates to measure the performance of the algorithms. In detail, for FERET,
we use all the 295 persons with 3 − 4 samples for each person to form the train-
ing set, which has totally 995 samples. We then select another 800 persons for
testing, where the gallery is composed of 800 (fa) samples from different persons,
and the probe set is composed of 800 (fb) samples; For XM2VTS, the face im-
ages from 295 persons are captured in 4 different sessions. We assign the 295×3
samples captured in the session 1, 2, 3 to the training set, the 295 samples from
the session 1 to the client set, and the 295 samples from the session 4 to the
probe set; For PURDUE, there are 90 persons who have the samples captured in
all the 26 different conditions. We select 6 samples from each person with diverse
expressions and illumination conditions to the training set, a sample captured in
normal condition to the gallery set, and another 6 samples captured in different
conditions to the probe set. The samples with extreme lighting condition and
occlusion are not used in the experiment.

All face images are pre-processed. For each image, we first align it by affine
transform to fix the positions of the eye centers and the mouth center, and crop
it to the size of 64 × 72, and then perform histogram equalization to normalize
the pixel values. After that, we use a mask to eliminate the background pixels.
The remaining 4114 pixels are scanned in order to form the original vector rep-
resentation of the face. To enhance efficiency and robustness, we use PCA to
reduce the dimension and suppress the noise. 99% of the variational energy is
preserved in the principal subspace after dimension reduction.

Linear Features. We compare our algorithms with other representative al-
gorithms for feature extraction including PCA[1], LDA[2], Unified Subspace
Analysis(UniSA)[4], Maximum Mutual Information(MMI) Algorithm proposed
by Torkkola[15]. To clarify the contributions of different components of the
framework, we test our algorithms in two different configurations. In a sim-
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Table 2. The Best Performances of algorithms with Kernelized Features

Error rate Kernels PCA LDA UniSA MMI CIFE CIFE+BFF
Poly 2 0.266 0.162 0.062 0.055 0.042 0.032

FERET Poly 4 0.267 0.150 0.051 0.052 0.042 0.027
Sigmoid 0.271 0.142 0.057 0.051 0.037 0.022
Gauss 0.265 0.134 0.051 0.055 0.032 0.017
Poly 2 0.264 0.078 0.017 0.034 0.014 0.003

XM2VTS Poly 4 0.264 0.075 0.017 0.014 0.014 0.013
Sigmoid 0.254 0.085 0.017 0.014 0.014 0.003
Gauss 0.258 0.064 0.014 0.007 0.000 0.000
Poly 2 0.241 0.139 0.056 0.035 0.022 0.017

PURDUE Poly 4 0.224 0.122 0.044 0.039 0.020 0.011
Sigmoid 0.220 0.131 0.043 0.041 0.020 0.009
Gauss 0.222 0.128 0.044 0.033 0.015 0.007

ple configuration, we merely use the Conditional Infomax Feature Extraction
(CIFE) to extract features and simply use the Euclidean distance in the feature
space to measure the dissimilarities between samples. In a full-functional con-
figuration (CIFE + BFF), we further incorporate the Bayesian Feature Fusion
scheme and follow the whole procedure of the integrated framework. The results
obtained using different numbers of features are illustrated in Figure 6 and the
best results for each algorithm are reported in the Table 1. We can see from
the results that the algorithms based on infomax principle outperforms other
ones. The CIFE consistently achieves better accuracies than the MMI. By in-
corporating the Maximum Information Fusion and dynamically discarding the
obsolete features, both the accuracy and the robustness of the framework are
further enhanced.

Kernelized Features. We also investigate the performances of the algorithms
for nonlinear features based on their kernelized versions. The results are given in
Table 2. The results of nonlinear feature extraction further validates the effec-
tiveness of our framework. Moreover, we can see that with the adaptive weighting
scheme employed, the CIFS + BFF framework has a desirable property that the
performance will not degrade with the increasing of the feature numbers as in
conventional approaches. The results also confirm the observation in previous
works that kernelization can lead to better performance in real data, where the
distributions are often nongaussian. By combining the kernel learning and info-
max learning and incorporating an effective fusion stage, our framework achieves
near perfect classification performance in all the 3 databases.

7 Conclusion

We have presented a novel information-theoretical perspective on the supervised
learning and carefully studied the two key factors: class-relevance and redun-
dancy. We introduced a new framework effectively unifying two novel algorithms:
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Conditional Informative Feature Extraction and Bayesian Feature Fusion. The
results of extensive experiments have sufficiently demonstrated the superiority
of our framework over other state-of-the-art approaches.
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