
Progressive Cut
 Chao Wang*1, Qiong Yang2, Mo Chen3, Xiaoou Tang2, and Zhongfu Ye1

1University of Science and
Technology of China, Hefei, Anhui,

230027, P.R.China

2Microsoft Research Asia, Beijing,
100080, P.R.China

{qyang,xitang}@microsoft.com

3Tsinghua University,
Beijing, 100084, P.R.China

ABSTRACT
Recently, interactive image cutout technique becomes prevalent
for image segmentation problem due to its easy-to-use nature.
However, most existing stroke-based interactive object cutout
system did not consider the user intention inherent in the user
interaction process. Strokes in sequential steps are treated as a
collection rather than a process, and only the color information
of the additional stroke is used to update the color model in the
graph cut framework. Accordingly, unexpected fluctuation
effect may occur during the process of interactive object cutout.
In fact, each step of user interaction reflects the user’s
evaluation of previous result and his/her intention. By analyzing
the user’s intention behind the interaction, we propose a
progressive cut algorithm, which explicitly models the user’s
intention into a graph cut framework for the object cutout task.
Three aspects of user intention are utilized: 1) the color of the
stroke indicates the kind of change s/he expects, 2) the location
of the stroke indicates the region of interest, 3) the relative
position between the stroke and the previous result indicates the
segmentation error. By incorporating such information into the
cutout system, the new algorithm removes the unexpected
fluctuation effect of existing stroke-based graph-cut methods,
and thus provides the user a more controllable result with fewer
strokes and faster visual feedback. Experiments and user study
show the strength of progressive cut in accuracy, speed,
controllability, and user experience.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification; partitioning I.3.6 [Computer Graphics]:
Methodology and Techniques—Interactive techniques; I.4.9
[Applications]; I.5.5 [Implementation]: Interactive systems

General Terms
Algorithms, Human Factors.

Keywords
Interactive image segmentation, user attention, graph cuts,
foreground extraction.

1. INTRODUCTION
Object cutout is a technique for cutting out an object in the
image from its background. Currently, no image analysis
technique can be applied fully automatically with guaranteed
results over a broad class of image sources, content and
complexity. So semi-automatic segmentation techniques that
introduce user interaction are becoming more and more popular.

Currently, there are two types of interactive object cutout
methods: boundary-driven methods and seed-driven methods.
The boundary-driven methods often use interactions like brush
or lasso. Such a tool drives the user’s attention to the boundary
of the object. It generally allows the user to trace the object’s
boundary with the lasso or specify the trimap with the brush.
Examples include intelligent scissor [5], image snapping [13],
Jetstream [14], Bayes matting [9][11], and Knockout2 [10]. It
was shown in [3] that many user interactions were necessary for
highly textured (or un-textured) regions to obtain a satisfactory
result by using a lasso, and a considerable degree of user
interaction is required to get a high quality mattes by using
brushes. Such boundary-driven method requires much attention
from the user, especially when the boundary is complex and
long-curved, therefore it is not fit for the task at the very
beginning. The seed-driven methods require the user to give
some example points, strokes, or regions as the seed, and use
them to help label the remaining pixels automatically.
MagicWand starts with a user-specified point or region to
compute a region of connected pixels such that all the selected
pixels fall within some adjustable tolerance of the color statistics
of the specified region [6]. GraphCut [1] and LazySnapping [2]
use graph cut for segmentation by only labeling some
representative strokes in foreground or background. GrabCut [3]
allows the user to give a rectangle, which contains the
foreground, and then employs graph cut in an iterative way.
GrowCut [8] employs a neighbor attacking process after the user
gives some strokes for representative colors. IntelligentPaint [12]
is a region-based interactive segmentation tool, which applies a
connect-and-collect strategy to define an object region. Among
them, the stroke-based graph-cut method (such as GraphCut and
LazySnapping) provides much freedom in the user interaction. It
allows giving strokes within the object area, which is easier for
the user when handling objects with complicated object
boundary. Additionally, it is a global optimization technique,
and it provides a fast, instant visual feedback with few strokes,
which generally requires less user interactions compared with
MaggicWand, Intelligent Scissors, Bayes Matte, and Knockout2.

However, a general problem of the stroke-based graph-cut
methods is that for a general image, only two strokes are not
sufficient to achieve a good result where large erroneous areas

*This work was finished when the author was an intern at Microsoft
Research Asia under the supervision of Dr. Qiong Yang.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’06, October 23-27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010…$5.00.

251

exist, see Fig.1(a)~(b). Thus additional refinements using more
strokes are needed. With additional strokes, the user iteratively
refines the result until s/he is satisfied.

Most existing works, such as GraphCut and LazySnapping, only
use the color information of the additional stroke in each update
of the graph cut model, and the whole image is re-segmented
based on the updated graph cut model. This is quite simple.
However it may bring unexpected label change of the
foreground or background, which will cause unsatisfactory
“fluctuation” effect during the process of user experience. For
example, Fig.2(a) is the segmentation result with the initial two
strokes. When a new background stroke is added behind the
neck of the man, the region behind his trousers is turned into
Foreground (see the red circle in Fig.2(b)). Such a change is
unexpected. For Fig.2(c), the additional stroke in the up-right
corner shrinks the dog’s back, see Fig.2(d). This is also an
unexpected effect to the common user. Both cases cause
unpleasant results in the user experience. Furthermore, it will
cause confusion on the user side about why this effect occurs
and what stroke s/he should select. More examples can be seen
in Fig.11.

(a) (b)

Figure 1. Only two strokes are not sufficient to achieve a good
result where large erroneous areas exist. Yellow stroke marks
foreground, and blue stroke marks background.

Such effects originate from the inappropriate update strategy,
which treats the additional stroke and the previous strokes as a
collection to update the color model, rather than a process. This
can be illustrated in Fig.2(e)~(f). Since the graph cut method
models the object cutout task as a binary labeling problem and
they solve the problem by minimizing the energy function,
which encodes both color and contrast information, we choose a
simple way for illustration. Suppose we only consider the color
distribution for foreground/background segmentation, and
ignore the contrast between neighboring pixels. The graph cut
method can be deemed as the pixel-by-pixel decision based on
the color distribution. The pixels are classified to be Foreground
(F) or background (B) when its probability is higher than the
other one. As an example, the initial color distributions of
foreground (red line) and background (blue line) are shown in
Fig.2(e), and an extra background stroke is added with the new
color model of background is shown in Fig.2(f). The
background shrinkage occurs when the original blue line draws
away from the red line, which is the case in Fig.2(b); and the
background expansion occurs when a new peak of blue line
rises up near the foreground model, which is the case in Fig.2(d).
When this expansion or shrinkage is out of user’s expectation, it
will cause the unpleasant result in the user experience.

User experience is of great significance in many interactive
tools including the interactive object cutout and pasting. It also

plays an important role in the commercial products from a broad
range. Therefore, how to enhance the user experience in the
process of interactive object cutout is worthy of intensive study.

(a) (b)

(c) (d)

(e) (f)

Figure 2. The additional stroke may cause unexpected changes
in the labeling results if only updating color models. (a) and (c)
are the segmentation results of ‘man’ (a) and ‘pity dog’ (c) with
the initial two strokes, respectively; (b) and (d) are their
corresponding segmentation results after the additional stroke is
given. Yellow stroke marks foreground, and blue stroke marks
background. The green arrow points at the additional stroke.
The over-shrinkage and over-expansion of the background are
respectively visible in (b) and (d) as the red circles show; (e) is
the color model with initial two strokes; (f) is the new color
model updated after the additional stroke is given.
This paper addresses this issue from studying the user’s
intention behind the additional stroke that the user specified.
The key ideas originate from two observations. First, in each
step, the user’s intention is hinted by the user interaction such as
the additional stroke, and it can be extracted by studying the
characteristics of the user interaction. Second, we observe that
the additional stroke indicates the user’s intention from at least
three aspects as shown in Fig3: 1) the additional stroke falls in
the erroneous areas indicating that the user inclines to change
the results in such areas; 2) the color (in fact, label) of the stroke
indicates which kind of change s/he expects, yellow stoke
(Foreground label) in the background indicating s/he would like
to change part of the background into foreground and vice versa.
For those regions already with the same label as the additional

252

stroke (such as the green region in Fig.3b), the user does not
expect them to change the labels, at least at the current step; 3)
the location of the stroke indicates region of interest for the user,
with high interest around the stroke (such as the red region in
Fig.3b), and low interest in other erroneous areas (such as the
pink region in Fig.3b).

 (a) (b)

Figure 3. User’s intention hinted behind the user interaction. (a)
Additional stroke when segmentation result of the initial two
strokes is given, as the green arrow points at; (b) User’s
intention behind the additional stroke, green for unchanging area,
red for high interest area, and pink for low interest area.

Based on these observations, we propose a progressive cut
algorithm to incorporate the user intention into the process of
interactive object cutout in order to enhance the user experience.
A new graph cut model is proposed to exploit the user’s
intention behind the additional stroke that user specified, which
leads the segmentation result altered along the user’s
expectation. The new algorithm reduces or even eliminates the
unexpected fluctuation effect of existing stroke-based graph-cut
methods, and thus provides the user a more controllable result
with fewer strokes and faster visual feedback.

2. PROGRESSIVE CUT
Before we propose the new algorithm for progressive cut, we
first study the user interactions, from which we conclude several
nontrivial observations on user intention behind the interaction.
Then we model the user intention into the graph-cut framework.

2.1 User interaction study
We asked 7 users to attend our user interaction study. All the
subjects have no prior knowledge of interactive object cutout
systems. Four images with previous segmentation results, “pity
dog”, “bride”, “boy”, and “Indian girl”, were used as the test
images. The subjects were asked to add an additional stroke on
the original image based on the segmentation result indicated by
the red line in Fig.4. Before the test started, they were allowed
to try out using strokes for object cutout for five minutes. The
test was conducted independently among the users. The spatial
distributions of their additional strokes are displayed in Fig.4,
where the silhouette indicates the ground truth of the cutout
result (black for background and white for foreground), and the
additional strokes from 7 users are displayed in green
(background) or yellow (foreground). The brighter color (such
as bright green) represents higher density.

(b) “bride”

 (a) “Indian girl”

(c) “pity dog”

(d) “boy”

Figure 4. Spatial distributions of the additional strokes added by
the subjects in the user interaction study. The silhouette
indicates the ground truth, and the red line indicates the given
segmentation result. Yellow stroke marks foreground, and green
marks background.
From the figure, we can see that there are some variations in the
interactions from various users. For example, in Fig.4(b) where
erroneous areas exist on both foreground and background, some
users add a foreground (yellow) stroke, and some add a
background (green) stroke. Besides that, in Fig.4(d), even when
all the users add a foreground stroke, they may mark it at
different positions, some on the arm, and some on the foot.
Additionally, different kinds of stokes were given by different
users: some are within the previous segmentation region, while
others across the previous segmentation boundary at one side or
both sides, which will be described by Fig.6 in the next section.
However, we can still observe some common points:
1) There is a user evaluation process going on before the user

gives the additional stroke, i.e. the user evaluates the
previous segmentation result before s/he gives the additional
stroke.

Note that the additional strokes are not uniformly spatially
distributed on the whole image, but mostly concentrated in those
erroneous areas, which is resulted by user evaluation. This
suggests that the user intention is hinted behind the additional
stroke, and we should add a user intention analysis module in
the process of progressive cut. Here, we propose a system flow
as shown in Fig.5(a) for progressive cut, and this leads the result
to approach the user’s expectation step by step.
2) The user intention is embodied in three aspects:

a) The user’s attention concentrates on the erroneous areas,
which indicates that the user inclines to change the
results in the erroneous areas as expected.

253

Among the 28 strokes that we collected, all are centered in the
erroneous areas, although different kinds of user interactions are
given by different users. This implies that the user detects the
error areas, and s/he tends to correct these areas, treating them
in a way rather different from other areas.

b) The color of the stroke indicates which kind of change
s/he expects.

For instance, in the image “bride”, the yellow stroke indicates
that s/he would like to change part of the current background
into foreground, while the green stroke indicates the opposite
intention. This implies that the user sets different attention for
foreground error and background error. For those regions with
the same label as the additional stroke, s/he does not expect
them to change labels at the current step.

c) The location of the stroke indicates the region of interest.
As an example, the stroke on the left arm of “boy” indicates the
current user pays more attention to this area than other
erroneous areas (such as in the left leg), while the stroke on the
left leg indicates the attention of another user. This says that
s/he sets higher priority for changing the region around the
stroke s/he specified, than the other erroneous areas.

2.2 User Intention Model
With these observations, we build the user intention model as
follows. Denote F as the Foreground and B as the Background
(F B=). The foreground area in the previous segmentation
result P is denoted as FΩ and the background area denoted as

BΩ . The label of the additional stroke is denoted as
H ({ , }H F B∈). Its location is denoted as L , and the label
sequence of the pixels on the additional stroke is denoted as

{ }iN n= , where { , }in F B∈ (e.g. there is { , , }N B F B= when
N starts from a region in the background, runs across the
foreground and ends in the background). The intention of the
user is denoted as I, and it contains three parts: U is the
unchanging region where the user does not expect to change the
segmentation label; R is the region of interest; and T is the kind
of change that the user expects (e.g. { : }T F B R= → indicates
that the user expects the region of interest to have high priority
for turning from foreground into background). The user
intention model can be described as Fig.5(b) shows.

Segmentation

User
interaction

User intention
analysis

User
evaluation

Result

(a) (b)

Figure 5. Systematic framework for progressive cut. (a)system
flow; (b) user intention analysis module.

Case 1: When H B= , and { }N F= , there is BU = Ω ,
() FR L= ΩIN , { : }T F B R= → , where ()LN is the

neighborhood of L .

Case 2: When H F= , and { }N B= , there is FU = Ω and
() BR L= ΩIN , { : }T B F R= → .

Other Cases: In case that the stroke runs across both the
background and foreground, such as { , }N F B= or

{ , }N B F= in Fig.6(b), and { , , }N B F B= in Fig.6(c), there are

HU = Ω , () HR L= ΩIN , { : }T H H R= → where { , }H F B∈ .

In fact, it is easy to find out that no matter what N is, there is
always HU = Ω , () HR L= ΩIN , { : }T H H R= → .

(a) (b) (c)

Figure 6. Three kinds of strokes. The blue marks the
background in the previous segmentation result, the yellow
marks the foreground, and the purple marks the additional
stroke with H as its label where { , }H F B∈ .

2.3 Graph Cut Framework
In the following, we will model the segmentation problem in a
graph cut framework, and incorporate the user intention into the
graph cut model. Suppose that the image is a graph { , }=G V E ,
where V is the set of all nodes and E is the set of all arcs
connecting adjacent nodes. Usually, the nodes are pixels on the
image and the arcs are adjacency relationships with four or eight
connections between neighboring pixels. The labeling problem
(or foreground/background segmentation or object cutout) is to
assign a unique label ix for each node i∈V , i.e.

ix ∈{foreground (=1), background (=0)}. The labeling problem
can be described as the optimization problem which minimizes
the energy defined as follows by min-cut/max-flow algorithm
[7]:

1 2
(,)

() () (1) (,)i i j
i i j

E X E x E x xλ λ
∈ ∈

= + −∑ ∑
V E

 (1)

, where 1()iE x is the data energy, encoding the cost when the
label of node i is ix , and 2 (,)i jE x x is the smoothness energy,
denoting the cost when the labels of adjacent nodes i and j are

ix and jx respectively.

We now consider how to model our progressive cut in the above
energy minimization framework. From the user interaction
study and user intention analysis in Sec.2.1 and Sec.2.2, we can
get { , , }I U R T= with the new stroke { , }H L and the previous
segmentation result P. From U, we can erode the graph on the
whole image { , }=G V E into a smaller graph ' { ', '}=G V E for
faster computation. From U, R, and T, we can define the energy
function as

' '

'(,)

() () ()

(1) (,)

color i user i
i i

contrast i j
i j

E X E x E x

E x x

α β

α β
∈ ∈

∈

= +

+ − −

∑ ∑

∑
V V

E

 (2)

, where ()color iE x is the color term energy, encoding the cost in
color likelihood, ()user iE x is the user intention term, encoding
the cost in deviating from the user’s expectation I={U,T,R},

(,)contrast i jE x x is the contrast term or smoothness term, which

254

constrains the neighboring pixels with low contrast to select the
same labels.

2.3.1 Eroded graph for progressive cut
Denote the segmentation result as { }iP p= , where ip is the
current label of pixel i , with the value 0/1 corresponding to
Background/Foreground, respectively. Further denote the
locations of the additional stroke specified by the user as a set of
nodes 1 2{ , , }tL i i i= ⊂L V , H , U , T and R are the same as in
Sec2.2. Suppose H F= as shown in Fig.7(a), we can get

FU = Ω , () BR L= ΩIN , { : }T B F R= → , according to the
user intention analysis in Sec.2.1 and Sec.2.2. In this case, we
first construct a new graph ' ' '{ , }=G V E by eroding U (except
the pixels neighboring to the boundary) out of the graph on the
whole image { , }=G V E , as shown in Fig.7(b). Such erosion
itself fits in with the user’s intention, since nodes being eroded
all lie in the unchanging region U . The energies and the
corresponding energy optimization in the following sections are
defined on the eroded graph 'G .

 (a) graph G (b) eroded graph 'G

Figure 7. Construction of the eroded graph. (a) is the original
graph on the whole image, G . (b) is the eroded graph, 'G .

2.3.2 Color term
The color term ()color iE x in Eq.(2) is defined as follows. Assume
the foreground stroke nodes is denoted as

1{ , }F F FMi i= ∈LV V and the background stroke nodes denoted
as 1{ , }B B BMi i= ∈LV V . The color distribution of foreground
can be described as a GMM model, i.e.

1

() (, ,)
K

F i k Fk Fk Fk i
k

p C p Cω μ
=

= Σ∑ (3)

, where Fkp is the k -th Gaussian component with the mean
and covariance matrix as { , }Fk Fkμ Σ , and kω is the weight. The
background color distribution pB(Ci) can be described in a
similar way.

For a given node i with color iC , the color term is defined as:

If '
Fi∈ IV V , there is (1) 0, (0)i iE x E x= = = = +∞ ;

If '
Bi∈ IV V , there is (1) , (0) 0i iE x E x= = +∞ = = ;

Otherwise,

()
() ()

()
() ()

log ()
(1) ,

log () log ()

log ()
(0) .

log () log ()

F i
i

F i B i

B i
i

F i B i

p C
E x

p C p C

p C
E x

p C p C

= =
+

= =
+

 (4)

2.3.3 Contrast term
The contrast term (,)contrast i jE x x defined as a function of the
color contrast between two nodes i and j :

(,) | | ()contrast i j i j ijE x x x x g C= − ⋅ (5)

where 1()
1

g ξ
ξ

=
+

, and
2

ij i jC C C= − is the 2L -norm of the

RGB color difference of two pixels i and j. | |i jx x− allows to
capture the contrast information only along the segmentation
border. Actually contrastE is a penalty term when adjacent nodes
are assigned with opposite labels. The more similar in color the
two nodes are, the larger contrastE is, and thus the less likely they
are assigned with opposite labels.

2.3.4 User intention term
The user intention term userE is a nontrivial term, which is
presented in this paper to encode the cost in deviating from the
user’s expectation. Since HU = Ω , that is, the unchanging region
contains all the pixels with the same label as the additional
stroke, we set its corresponding user intention term as:

()
, '

() 0
user i

H

user i

E x H
i

E x H

⎧ = = +∞⎪ ∀ ∈Ω⎨
= =⎪⎩

IV (6)

Since ()
H

R L= ΩIN and { : }T H H R= → , this means, for the
pixels with label opposite to that of the additional stroke, the
user’s attention is concentrated in the neighborhood of the
stroke, and it decreases as the distance to the stroke becomes
larger. Therefore we set the user intention term as:

1
min

() | | , 'kk t
user i i i H

i i
E x x p i

r
≤ ≤

−
= − ∀ ∈Ω IV (7)

where ki i− is the distance between the node i and ki ,

| |i ix p− is an indicator of label change, r is a parameter to
control the range of user’s attention: larger r implies larger
range. The implication of Eq.(7) is: there should be an extra cost
to change the label of a pixel, and the cost is higher when the
pixel is farther from the additional stroke. An example of the
energy of the user attention energy is shown in Fig.8(a) and
Fig.8(c).

2.3.5 Discussion
For clear discussion, we first introduce two terms, over-
expansion and over-shrinkage, as follows. Assume that the user
expects the label of the pixels in the area A to change into H . If
there is another area D outside of A , where the pixels change
their labels into H when their correct label is H , we call this
effect as the over-expansion of H; If there is another area E
outside of A where pixels change their labels into H when their
correct label is H , we call this effect as the over-shrinkage of
H . For example, as shown in Fig.2(b), the user adds a blue
stroke (background) behind the neck of the man, indicating s/he
would like to expand the background in such area. However, the
pixels behind his trousers changed their labels from Background
to Foreground, i.e., over-shrinkage of the background occurs
after the additional stroke is given. Similarly, in Fig.2(d), there
is an over-expansion of the background in the dog’s back (as the

255

red circle points out). From above, we can see that over-
expansion and over-shrinkage are two kinds of erroneous label
changes out of user’s expectation, so both of them will cause
unsatisfactory result.

(a) (b)

(c) (d)

Figure 8. The user attention energy in progressive cut and their
corresponding results. (a) and (c) are the user attention energy in
“man” and “pity dog”. Higher intensity indicates larger energy.
(b) and (d) are the segmentation results of progressive cut, with
the additional stroke pointed by green arrow.
Compared with the existing stroke-based graph-cut methods, our
algorithm can effectively prevent the over-shrinkage and
compress the over-expansion in the low-interest areas, as
Fig.8(b) and (d) show. The prevention of the over-shrinkage
(Fig.8(b) vs. Fig.2(b)) is carried out by eroding U out of the
graph on the whole image (see Fig.7) and setting the infinity
penalty as Eq.(6), which guarantees that there is no label change
in the areas whose label is the same as the additional stroke. The
compression of over-expansion (Fig.8d vs. Fig.2d) is carried out
by adding the user intention term as Eq.(7) in the energy
function, which assigns larger penalty to those areas farther
away from the user’s high attention area. In this way, the new
algorithm will change the result according to the user’s
expectation, and thereby provides the user a more controllable
result with no fluctuation effect and fewer strokes.
Another notable strength of the new algorithm is that it provides
a faster visual feedback. Since the eroded graph is generally
much smaller than the graph on the whole image, the
computational cost in the optimization process is greatly
reduced, as demonstrated by Table 1 in Sec.4.2.

2.4 Parameter Setting
In this section, we give details on how to set parameter r , which
is used to control the range of user’s attention. An automatic
scheme for setting r is employed to endow our algorithm with
adaptability. The key idea can be intuitively explained as
follows. Given the previous segmentation border and an
additional stroke specified by the user, if the stroke is near to the

border, it is probable that s/he cares for a small region around
the stroke, and thus a small parameter r should be selected.
Otherwise, her/his current attention range is likely to be large,
and thus a large r is set. Therefore, we dilate the additional
stroke with an increasing radius until the dilated stroke covers
5% of the total length of the border. r is set to be the radius
when the stroke stops dilation, as shown in Fig.9. Such a
parameter r measures the user’s current attention range, and it
makes our algorithm adaptive to different images, different
stages in the interaction, and different users.

Figure 9. Setting the parameter r

 (b) (c)

(a)

 (d) (e) (f)

(g) (h)

Figure 10. The tools of polygon and brush. (a) is the source
image “Indian girl” with the segmentation result using strokes.
The red rectangles show the region for adjustment by polygon
editing and brush; (b) and (c) are the region before and after
polygon adjustment; (d)(e)(f) are the regions before, during and
after the brush implementation; (g) is the final object cutout
result; and (h) is the composition result using the cutout result
(g).

3. SYSTEM
Considering the object cutout problem from the system side, the
strokes are generally used to remove the errors in large areas
quickly in a few steps with a few simple strokes. After the

256

erroneous area reduces to a considerably low level, we use
another two tools, polygon adjustment tool and brush tool, for
the local refinement. Such tools are employed in a similar way
as in [2], which is shown in Fig.10.
Furthermore, for the sake of computational speed, we conduct a
two-layer graph-cut similar to [2]. We first conduct an over-
segmentation by watershed and build the graph based on the
segments for a coarse object cutout, and then a pixel-level
graph-cut is implemented on the near-boundary area in the
coarse result for a finer object cutout.

4. EXPERIMENTS
The experiments are designed to compare the new algorithm
with existing stroke-based graph-cut methods from three aspects:
1) the segmentation accuracy in one single step with the same
initial segmentation result and the same additional stroke; 2) the
speed in one single step under the same condition as in 1); 3) the
controllability of the results in the process of interactive object
cutout using only strokes.

4.1 Accuracy
First we show a group of experiments presenting the
segmentation accuracy of our progressive cut in one single step,
comparing with GraphCut/LazySnapping [2], with the same
initial segmentation result and the same additional stroke. Two
examples have been presented in the previous sections, as
shown in Fig.2 and Fig.8. Here we give more results in Fig.11.
For the image “little girl”, over-shrinkage occurs in GraphCut/
LazySnapping after an additional stroke labeling the left foot as
foreground was given, see Fig.11(c). This is because that they
only use the color information in the additional stroke to update
the result. Since the initial strokes cover the hair in a small
region, thus the weight for the color of the (blond) hair in the
new foreground color model will be decreased, and the color of
(blond) hair is more likely to be classified as Background, than
using the initial color model. As a result, over-shrinkage of
foreground occurs, which is an unexpected effect in the result.
Compared with GraphCut/LazySnapping, we not only use the
updated color model, but also analyze the user’s intention when
s/he gives the additional stroke on the left foot. Such a stroke
implies that s/he would like to change part of the current
background to foreground, and accordingly we set the current
foreground as unchanging (FU = Ω). Thereby we successfully
prevent the over-shrinkage in the foreground as shown in (d).
Our algorithm is also effective in reducing over-expansion,
which can be shown in the images “bride”, “Indian girl”, and
“sleepy dog” in Fig.11. It is easy to observe that in the results of
GraphCut/LazySnapping, large areas of unexpected over-
expansion occur after the additional strokes (on the hair in
“Indian girl” and “bride”, on the mouth in “sleepy dog”) are
given, as the red rectangles in Fig11(c) mark out. As has been
analyzed in Sec.1 and Fig.2, the additional stroke makes the
foreground model move nearer to the background model, and
this leads that these areas are more likely classified into
foreground and over-expansion occurs when using the existing
stroke-based graph cut methods. Such cases do not happen in
our results (Fig.11(d)), since we have analyzed the user’s
attention and set the regions far away from the user attention
area with less probability to change, by Eq.(7).

4.2 Speed
In Sec2.3.5, we have mentioned that the our algorithm will save
much time than the existing graph cut methods [1,2], due to the
eroded graph. To demonstrate this strength, we compare the
time cost of our algorithm with that of existing graph cut
method in Table 1, using “Indian girl”, “man”, “pity dog”,
“sleepy dog”, “bride”, and “little girl” as the test images. The
running time is tested on a PC of P4-3.0G, 1G RAM, under the
OS of Windows XP. For simplicity, we only list out the time
cost in energy minimization under the same condition as Sec.4.1.
From the table, we can see that the time cost is greatly reduced,
which enables our system to give a faster visual feedback to the
user.

Table 1. Comparison of graph cut and progressive cut in
speed

Image
our
cost

(sec.)

graph
cut cost

(sec.)

initial
foreground

size
(pixels)

image size
(pixels)

r
(pixels

)

Indian girl 0.16
7 0.462 122,629 435*639 22

man 0.10
7 0.843 35,120 635*640 15

Pity dog 0.13
5 0.187 208,393 640*609 23

Sleepy dog 0.14
9 0.645 127,877 640*446 9

Bride 0.16
3 0.794 100,551 470*640 8

Little girl 0.12
3 0.281 56,067 480*640 23

4.3 Controllability
To study the controllability of the results in the process of
interactive object cutout using only strokes, we select two
complex images, which need a considerable number of strokes if
we only use stroke tool, since the progress could be better
presented in more steps. The original image and the initial
segmentation results are shown in Fig.12(a), together with the
initial two strokes. To compare our algorithm with existing
stroke-based graph cut methods, all the initial conditions are set
to be the same, including the third stroke. After that, we ask 2
users who have no prior knowledge of our system before to
complete the object cutout task by using only strokes. We
record each step of the user interactions and the results as shown
in Fig.12: the newly input stroke is marked in yellow for
foreground, and blue for background; the result after the newly
input stroke is presented by silhouettes in the same image, black
for foreground and white for background. The “ground truth”
result of each image, shown as the red line, is also given in
Fig.12.
From the newly input stokes from the users, we find out again
that the user concentrated on the erroneous regions, as has been
concluded in our user interaction study. From the results, we can
see that in the process of using GraphCut/LazySnapping for
“lady” and “Agassi”, the region under the lady’s hat and the
region behind Agassi are cases of over-expansion. The same
case also appears in Step 5 of “lady”. Since we have involved
the user’s attention into our progressive cut framework, such
unexpected changes are effectively compressed. Hence we need
two less steps for both the two images to get an almost same
result, where fewer interactions are required.

257

We also evaluate the process by the error rate in each step,
which is the ratio of erroneous area to the whole image area, as
shown in Fig.13. The fluctuation is obvious in the performance
curve of GraphCut/LazySnapping, while there is no fluctuation
in our progressive cut algorithm. This is why we call our
algorithm progressive cut.

 (a) “lady” (b) “Agassi”
Figure 13. Error rate of each step in the process of object cutout.

5. USER STUDY
To study if the prevention of over-expansion/over-shrinkage, the
elimination of fluctuation, and the fewer strokes really lead to a
better user experience, we conduct the user study in this section.

Table 2. Questions and answer statistics for user study. (a).

two questions; (b) answer statistics for Q2.
(a)Questions (b)Answer Statistics

Q1: Which system do you prefer?
A. Graph Cut
B. Progressive Cut
C. No obvious preference

Q2: Why do you prefer that?
A. More accurate in one single step
B. No fluctuation in the whole process
C. Fewer strokes are required
D. Other reasons

We invite 11 users for test, among whom 5 have engineering
background while the other 6 have no background in
engineering. We first show them the results, including the single
step result in Fig.11, and the whole process result in Fig.12.
Then we ask 2 questions as shown in Table2(a). Among them,
Q1 is a single-choice question and Q2 is a multiple-choice one.
The answer statistics for Q2 are shown in Table2(b). All the 11
users tell us that they prefer our progressive cut system to
GraphCut/LazySnapping. Furthermore, 8 out of 11 users think
that the proposed method can achieve a more accurate result due
to the reduction of over-expansion and over-shrinkage; 5/11 say
that the elimination of fluctuation in the process are attractive; 7
of them report that to obtain a comparable result, our method
requires less interactions. In addition, 3 users give other reasons.
Among them, one user mentioned that the results of the
proposed method are faithful to the user’s intention, one user
thought progressive cut is more robust to various kinds of
images, and the other reported that using our system, he can
easily know how to give a stroke which will lead to the result he
expected.

6. CONCLUSION
In this paper, we presented a progressive cut algorithm for
background/foreground segmentation of image. We first analyze
the user intention behind the additional stroke that the user

specified, and then incorporate the user intention into the graph-
cut framework: an eroded graph is derived to prevent the over-
shrinkage, and a user attention term is added to the energy
function to compress the over-expansion in the area of low
interest. Experiments show that the new algorithm outperforms
the existing stroke-based graph cut methods in both accuracy
and speed, and it effectively removes the fluctuation effect in
the interaction process which makes the results more
controllable with requiring fewer strokes for the same task. With
these attractive properties, the system provides the user a more
pleasant experience in process of interactive object cutout,
which is reported by user study.
A future interesting topic would be the study on new
interactions for interactive object cut, rather than the existing
interactions such as using strokes in GraphCut/LazySnapping.
Another related topic might be a more thorough study on the
user intention model. Although we have made some initial
studies on this direction in our paper and revealed one
significant model for user intention analysis, these kinds of
study will help the system to provide more alternatives for the
user.

7. REFERENCES
[1] Boykov, Y., and Jolly, M.P., Interactive Graph Cuts for

Optimal Boundary & Region Segmentation of Objects in
N-D Images, ICCV’01, vol. I:105-112, 2001

[2] Li, Y., Sun, J., Tang, C.–K., and Shum, H.–Y., Lazy
Snapping, SIGGRAPH’04

[3] Rother, C., Kolmogorov, V., and Blake, A., “Grabcut”—
interactive foreground extraction using iterated graph cuts,
SIGGRAPH’04.

[4] Talbot, J.F., and Xu, X., Implementing Grabcut,
http://students.cs.byu.edu/~jtalbot/research/Grabcut.pdf

[5] Moretensen, E., and Barrett, W., Intelligent scissor for
image composition, SIGGRAPH’95

[6] Adobe System Incorp. Adobe Photoshop User Guide, 2002
[7] Boykov, Y., and Kolmogorov, V., An Experimental

Comparison of Min-Cut/Max-Flow Algorithms for Energy
Minimization in Vision, PAMI, 26(9):1124-1137, 2004.

[8] Vezhnevets, V., and Konouchine, V., “GrowCut”—
interactive multi-label N-D image segmentation by cellular
automata, Graphicon’2005.

[9] Chuang, Y.-Y., Curless, B., Salesin, D., and Szeliski, R., A
Bayesian approach to digital matting. CVPR’01, 2001.

[10] Corel Corporation. Knockout user guide. 2002
[11] Ruzon, M., and Tomasi, C., Alpha estimation in natural

images. CVPR’00, 2000
[12] Reese, L., Intelligent Paint: Region-Based Interactive

Image Segmentation. Masters Thesis, Brigham Young
University, Provo, UT, 1999

[13] Cleicher, M. Image snapping. SIGGRAPH’95
[14] Perez, P., Blake, A., and Gangnet, M. Jetstream:

Probabilistic contour extraction with particles. ICCV 2001.

258

(a) source image (b) initial result (c) graph cut [2] (d) progressive cut

Figure 11. Comparison of Progressive Cut with Graph Cut on the accuracy in one single step. Different image sources are shown in
different rows. From top to bottom, they are “Indian girl”, “bride”, “sleepy dog” and “little girl”. (a) are the source images. (b) are the
initial segmentation results, along with the initial two strokes are marked, yellow for foreground, and blue for background (c) are the graph
cut results after an additional stroke (directed by green arrow) is given. (d) are progressive cut results, with the same additional stroke.

259

(a) The source images and the initial segmentation results with the initial two strokes. From left to right, the first two are the source image
and initial result of “lady”, and the last two are those of “Agassi”.

(b) Step 3-7 in the process of using graph cut for interactive object cutout on “lady”

(c) Step 3-5 in the process of using progressive cut for interactive object cutout on “lady”.

(d) Step 3-9 in the process of using graph cut for interactive object cutout on “Agassi”.

(e) Step 3-7 in the process of using progressive cut for interactive object cutout on “Agassi”

Figure12. Comparison of progressive cut with graph cut on the process of interactive object cutout. The newly input stroke is marked in
yellow for foreground, and blue for background; the result after the new input stroke is presented by silhouettes in the same image, black
for foreground, and white for background. The ground truth is shown by red line.

260

