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ABSTRACT 
Recently, interactive image cutout technique becomes prevalent 
for image segmentation problem due to its easy-to-use nature. 
However, most existing stroke-based interactive object cutout 
system did not consider the user intention inherent in the user 
interaction process. Strokes in sequential steps are treated as a 
collection rather than a process, and only the color information 
of the additional stroke is used to update the color model in the 
graph cut framework. Accordingly, unexpected fluctuation 
effect may occur during the process of interactive object cutout. 
In fact, each step of user interaction reflects the user’s 
evaluation of previous result and his/her intention. By analyzing 
the user’s intention behind the interaction, we propose a 
progressive cut algorithm, which explicitly models the user’s 
intention into a graph cut framework for the object cutout task. 
Three aspects of user intention are utilized: 1) the color of the 
stroke indicates the kind of change s/he expects, 2) the location 
of the stroke indicates the region of interest, 3) the relative 
position between the stroke and the previous result indicates the 
segmentation error. By incorporating such information into the 
cutout system, the new algorithm removes the unexpected 
fluctuation effect of existing stroke-based graph-cut methods, 
and thus provides the user a more controllable result with fewer 
strokes and faster visual feedback. Experiments and user study 
show the strength of progressive cut in accuracy, speed, 
controllability, and user experience. 

Categories and Subject Descriptors 
I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification; partitioning I.3.6 [Computer Graphics]: 
Methodology and Techniques—Interactive techniques; I.4.9 
[Applications]; I.5.5 [Implementation]: Interactive systems  

General Terms 
Algorithms, Human Factors. 

Keywords 
Interactive image segmentation, user attention, graph cuts, 
foreground extraction. 

1. INTRODUCTION 
Object cutout is a technique for cutting out an object in the 
image from its background. Currently, no image analysis 
technique can be applied fully automatically with guaranteed 
results over a broad class of image sources, content and 
complexity. So semi-automatic segmentation techniques that 
introduce user interaction are becoming more and more popular. 

Currently, there are two types of interactive object cutout 
methods: boundary-driven methods and seed-driven methods.  
The boundary-driven methods often use interactions like brush 
or lasso. Such a tool drives the user’s attention to the boundary 
of the object. It generally allows the user to trace the object’s 
boundary with the lasso or specify the trimap with the brush. 
Examples include intelligent scissor [5], image snapping [13], 
Jetstream [14], Bayes matting [9][11], and Knockout2 [10]. It 
was shown in [3] that many user interactions were necessary for 
highly textured (or un-textured) regions to obtain a satisfactory 
result by using a lasso, and a considerable degree of user 
interaction is required to get a high quality mattes by using 
brushes. Such boundary-driven method requires much attention 
from the user, especially when the boundary is complex and 
long-curved, therefore it is not fit for the task at the very 
beginning. The seed-driven methods require the user to give 
some example points, strokes, or regions as the seed, and use 
them to help label the remaining pixels automatically. 
MagicWand starts with a user-specified point or region to 
compute a region of connected pixels such that all the selected 
pixels fall within some adjustable tolerance of the color statistics 
of the specified region [6]. GraphCut [1] and LazySnapping [2] 
use graph cut for segmentation by only labeling some 
representative strokes in foreground or background. GrabCut [3] 
allows the user to give a rectangle, which contains the 
foreground, and then employs graph cut in an iterative way. 
GrowCut [8] employs a neighbor attacking process after the user 
gives some strokes for representative colors. IntelligentPaint [12] 
is a region-based interactive segmentation tool, which applies a 
connect-and-collect strategy to define an object region.  Among 
them, the stroke-based graph-cut method (such as GraphCut and 
LazySnapping) provides much freedom in the user interaction. It 
allows giving strokes within the object area, which is easier for 
the user when handling objects with complicated object 
boundary. Additionally, it is a global optimization technique, 
and it provides a fast, instant visual feedback with few strokes, 
which generally requires less user interactions compared with 
MaggicWand, Intelligent Scissors, Bayes Matte, and Knockout2. 

However, a general problem of the stroke-based graph-cut 
methods is that for a general image, only two strokes are not 
sufficient to achieve a good result where large erroneous areas 
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exist, see Fig.1(a)~(b). Thus additional refinements using more 
strokes are needed. With additional strokes, the user iteratively 
refines the result until s/he is satisfied.  

Most existing works, such as GraphCut and LazySnapping, only 
use the color information of the additional stroke in each update 
of the graph cut model, and the whole image is re-segmented 
based on the updated graph cut model. This is quite simple. 
However it may bring unexpected label change of the 
foreground or background, which will cause unsatisfactory 
“fluctuation” effect during the process of user experience. For 
example, Fig.2(a) is the segmentation result with the initial two 
strokes. When a new background stroke is added behind the 
neck of the man, the region behind his trousers is turned into 
Foreground (see the red circle in Fig.2(b)). Such a change is 
unexpected. For Fig.2(c), the additional stroke in the up-right 
corner shrinks the dog’s back, see Fig.2(d). This is also an 
unexpected effect to the common user. Both cases cause 
unpleasant results in the user experience. Furthermore, it will 
cause confusion on the user side about why this effect occurs 
and what stroke s/he should select. More examples can be seen 
in Fig.11. 

  
(a)                                          (b) 

Figure 1. Only two strokes are not sufficient to achieve a good 
result where large erroneous areas exist. Yellow stroke marks 
foreground, and blue stroke marks background. 

Such effects originate from the inappropriate update strategy, 
which treats the additional stroke and the previous strokes as a 
collection to update the color model, rather than a process. This 
can be illustrated in Fig.2(e)~(f). Since the graph cut method 
models the object cutout task as a binary labeling problem and 
they solve the problem by minimizing the energy function, 
which encodes both color and contrast information, we choose a 
simple way for illustration. Suppose we only consider the color 
distribution for foreground/background segmentation, and 
ignore the contrast between neighboring pixels. The graph cut 
method can be deemed as the pixel-by-pixel decision based on 
the color distribution. The pixels are classified to be Foreground 
(F) or background (B) when its probability is higher than the 
other one. As an example, the initial color distributions of 
foreground (red line) and background (blue line) are shown in 
Fig.2(e), and an extra background stroke is added with the new 
color model of background is shown in Fig.2(f). The 
background shrinkage occurs when the original blue line draws 
away from the red line, which is the case in Fig.2(b); and the 
background expansion occurs when a new peak of blue line 
rises up near the foreground model, which is the case in Fig.2(d). 
When this expansion or shrinkage is out of user’s expectation, it 
will cause the unpleasant result in the user experience.  

User experience is of great significance in many interactive 
tools including the interactive object cutout and pasting. It also 

plays an important role in the commercial products from a broad 
range. Therefore, how to enhance the user experience in the 
process of interactive object cutout is worthy of intensive study.  

  
(a)                                           (b) 

  
(c)                                             (d) 

  
(e)                                             (f)  

Figure 2. The additional stroke may cause unexpected changes 
in the labeling results if only updating color models. (a) and (c) 
are the segmentation results of ‘man’ (a) and ‘pity dog’ (c) with 
the initial two strokes, respectively; (b) and (d) are their 
corresponding segmentation results after the additional stroke is 
given. Yellow stroke marks foreground, and blue stroke marks 
background. The green arrow points at the additional stroke. 
The over-shrinkage and over-expansion of the background are 
respectively visible in (b) and (d) as the red circles show; (e) is 
the color model with initial two strokes; (f) is the new color 
model updated after the additional stroke is given.  
This paper addresses this issue from studying the user’s 
intention behind the additional stroke that the user specified. 
The key ideas originate from two observations. First, in each 
step, the user’s intention is hinted by the user interaction such as 
the additional stroke, and it can be extracted by studying the 
characteristics of the user interaction. Second, we observe that 
the additional stroke indicates the user’s intention from at least 
three aspects as shown in Fig3: 1) the additional stroke falls in 
the erroneous areas indicating that the user inclines to change 
the results in such areas; 2) the color (in fact, label) of the stroke 
indicates which kind of change s/he expects, yellow stoke 
(Foreground label) in the background indicating s/he would like 
to change part of the background into foreground and vice versa. 
For those regions already with the same label as the additional 
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stroke (such as the green region in Fig.3b), the user does not 
expect them to change the labels, at least at the current step; 3) 
the location of the stroke indicates region of interest for the user, 
with high interest around the stroke (such as the red region in 
Fig.3b), and low interest in other erroneous areas (such as the 
pink region in Fig.3b). 

  
 (a)                                  (b) 

Figure 3. User’s intention hinted behind the user interaction. (a) 
Additional stroke when segmentation result of the initial two 
strokes is given, as the green arrow points at; (b) User’s 
intention behind the additional stroke, green for unchanging area, 
red for high interest area, and pink for low interest area. 

Based on these observations, we propose a progressive cut 
algorithm to incorporate the user intention into the process of 
interactive object cutout in order to enhance the user experience. 
A new graph cut model is proposed to exploit the user’s 
intention behind the additional stroke that user specified, which 
leads the segmentation result altered along the user’s 
expectation. The new algorithm reduces or even eliminates the 
unexpected fluctuation effect of existing stroke-based graph-cut 
methods, and thus provides the user a more controllable result 
with fewer strokes and faster visual feedback. 

2. PROGRESSIVE CUT 
Before we propose the new algorithm for progressive cut, we 
first study the user interactions, from which we conclude several 
nontrivial observations on user intention behind the interaction. 
Then we model the user intention into the graph-cut framework. 

2.1 User interaction study 
We asked 7 users to attend our user interaction study. All the 
subjects have no prior knowledge of interactive object cutout 
systems. Four images with previous segmentation results, “pity 
dog”, “bride”, “boy”, and “Indian girl”, were used as the test 
images. The subjects were asked to add an additional stroke on 
the original image based on the segmentation result indicated by 
the red line in Fig.4. Before the test started, they were allowed 
to try out using strokes for object cutout for five minutes. The 
test was conducted independently among the users. The spatial 
distributions of their additional strokes are displayed in Fig.4, 
where the silhouette indicates the ground truth of the cutout 
result (black for background and white for foreground), and the 
additional strokes from 7 users are displayed in green 
(background) or yellow (foreground). The brighter color (such 
as bright green) represents higher density.  

 
(b) “bride”  

     (a) “Indian girl” 
 

 
(c) “pity dog” 

 
(d) “boy” 

Figure 4. Spatial distributions of the additional strokes added by 
the subjects in the user interaction study. The silhouette 
indicates the ground truth, and the red line indicates the given 
segmentation result. Yellow stroke marks foreground, and green 
marks background. 
From the figure, we can see that there are some variations in the 
interactions from various users. For example, in Fig.4(b) where 
erroneous areas exist on both foreground and background, some 
users add a foreground (yellow) stroke, and some add a  
background (green) stroke. Besides that, in Fig.4(d), even when 
all the users add a foreground stroke, they may mark it at 
different positions, some on the arm, and some on the foot. 
Additionally, different kinds of stokes were given by different 
users: some are within the previous segmentation region, while 
others across the previous segmentation boundary at one side or 
both sides, which will be described by Fig.6 in the next section. 
However, we can still observe some common points: 
1) There is a user evaluation process going on before the user 

gives the additional stroke, i.e. the user evaluates the 
previous segmentation result before s/he gives the additional 
stroke. 

Note that the additional strokes are not uniformly spatially 
distributed on the whole image, but mostly concentrated in those 
erroneous areas, which is resulted by user evaluation. This 
suggests that the user intention is hinted behind the additional 
stroke, and we should add a user intention analysis module in 
the process of progressive cut. Here, we propose a system flow 
as shown in Fig.5(a) for progressive cut, and this leads the result 
to approach the user’s expectation step by step. 
2) The user intention is embodied in three aspects:  

a) The user’s attention concentrates on the erroneous areas, 
which indicates that the user inclines to change the 
results in the erroneous areas as expected. 

253



Among the 28 strokes that we collected, all are centered in the 
erroneous areas, although different kinds of user interactions are 
given by different users. This implies that the user detects the 
error areas, and s/he tends to correct these areas, treating them 
in a way rather different from other areas. 

b) The color of the stroke indicates which kind of change 
s/he expects.  

For instance, in the image “bride”, the yellow stroke indicates 
that s/he would like to change part of the current background 
into foreground, while the green stroke indicates the opposite 
intention. This implies that the user sets different attention for 
foreground error and background error. For those regions with 
the same label as the additional stroke, s/he does not expect 
them to change labels at the current step. 

c) The location of the stroke indicates the region of interest.  
As an example, the stroke on the left arm of “boy” indicates the 
current user pays more attention to this area than other 
erroneous areas (such as in the left leg), while the stroke on the 
left leg indicates the attention of another user. This says that 
s/he sets higher priority for changing the region around the 
stroke s/he specified, than the other erroneous areas. 

2.2 User Intention Model 
With these observations, we build the user intention model as 
follows. Denote F as the Foreground and B  as the Background 
( F B= ). The foreground area in the previous segmentation 
result P  is denoted as FΩ  and the background area denoted as 

BΩ . The label of the additional stroke is denoted as 
H ( { , }H F B∈ ). Its location is denoted as L , and the label 
sequence of the pixels on the additional stroke is denoted as 

{ }iN n= , where { , }in F B∈ (e.g. there is { , , }N B F B= when 
N  starts from a region in the background, runs across the 
foreground and ends in the background). The intention of the 
user is denoted as I, and it contains three parts: U is the 
unchanging region where the user does not expect to change the 
segmentation label; R is the region of interest; and T is the kind 
of change that the user expects (e.g. { : }T F B R= →  indicates 
that the user expects the region of interest to have high priority 
for turning from foreground into background). The user 
intention model can be described as Fig.5(b) shows. 

Segmentation 

User 
interaction

User intention 
analysis

User 
evaluation

Result

  
(a)                                              (b) 

Figure 5. Systematic framework for progressive cut. (a)system 
flow; (b) user intention analysis module. 

Case 1:  When H B= , and { }N F= , there is BU = Ω , 
( ) FR L= ΩIN , { : }T F B R= → , where ( )LN is the 

neighborhood of L . 

Case 2:  When H F= , and { }N B= , there is FU = Ω  and 
( ) BR L= ΩIN , { : }T B F R= → . 

Other Cases: In case that the stroke runs across both the 
background and foreground, such as { , }N F B= or 

{ , }N B F= in Fig.6(b), and { , , }N B F B=  in Fig.6(c), there are 

HU = Ω , ( ) HR L= ΩIN , { : }T H H R= → where { , }H F B∈ . 

In fact, it is easy to find out that no matter what N is, there is 
always HU = Ω , ( ) HR L= ΩIN , { : }T H H R= → .  

   
(a)                             (b)                              (c) 

Figure 6. Three kinds of strokes. The blue marks the 
background in the previous segmentation result, the yellow 
marks the foreground, and the purple marks the additional 
stroke with H as its label where { , }H F B∈ . 

2.3 Graph Cut Framework 
In the following, we will model the segmentation problem in a 
graph cut framework, and incorporate the user intention into the 
graph cut model. Suppose that the image is a graph { , }=G V E , 
where V  is the set of all nodes and E  is the set of all arcs 
connecting adjacent nodes. Usually, the nodes are pixels on the 
image and the arcs are adjacency relationships with four or eight 
connections between neighboring pixels. The labeling problem 
(or foreground/background segmentation or object cutout) is to 
assign a unique label ix  for each node i∈V , i.e. 

ix ∈{foreground (=1), background (=0)}. The labeling problem 
can be described as the optimization problem which minimizes 
the energy defined as follows by min-cut/max-flow algorithm 
[7]: 

1 2
( , )

( ) ( ) (1 ) ( , )i i j
i i j

E X E x E x xλ λ
∈ ∈

= + −∑ ∑
V E

 (1)

, where 1( )iE x  is the data energy, encoding the cost when the 
label of node i  is ix , and 2 ( , )i jE x x  is the smoothness energy, 
denoting the cost when the labels of adjacent nodes i  and j are 

ix and jx  respectively. 

We now consider how to model our progressive cut in the above 
energy minimization framework. From the user interaction 
study and user intention analysis in Sec.2.1 and Sec.2.2, we can 
get { , , }I U R T= with the new stroke { , }H L  and the previous 
segmentation result P. From U, we can erode the graph on the 
whole image { , }=G V E into a smaller graph ' { ', '}=G V E for 
faster computation. From U, R, and T, we can define the energy 
function as 

' '

'( , )

( ) ( ) ( )

(1 ) ( , )

color i user i
i i

contrast i j
i j

E X E x E x

E x x

α β

α β
∈ ∈

∈

= +

+ − −

∑ ∑

∑
V V

E

 (2)

, where ( )color iE x is the color term energy, encoding the cost in 
color likelihood, ( )user iE x is the user intention term, encoding 
the cost in deviating from the user’s expectation I={U,T,R}, 

( , )contrast i jE x x is the contrast term or smoothness term, which 
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constrains the neighboring pixels with low contrast to select the 
same labels.  

2.3.1 Eroded graph for progressive cut 
Denote the segmentation result as { }iP p= , where ip  is the 
current label of pixel i , with the value 0/1 corresponding to 
Background/Foreground, respectively. Further denote the 
locations of the additional stroke specified by the user as a set of 
nodes 1 2{ , , }tL i i i= ⊂L V , H , U , T and R are the same as in 
Sec2.2. Suppose H F=  as shown in Fig.7(a), we can get 

FU = Ω , ( ) BR L= ΩIN , { : }T B F R= → , according to the 
user intention analysis in Sec.2.1 and Sec.2.2. In this case, we 
first construct a new graph ' ' '{ , }=G V E by eroding U (except 
the pixels neighboring to the boundary) out of the graph on the 
whole image { , }=G V E , as shown in Fig.7(b). Such erosion 
itself fits in with the user’s intention, since nodes being eroded 
all lie in the unchanging region U . The energies and the 
corresponding energy optimization in the following sections are 
defined on the eroded graph 'G .  

                                   
           (a) graph G                            (b) eroded graph 'G  

Figure 7. Construction of the eroded graph. (a) is the original 
graph on the whole image, G . (b) is the eroded graph, 'G . 

2.3.2 Color term 
The color term ( )color iE x in Eq.(2) is defined as follows. Assume 
the foreground stroke nodes is denoted as 

1{ , }F F FMi i= ∈LV V and the background stroke nodes denoted 
as 1{ , }B B BMi i= ∈LV V . The color distribution of foreground 
can be described as a GMM model, i.e.  

1

( ) ( , , )
K

F i k Fk Fk Fk i
k

p C p Cω μ
=

= Σ∑  (3)

, where Fkp  is the k -th Gaussian component with the mean 
and covariance matrix as { , }Fk Fkμ Σ , and kω is the weight. The 
background color distribution pB(Ci) can be described in a 
similar way. 

For a given node i with color iC , the color term is defined as: 

If '
Fi∈ IV V , there is ( 1) 0, ( 0)i iE x E x= = = = +∞ ; 

If '
Bi∈ IV V , there is ( 1) , ( 0) 0i iE x E x= = +∞ = = ; 

Otherwise,  

( )
( ) ( )

( )
( ) ( )

log ( )
( 1) ,

log ( ) log ( )

log ( )
( 0) .

log ( ) log ( )

F i
i

F i B i

B i
i

F i B i

p C
E x

p C p C

p C
E x

p C p C

= =
+

= =
+

 (4)

2.3.3 Contrast term 
The contrast term ( , )contrast i jE x x  defined as a function of the 
color contrast between two nodes i  and j : 

( , ) | | ( )contrast i j i j ijE x x x x g C= − ⋅  (5)

where 1( )
1

g ξ
ξ

=
+

, and 
2

ij i jC C C= − is the 2L -norm of the 

RGB color difference of two pixels i and j. | |i jx x− allows to 
capture the contrast information only along the segmentation 
border. Actually contrastE  is a penalty term when adjacent nodes 
are assigned with opposite labels. The more similar in color the 
two nodes are, the larger contrastE is, and thus the less likely they 
are assigned with opposite labels. 

2.3.4 User intention term 
The user intention term userE is a nontrivial term, which is 
presented in this paper to encode the cost in deviating from the 
user’s expectation. Since HU = Ω , that is, the unchanging region 
contains all the pixels with the same label as the additional 
stroke, we set its corresponding user intention term as: 

( )
, '

( ) 0
user i

H

user i

E x H
i

E x H

⎧ = = +∞⎪ ∀ ∈Ω⎨
= =⎪⎩

IV  (6)

Since ( )
H

R L= ΩIN and { : }T H H R= → , this means, for the 
pixels with label opposite to that of the additional stroke, the 
user’s attention is concentrated in the neighborhood of the 
stroke, and it decreases as the distance to the stroke becomes 
larger. Therefore we set the user intention term as: 

1
min

( ) | | , 'kk t
user i i i H

i i
E x x p i

r
≤ ≤

−
= − ∀ ∈Ω IV  (7)

where ki i−  is the distance between the node i and ki , 

| |i ix p− is an indicator of label change, r is a parameter to 
control the range of user’s attention: larger r implies larger 
range. The implication of Eq.(7) is: there should be an extra cost 
to change the label of a pixel, and the cost is higher when the 
pixel is farther from the additional stroke. An example of the 
energy of the user attention energy is shown in Fig.8(a) and 
Fig.8(c). 

2.3.5 Discussion 
For clear discussion, we first introduce two terms, over-
expansion and over-shrinkage, as follows. Assume that the user 
expects the label of the pixels in the area A to change into H . If 
there is another area D outside of A , where the pixels change 
their labels into H when their correct label is H , we call this 
effect as the over-expansion of H; If there is another area E 
outside of A where pixels change their labels into H  when their 
correct label is H , we call this effect as the over-shrinkage of 
H . For example, as shown in Fig.2(b), the user adds a blue 
stroke (background) behind the neck of the man, indicating s/he 
would like to expand the background in such area. However, the 
pixels behind his trousers changed their labels from Background 
to Foreground, i.e., over-shrinkage of the background occurs 
after the additional stroke is given. Similarly, in Fig.2(d), there 
is an over-expansion of the background in the dog’s back (as the 
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red circle points out). From above, we can see that over-
expansion and over-shrinkage are two kinds of erroneous label 
changes out of user’s expectation, so both of them will cause 
unsatisfactory result. 

  
(a)                                            (b) 

  
(c)                                           (d) 

Figure 8. The user attention energy in progressive cut and their 
corresponding results. (a) and (c) are the user attention energy in 
“man” and “pity dog”. Higher intensity indicates larger energy. 
(b) and (d) are the segmentation results of progressive cut, with 
the additional stroke pointed by green arrow. 
Compared with the existing stroke-based graph-cut methods, our 
algorithm can effectively prevent the over-shrinkage and 
compress the over-expansion in the low-interest areas, as 
Fig.8(b) and (d) show. The prevention of the over-shrinkage 
(Fig.8(b) vs. Fig.2(b)) is carried out by eroding U out of the 
graph on the whole image (see Fig.7) and setting the infinity 
penalty as Eq.(6), which guarantees that there is no label change 
in the areas whose label is the same as the additional stroke. The 
compression of over-expansion (Fig.8d vs. Fig.2d) is carried out 
by adding the user intention term as Eq.(7) in the energy 
function, which assigns larger penalty to those areas farther 
away from the user’s high attention area. In this way, the new 
algorithm will change the result according to the user’s 
expectation, and thereby provides the user a more controllable 
result with no fluctuation effect and fewer strokes.  
Another notable strength of the new algorithm is that it provides 
a faster visual feedback. Since the eroded graph is generally 
much smaller than the graph on the whole image, the 
computational cost in the optimization process is greatly 
reduced, as demonstrated by Table 1 in Sec.4.2. 

2.4 Parameter Setting 
In this section, we give details on how to set parameter r , which 
is used to control the range of user’s attention.  An automatic 
scheme for setting r is employed to endow our algorithm with 
adaptability. The key idea can be intuitively explained as 
follows. Given the previous segmentation border and an 
additional stroke specified by the user, if the stroke is near to the 

border, it is probable that s/he cares for a small region around 
the stroke, and thus a small parameter r should be selected. 
Otherwise, her/his current attention range is likely to be large, 
and thus a large r is set. Therefore, we dilate the additional 
stroke with an increasing radius until the dilated stroke covers 
5% of the total length of the border. r  is set to be the radius 
when the stroke stops dilation, as shown in Fig.9. Such a 
parameter r measures the user’s current attention range, and it 
makes our algorithm adaptive to different images, different 
stages in the interaction, and different users. 

 
Figure 9. Setting the parameter r  

 

  
 (b)        (c) 

 
(a)    

 (d)            (e)           (f) 

 
(g) (h) 

Figure 10. The tools of polygon and brush. (a) is the source 
image “Indian girl” with the segmentation result using strokes. 
The red rectangles show the region for adjustment by polygon 
editing and brush; (b) and (c) are the region before and after 
polygon adjustment; (d)(e)(f) are the regions before, during and 
after the brush implementation; (g) is the final object cutout 
result; and (h) is the composition result using the cutout result 
(g). 

3. SYSTEM 
Considering the object cutout problem from the system side, the 
strokes are generally used to remove the errors in large areas 
quickly in a few steps with a few simple strokes. After the 
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erroneous area reduces to a considerably low level, we use 
another two tools, polygon adjustment tool and brush tool, for 
the local refinement. Such tools are employed in a similar way 
as in [2], which is shown in Fig.10. 
Furthermore, for the sake of computational speed, we conduct a 
two-layer graph-cut similar to [2]. We first conduct an over-
segmentation by watershed and build the graph based on the 
segments for a coarse object cutout, and then a pixel-level 
graph-cut is implemented on the near-boundary area in the 
coarse result for a finer object cutout. 

4. EXPERIMENTS 
The experiments are designed to compare the new algorithm 
with existing stroke-based graph-cut methods from three aspects: 
1) the segmentation accuracy in one single step with the same 
initial segmentation result and the same additional stroke; 2) the 
speed in one single step under the same condition as in 1); 3) the 
controllability of the results in the process of interactive object 
cutout using only strokes. 

4.1 Accuracy 
First we show a group of experiments presenting the 
segmentation accuracy of our progressive cut in one single step, 
comparing with GraphCut/LazySnapping [2], with the same 
initial segmentation result and the same additional stroke. Two 
examples have been presented in the previous sections, as 
shown in Fig.2 and Fig.8. Here we give more results in Fig.11.  
For the image “little girl”, over-shrinkage occurs in GraphCut/ 
LazySnapping after an additional stroke labeling the left foot as 
foreground was given, see Fig.11(c). This is because that they 
only use the color information in the additional stroke to update 
the result. Since the initial strokes cover the hair in a small 
region, thus the weight for the color of the (blond) hair in the 
new foreground color model will be decreased, and the color of 
(blond) hair is more likely to be classified as Background, than 
using the initial color model. As a result, over-shrinkage of 
foreground occurs, which is an unexpected effect in the result. 
Compared with GraphCut/LazySnapping, we not only use the 
updated color model, but also analyze the user’s intention when 
s/he gives the additional stroke on the left foot. Such a stroke 
implies that s/he would like to change part of the current 
background to foreground, and accordingly we set the current 
foreground as unchanging ( FU = Ω ). Thereby we successfully 
prevent the over-shrinkage in the foreground as shown in (d). 
Our algorithm is also effective in reducing over-expansion, 
which can be shown in the images “bride”, “Indian girl”, and 
“sleepy dog” in Fig.11. It is easy to observe that in the results of 
GraphCut/LazySnapping, large areas of unexpected over-
expansion occur after the additional strokes (on the hair in 
“Indian girl” and “bride”, on the mouth in “sleepy dog”) are 
given, as the red rectangles in Fig11(c) mark out. As has been 
analyzed in Sec.1 and Fig.2, the additional stroke makes the 
foreground model move nearer to the background model, and 
this leads that these areas are more likely classified into 
foreground and over-expansion occurs when using the existing 
stroke-based graph cut methods. Such cases do not happen in 
our results (Fig.11(d)), since we have analyzed the user’s 
attention and set the regions far away from the user attention 
area with less probability to change, by Eq.(7). 

4.2 Speed 
In Sec2.3.5, we have mentioned that the our algorithm will save 
much time than the existing graph cut methods [1,2], due to the 
eroded graph. To demonstrate this strength, we compare the 
time cost of our algorithm with that of existing graph cut 
method in Table 1, using “Indian girl”, “man”, “pity dog”, 
“sleepy dog”, “bride”, and “little girl” as the test images. The 
running time is tested on a PC of P4-3.0G, 1G RAM, under the 
OS of Windows XP. For simplicity, we only list out the time 
cost in energy minimization under the same condition as Sec.4.1. 
From the table, we can see that the time cost is greatly reduced, 
which enables our system to give a faster visual feedback to the 
user. 

Table 1. Comparison of graph cut and progressive cut in 
speed 

Image 
our 
cost 

(sec.) 

graph 
cut cost 

(sec.)  

initial 
foreground 

size 
(pixels) 

image size 
(pixels) 

r  
(pixels

) 

Indian girl 0.16
7 0.462 122,629 435*639 22 

man 0.10
7 0.843 35,120 635*640 15 

Pity dog 0.13
5 0.187 208,393 640*609 23 

Sleepy dog 0.14
9 0.645 127,877 640*446 9 

Bride 0.16
3 0.794 100,551 470*640 8 

Little girl 0.12
3 0.281 56,067 480*640 23 

4.3 Controllability 
To study the controllability of the results in the process of 
interactive object cutout using only strokes, we select two 
complex images, which need a considerable number of strokes if 
we only use stroke tool, since the progress could be better 
presented in more steps. The original image and the initial 
segmentation results are shown in Fig.12(a), together with the 
initial two strokes. To compare our algorithm with existing 
stroke-based graph cut methods, all the initial conditions are set 
to be the same, including the third stroke. After that, we ask 2 
users who have no prior knowledge of our system before to 
complete the object cutout task by using only strokes. We 
record each step of the user interactions and the results as shown 
in Fig.12: the newly input stroke is marked in yellow for 
foreground, and blue for background; the result after the newly 
input stroke is presented by silhouettes in the same image, black 
for foreground and white for background. The “ground truth” 
result of each image, shown as the red line, is also given in 
Fig.12.  
From the newly input stokes from the users, we find out again 
that the user concentrated on the erroneous regions, as has been 
concluded in our user interaction study. From the results, we can 
see that in the process of using GraphCut/LazySnapping for 
“lady” and “Agassi”, the region under the lady’s hat and the 
region behind Agassi are cases of over-expansion. The same 
case also appears in Step 5 of “lady”. Since we have involved 
the user’s attention into our progressive cut framework, such 
unexpected changes are effectively compressed. Hence we need 
two less steps for both the two images to get an almost same 
result, where fewer interactions are required. 
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We also evaluate the process by the error rate in each step, 
which is the ratio of erroneous area to the whole image area, as 
shown in Fig.13. The fluctuation is obvious in the performance 
curve of GraphCut/LazySnapping, while there is no fluctuation 
in our progressive cut algorithm. This is why we call our 
algorithm progressive cut. 

  
                   (a) “lady”                                (b)  “Agassi” 
Figure 13. Error rate of each step in the process of object cutout. 

5. USER STUDY 
To study if the prevention of over-expansion/over-shrinkage, the 
elimination of fluctuation, and the fewer strokes really lead to a 
better user experience, we conduct the user study in this section.  
 
Table 2. Questions and answer statistics for user study. (a). 

two questions; (b) answer statistics for Q2. 
(a)Questions (b)Answer Statistics 

Q1: Which system do you prefer? 
A. Graph Cut 
B. Progressive Cut 
C. No obvious preference 

Q2: Why do you prefer that? 
A. More accurate in one single step 
B. No fluctuation in the whole process 
C. Fewer strokes are required 
D. Other reasons 

 
We invite 11 users for test, among whom 5 have engineering 
background while the other 6 have no background in 
engineering. We first show them the results, including the single 
step result in Fig.11, and the whole process result in Fig.12. 
Then we ask 2 questions as shown in Table2(a). Among them, 
Q1 is a single-choice question and Q2 is a multiple-choice one. 
The answer statistics for Q2 are shown in Table2(b). All the 11 
users tell us that they prefer our progressive cut system to 
GraphCut/LazySnapping.  Furthermore, 8 out of 11 users think 
that the proposed method can achieve a more accurate result due 
to the reduction of over-expansion and over-shrinkage; 5/11 say 
that the elimination of fluctuation in the process are attractive; 7 
of them report that to obtain a comparable result, our method 
requires less interactions. In addition, 3 users give other reasons. 
Among them, one user mentioned that the results of the 
proposed method are faithful to the user’s intention, one user 
thought progressive cut is more robust to various kinds of 
images, and the other reported that using our system, he can 
easily know how to give a stroke which will lead to the result he 
expected. 

6. CONCLUSION 
In this paper, we presented a progressive cut algorithm for 
background/foreground segmentation of image. We first analyze 
the user intention behind the additional stroke that the user 

specified, and then incorporate the user intention into the graph-
cut framework: an eroded graph is derived to prevent the over-
shrinkage, and a user attention term is added to the energy 
function to compress the over-expansion in the area of low 
interest. Experiments show that the new algorithm outperforms 
the existing stroke-based graph cut methods in both accuracy 
and speed, and it effectively removes the fluctuation effect in 
the interaction process which makes the results more 
controllable with requiring fewer strokes for the same task. With 
these attractive properties, the system provides the user a more 
pleasant experience in process of interactive object cutout, 
which is reported by user study.  
A future interesting topic would be the study on new 
interactions for interactive object cut, rather than the existing 
interactions such as using strokes in GraphCut/LazySnapping. 
Another related topic might be a more thorough study on the 
user intention model. Although we have made some initial 
studies on this direction in our paper and revealed one 
significant model for user intention analysis, these kinds of 
study will help the system to provide more alternatives for the 
user. 
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(a) source image                              (b) initial result                       (c) graph cut [2]                       (d) progressive cut 

Figure 11. Comparison of Progressive Cut with Graph Cut on the accuracy in one single step. Different image sources are shown in 
different rows. From top to bottom, they are “Indian girl”, “bride”, “sleepy dog” and “little girl”. (a) are the source images. (b) are the 
initial segmentation results, along with the initial two strokes are marked, yellow for foreground, and blue for background (c) are the graph 
cut results after an additional stroke (directed by green arrow) is given. (d) are progressive cut results, with the same additional stroke. 

259



             
(a) The source images and the initial segmentation results with the initial two strokes. From left to right, the first two are the source image 
and initial result of “lady”, and the last two are those of “Agassi”. 

 
(b) Step 3-7 in the process of using graph cut for interactive object cutout on “lady” 

 
(c) Step 3-5 in the process of using progressive cut for interactive object cutout on “lady”. 

 
(d) Step 3-9 in the process of using graph cut for interactive object cutout on “Agassi”. 

  
(e) Step 3-7  in the process of using progressive cut for interactive object cutout on “Agassi” 

Figure12. Comparison of progressive cut with graph cut on the process of interactive object cutout. The newly input stroke is marked in 
yellow for foreground, and blue for background; the result after the new input stroke is presented by silhouettes in the same image, black 
for foreground, and white for background. The ground truth is shown by red line. 
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