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Abstract. Generalized cylinder (GC) has played an important role in computer
vision since it was introduced in the 1970s. While studying GC models in hu-
man visual perception of shapes from contours, Marr assumed that GC’s limbs
are planar curves. Later, Koenderink and Ponce pointed out that this assumption
does not hold in general by giving some examples. In this paper, we show that
straight homogeneous generalized cylinders (SHGCs) and tori (a kind of curved
GCs) have planar limbs when viewed from points on specific straight lines. This
property leads us to the definition and investigation of a new class of GCs, with
the help of the surface model proposed by Degen for geometric modeling. We call
them Degen generalized cylinders (DGCs), which include SHGCs, tori, quadrics,
cyclides, and more other GCs into one model. Our rigorous discussion is based
on projective geometry and homogeneous coordinates. We present some invari-
ant properties of DGCs that reveal the relations among the planar limbs, axes, and
contours of DGCs. These properties are useful for recovering DGC descriptions
from image contours as well as for some other tasks in computer vision.

1 Introduction

A generalized cylinder (GC) is a solid obtained by sweeping a planar region along an
axis. The planar region is called the cross section of the GC and is not necessarily circu-
lar or constant. The axis can also be curved in space. This model was at first proposed
by Binford in 1971 [1], and has received extensive attention and become popular in
computer vision in the past three decades. Because of their ability to represent objects
explicitly and their object-centered coordinate frames derivable from image data, GCs
have been applied to shape recovery [2], [3], [4], [5], [6], object modelling [7], [8], [9],
[10], model-based segmentation and detection [11], [12], modelling tree branches in
computer graphics [13], and designing robot vision systems [14].

From previous work on the study of the properties and recovery of GCs, we can
roughly divide GCs into two groups: GC with straight axes and GCs with curved
axes. In what follows, we call them straight GCs and curved GCs, respectively. Most
of the work considers GCs in single views. Straight homogeneous generalized cylin-
ders (SHGCs) are the most important subset of straight GCs, whose sweeping axes are
straight and whose cross sections are scaled along the axes. SHGCs were first defined
by Shafer and Kanade [15], and then studied extensively by many researchers [2], [4],
[6], [11], [12], [16], [17], [18].
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Compared with SHGCs, less work on curved GCs has been done. The difficulty is
mainly due to two facts: the projection of the axis of a curved GC may not be necessarily
the axis of its 2D contours [19], and the angle between the axis and the cross section
in the image no longer keeps constant [20]. To interpolate the axis of a curved GC
in scattered data, Shani and Ballard proposed an iterative solution of minimizing the
torsion of the axis [10]. In [5], Sayd et al. presented a scheme to recover a constrained
subset of curved GCs with circular and constant cross sections. Ulupinar and Nevatia
focused on a subset of GCs whose axes are planar curves1 and normal to the constant
cross sections [21]. Zerroug and Nevatia studied the invariants and quasi-invariants of a
subset of GCs with planar curved axes and with circular (not necessarily constant) cross
sections [22]. In [9], Gross considered GCs with planar curved axes or with circular
cross sections, and presented an algorithm to recover the GCs using image contours
and reflectance information.

The analysis of the previous work on SHGCs and curved GCs is explicitly separate,
focusing on special classes of GCs. In this paper, starting from the discussion of the
conditions when SHGCs and tori (a kind of curved GCs) have planar limbs, we define
and study a new class of GCs, with the help of the surface model proposed by Degen
for geometric modeling [23], [24]. We call them Degen generalized cylinders (DGCs),
which include SHGCs, tori, quadrics, cyclides, and more other GCs into one model. Our
rigorous discussion is based on projective geometry and homogeneous coordinates. We
present some invariant properties of DGCs that reveal the relations among the planar
limbs, axes, and contours of DGCs. We also discuss how the proposed properties can
be used for recovering DGC descriptions from image contours, and for generating good
initializations for a new 3D deformable DGC model in 3D data fitting and segmentation.

2 Planar Limbs and View Directions

This section discusses two classes of GCs that have planar limbs when viewed from
specific directions. These GCs with the property of planar limbs are the motivation of
our work.

In this paper, image contours are referred to as the projections of contour generators
that are curves in space. There are two kinds of contour generators: limbs and edges [6].
Limb points are the points where the surface turns smoothly away from the observer,
and edge points are those where the surface orientation is discontinuous. A limb is
sometimes called a rim [25], viewpoint-dependent edge, or virtual edge [26].

Although a curve in 3D space can be formed freely, its projected contours cannot
keep all the information of its 3D shape. Fig. 1 shows such a limitation. From the
projection of a curve, one cannot judge whether it is planar or not in 3D space. To
guess the ability of human vision on recovering 3D information from contours, Stevens
assumed that one tends to interpret the 2D projection of a space curve as the projection
of a planar curve [27], [28]. We can see this tendency from the projections in Fig. 1 if
the space curve is not shown. In differential geometry, the torsion of a planar curve is
zero, which was used by Shani and Ballard as the minimization criterion to recover 3D
curved axes [10].

1 A planar curve is a curve lying on a plane in space.
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Fig. 1. 2D Projections unable to fully describe the 3D information of the space curve

Marr also assumed that limbs are planar in human visual interpretation. With this
assumption and other constraints, Marr showed that human beings always interpret the
projected surface as part of a GC; limbs being planar is a basic assumption in the study
of reconstructing object surfaces in Marr’s fundamental vision theory [25].

However, this assumption does not hold generally as pointed out by Koenderink [29].
He showed that the contour of a torus, which is a curved GC, is often the projection of
a non-planar limb. Later Ponce and Chelberg revealed that even SHGCs cannot possess
planar limbs from all viewing directions [16]. Fig. 2 gives such an example, where the
bold black curves are the intersection of a plane and the GC’s surface. From the two
viewing directions, the limbs in Fig. 2(a) are planar, but the limbs in Fig. 2(b) are not.
Now we discuss in what conditions SHGCs and tori can have planar limbs.

We use the similar notation and the coordinate system as those in [6] and [16]. Sup-
pose that the axis of a SHGC coincides with the z-axis as shown in Fig. 3. The surface
of a SHGC can be represented in the polar coordinate system by

x(z, θ) = ρ(θ)r(z) cos θi + ρ(θ)r(z) sin θj + zk (1)

where z ∈ [a, b], θ ∈ [0, 2π], and ρ defines the reference cross section on the x-y plane,
and r defines the scaling sweeping rule of the SHGC. Let v be the viewing direction,
and n be the normal vector to the surface at the points on a limb. Then according to the
definition of limbs, we have the relation

v · n = 0. (2)

Proposition 1. A SHGC has planar limbs when the viewing direction is normal to the
axis of the SHGC under orthographic projection.

Fig. 2. (a) Planar limbs. (b) Non-planar limbs
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Proof. Assume the viewing direction is given by its spherical coordinate (α, β) (see
Fig. 3). Then

v = sin β cosαi + sin β sin αj + cosβk. (3)

With (2), Ponce [6] proved that points on a limb satisfy

ρ2r′ cosβ = [ρ(θ) cos(θ − α) + ρ′(θ) sin(θ − α)] sin β. (4)

When v is normal to k, β = 90o. Hence

ρ(θ) cos(θ − α) + ρ′(θ) sin(θ − α) = 0, (5)

which implies a function θ of α only (independent of z), i.e., θ = f(α). We can write
the limb equation as

l(z) = x(z, f(α))
= r(z)ρ(f(α))(cos f(α)i + sin f(α)j) + zk

= r(z)u(α) + zk, (6)

where u(α) = ρ(f(α))(cos f(α)i + sin f(α)j). From (6),

l′′(z) = r′′(z)v(α) (7)

l′′′(z) = r′′′(z)v(α) (8)

l′′(z) × l′′′(z) = 0. (9)

Hence l′(z) × l′′(z) × l′′′(z) = 0, which indicates that the limb is a planar curve,
because the torsion of a planar curve is equal to zero [30]. �

Although a torus (a curved GC) does not belong to the class of SHGCs, it also has
planar limbs when viewed from specific directions. Note that the axis of a torus is a
circle inside the torus.
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Fig. 3. The coordinate system with a SHGC and the viewing direction v

Proposition 2. A torus has planar limbs while viewed from a point where the line
through the point and the torus center is orthogonal to the torus axis.
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Fig. 4. A torus with the viewpoint at the z-axis

Proof. Without loss of generality, we assume that the axis of the torus is located on the
x-y plane, the center of it coincides with the origin, and the viewpoint is at lk, as shown
in Fig. 4. Then the surface of the torus can be parameterized by [31]

x(z, θ) = (R − r cos z) cos θi + (R − r cos z) sin θj + r sin zk. (10)

The normal to the surface is given by

n(z, θ) =
∂x
∂z

× ∂x
∂θ

= −r cos z(R − r cos z) cos θi − r cos z(R − r cos z) sin θj
+ (R + r sin z)(R − r cos z)k. (11)

The viewing direction from lk to the surface is

v(z, θ) = x(z, θ) − lk. (12)

Substituting v in (12) and n in (11) into (2) yields

rl sin z + Rr cos z − Rr sin z − r2 + Rl = 0, (13)

which implies a function z of l only (independent of θ). i.e., z = g(l). Thus we can
write the limb equation as

l(θ) = x(g(l), θ) = (R − r cos g(l))(cos θi + sin θj) + r sin g(l)k. (14)

It is easy to show
l′(θ) × l′′(θ) × l′′′(θ) = 0. (15)

Thus the limb is planar since its torsion is zero. �

3 DGCs in Homogeneous Coordinates

We have shown that SHGCs and tori have planar limbs when viewed from some specific
directions. There are also other curved GCs sharing the same property. This property
leads us to the investigation of DGCs. For mathematical convenience, we will mainly
use homogeneous coordinates and projective geometry in the following discussion of
DGCs.
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3.1 Homogeneous Coordinates

Homogeneous coordinates are used in projective geometry [32]. They are a useful tool
in computer vision and graphics. Points in homogeneous coordinates are represented by
vectors p = (w, x, y, z)T ∈ R

4\{(0, 0, 0, 0)T}. The w, x, y, z are called homogeneous
coordinates of p. p and ρp with ρ ∈ R\{0} define the same point. Given a point
p = (w, x, y, z)T with w �= 0 in homogeneous coordinates, its corresponding point p̄
in Cartesian coordinates is

p̄ = (x̄, ȳ, z̄)T = (
x

w
,

y

w
,

z

w
)T . (16)

If w = 0, the point (0, x, y, z) stands for a point at infinity (called an ideal point).
Orthogonal projection can be treated as a special case of perspective projection when

the viewpoint is at infinity. Thus under perspective projection, Proposition 1 states that
a SHGC has planar limbs when the viewpoint is at infinity and the viewing direction is
normal to the axis of the SHGC.

Using homogeneous coordinates, points on a straight line L can be represented by

L = αa + βb, (17)

where α, β ∈ R and a,b are two independent points in the projective space. In what
follows, we denote the line L by a∧b. Similarly, points on a plane P can be represented
by

P = αa + βb + γc (18)

where α, β, γ ∈ R and a,b, c are three independent points. We denote the plane P by
a ∧ b ∧ c. Therefore, a curve C(s) is planar if it can be written in this form

C(s) = p1(s)a + p2(s)b + p3(s)c. (19)

To verify whether a curve is planar or not, this way is more convenient than calculating
the torsion of the curve in Cartesian coordinates.

3.2 Degen Surfaces

Degen proposed a novel surface model for geometric modelling in [23] and [24]. We
call those surfaces Degen surfaces. They cover a wide range of curved surfaces such as
those showed in Fig. 5. A Degen surface is parameterized by the following equation in
homogeneous coordinates

X(u, v) = α(u)a + β(u)b + γ(v)c + δ(v)d = p(u) + q(v), (20)

where p(u) = α(u)a + β(u)b, q(v) = γ(v)c + δ(v)d, u ∈ [u1, u2], v ∈ [v1, v2],
a,b, c,d are independent, and α, β, γ, δ are certain functions. The two straight lines
a ∧ b and c ∧ d are called the axes of the Degen surface.
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Fig. 5. Some examples of Degen Surfaces including SHGCs(a), an open torus(b), a cyclide(c), a
quadric(d), and more other GCs (e,f), respectively

3.3 DGCs

Before defining DGCs, we show that SHGCs and tori can be represented in the form of
Degen surfaces in homogeneous coordinates. The parameterized surface of a SHGC in
homogeneous coordinates is simply

X(u, v) = (1, ρ(u)r(v) cos u, ρ(u)r(v) sin u, v)T , (21)

where the z and θ in (1) are replaced by u and v, respectively. Then X(u, v) = p(u) +
q(v) with

p(u) = (0, ρ(u) cosu, ρ(u) sinu, 0)T (22)

q(v) =
1

r(v)
(1, 0, 0, v)T . (23)

Furthermore

p(u) = ρ(u)(cosu)a + ρ(u)(sinu)b (24)

q(v) =
1

r(v)
c +

v

r(v)
d (25)

with a = (0, 1, 0, 0)T , b = (0, 0, 1, 0)T , c = (1, 0, 0, 0)T , d = (0, 0, 0, 1)T .
Similarly, replacing the z and θ in (10) with u and v, respectively, we can show that

a torus belongs to a Degen surface by

p(u) =
1

R − r cosu
(1/r, 0, 0, sinu)T =

1
r(R − r cosu)

a +
sin u

R − r cosu
b (26)

q(v) =
1
r
(0, cos v, sin v, 0)T =

cos v

r
c +

sin v

r
d, (27)

with a = (1, 0, 0, 0)T , b = (0, 0, 0, 1)T , c = (0, 1, 0, 0)T , d = (0, 0, 1, 0)T .

Definition 1. On a Degen surface with the parametrization of X(u, v), when v = v0 is
fixed, the curve C1(u) = X(u, v0) is called a u-curve; when u = u0 is fixed, the curve
C2(v) = X(u0, v) is called a v-curve.



90 L. Cao, J. Liu, and X. Tang

In the above examples, the u-curves of a SHGC are (0, ρ(u) cosu, ρ(u) sinu, 0)T +
q(v0), which are closed when u ∈ [0, 2π]; the v-curves of the SHGC are p(u0) +

1
r(v) (1, 0, 0, v)T . Both the u-curves and v-curves of a torus are circles, which are also
closed.

On a Degen surface with u ∈ [u1, u2], v ∈ [v1, v2], the family of u-curves {C1(u) =
X(u, v0) | v0 ∈ [v1, v2]} covers the whole surface. Thus a Degen surface can be seen as
a surface obtained by sweeping a u-curve when v0 varies from v1 to v2. If the u-curve
is closed, the region bounded by it can be regarded as the cross section of a GC. Note
that all the u-curves and v-curves are planar as stated in Lemma 1 in Section 4.

Definition 2. A Degen generalized cylinder (DGC) is a solid bounded by a Degen sur-
face X(u, v) = α(u)a + β(u)b + γ(v)c + δ(v)d with closed u-curves, or closed
v-curves, or both. The axes of the DGC are the two straight lines a ∧ b and c ∧ d.

Obviously, the surface of a DGC is a Degen surface. However, a Degen surface with
neither u-curves nor v-curves closed does not form a DGC. Fig. 6 gives such an ex-
ample. The Degen surfaces showed in Fig. 5 form six DGCs if the cross sections are
considered as regions instead of curves.

It should be emphasized that a conventional GC has only one axis and the axis of a
conventional curved GC is a curve. It is often more difficult to recover curved axes than
to recover straight axes.

4 Properties of DGCs

In this section, we present the properties of DGCs that are useful for some computer
vision tasks.

Proposition 3. The axis of a SHGC coincides with one of the two axes of the DGC that
is the corresponding representation of the SHGC in homogeneous coordinates. Another
axis of the DGC is a line at infinity.

Proof. When a SHGC is written as (1), its axis is the z-axis (Fig. 3). The same SHGC
can be represented in the form of a DGC as in (21)–(25). One axis of the DGC is c∧d,
i.e., a line passing through (1, 0, 0, 0)T and (0, 0, 0, 1)T , which denotes the z-axis in
homogeneous coordinates. Another axis of the DGC is a line at infinity, which passes
through the two ideal points a = (0, 1, 0, 0)T and b = (0, 1, 0, 0)T . �

It is also easy to find the two axes of a torus when it is represented in the form of a DGC.
Suppose a torus in Euclidean geometry is expressed by (10). From (26) and (27), we

Fig. 6. A Degen surface with neither u-curves nor v-curves closed
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see that one axis of the torus is a∧b with a = (1, 0, 0, 0)T and b = (0, 0, 0, 1)T , which
is the z-axis in homogeneous coordinates. Another axis is c ∧ d with c = (0, 1, 0, 0)T

and d = (0, 0, 1, 0)T , which is a line through the two ideal points c and d at infinity.
As pointed out in Propositions 1 and 2, both SHGCs and tori have planar limbs when

viewed from the special directions. Now we show that all DGCs have this property. At
first, we give two lemmas that are proved in [23].

Lemma 1. All the u-curves and v-curves of a DGC are planar.

Lemma 2. All the tangent planes on a u-curve X(u, v0) (v-curve X(u0, v), respec-
tively) pass through the same point γ′(v0)c + δ′(v0)d (α′(u0)a + β′(u0)b, respec-
tively).

Proposition 4. A DGC has planar limbs when viewed from points on its two axes a∧b
and c ∧ d, and the planar limbs are u-curves and v-curves.

Proof. From Lemma 2, we know that all the tangent planes on a u-curve X(u, v0) pass
through the point γ′(v0)c + δ′(v0)d. All such points with different values of v0 lie on
the axis c ∧ d. Therefore, if the DGC is observed from one of the points, the viewing
directions must lie on these tangent planes at points on the u-curves. Thus the u-curve
becomes a limb of the DGC. By Lemma 1, the limb is planar. Similarly, the DGC has
planar limbs when observed from points on another axis a ∧ b. �

Proposition 5. For any two contour points from the same u-curve (v-curve, respec-
tively), the tangents to the contours at the two points intersect on the projection of the
axis c ∧ d (a ∧ b, respectively).

Proof. From Lemma 2, all the tangent planes of the u-curve (v-curve, respectively)
meet at the same point on the axis c ∧ d (a ∧ b, respectively). Since the tangent plane
at a point of the limb is projected onto the tangent at the corresponding point on the
contour generated by the limb [33], this proposition holds. �

Fig. 7 illustrates this invariant property. Note that when a DGC is a SHGC, one axis
becomes the axis of the SHGC (Proposition 3). Thus the SHGC’s invariant property
stated in Lemma 4 in Ponce et al.’s work [6] becomes a special case of Proposition 5.

c   d

X(u,v )i X(u,v )j

Fig. 7. Illustration of Proposition 5
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X(u,v )i

X(u,v )j

X(u ,v )jk

X(u ,v )ik

a   b

c   d

Fig. 8. Illustration of Proposition 6

Definition 3. Let X(u, vi) and X(u, vj) be two u-curves of a DGC. Two points
X(uk, vi) and X(uk, vj) on the two u-curves define a line of correspondence from
the two u-curves. Let X(um, v) and X(un, v) be two v-curves of a DGC. Two points
X(um, vq) and X(un, vq) on the two v-curves define a line of correspondence from the
two v-curves.

Proposition 6. All the lines of correspondence from any two u-curves (v-curves, re-
spectively) of a DGC intersect at the same point on the axis c∧d (a∧b, respectively).

Proof. Let X(u, vi) and X(u, vj) be two u-curves as shown in Fig. 8, the line of corre-
spondence passing through the two points X(uk, vi) and X(uk, vj) can be expressed as

X(uk, vi) + λX(uk, vj), λ ∈ R. (28)

When λ = −1,

X(uk, vi) − X(uk, vj) = [p(uk) + q(vi)] − [p(uk) + q(vj)]
= q(vi) − q(vj)
= [γ(vi) − γ(vj)]c + [δ(vi) − δ(vj)]d, (29)

which is a point on the axis c ∧ d. Since this point is independent of uk, all such lines
from the two u-curves intersect at this point. In the same way, we can also prove that
the proposition is true for the lines of correspondence from two v-curves. �
From Proposition 6, we can obtain a corollary, the geometry of which is illustrated in
Fig. 9. The proof is omitted due to space limitation.

Corollary 1. In the general case, the two axes a ∧ b and c ∧ d of a DGC can be
determined from a pair of u-curves and a pair of v-curves of the DGC.

c   d

a   b

X(u,v )i X(u,v )j

X(u  ,v)m

X(u  ,v)n

Fig. 9. Illustration of Corollary 1
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5 Conclusions

GCs have been used in many applications of computer vision. Previous work on GCs
focuses on relatively narrow sets of GCs. In this paper, we have proposed a new set of
GCs, called Degen generalized cylinders (DGCs). DGCs cover a wide range of GCs,
including SHGCs, tori, quadrics, cyclides, and more other GCs into one unified model.
We have presented a number of properties existing in DGCs. Our rigorous discussion is
based on homogeneous coordinates in projective geometry, which is more general than
Euclidean geometry. The invariant properties of DGCs reveal the relations among the
planar limbs, axes, and contours of DGCs. These properties can be used for recover-
ing DGC descriptions from image contours, representing GCs in computer vision and
graphics, and modeling surface warping in 3D animation.
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