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Abstract

This paper proposes a new approach to 3D reconstruc-
tion of piecewise planar objects based on two image reg-
ularities, connectivity and perspective symmetry. First, we
formulate the whole shape of the objects in an image as a
shape vector consisting of the normals of all the faces of the
objects. Then, we impose several linear constraints on the
shape vector using connectivity and perspective symmetry
of the objects. Finally, we obtain a closed-form solution to
the 3D reconstruction problem. We also develop an efficient
algorithm to detect a face of perspective symmetry. Experi-
mental results on real images are shown to demonstrate the
effectiveness of our approach.

1. Introduction

3D object reconstruction from images is an important re-
search area in computer vision. It has many applications
such as user-friendly query interface for 3D object retrieval
and 3D photo-realistic scene creation for game, movie, and
webpage design. The tremendous effort devoted to this area
has indicated that inference of 3D shapes from 2D images
is very challenging, and is generally underconstrained, even
from multiple views of a scene or an object.

Extensive research has been done on 3D reconstruction
from multiple views [1]. In most cases, however, we have
only one view of an object or a scene. 3D object reconstruc-
tion from one single view is obviously a harder problem be-
cause less information is available in one view than in mul-
tiple views. Although this problem is generally ill-posed,
the human visual system can easily perceive the 3D shapes
of the objects in an image based on the knowledge learnt. In
this paper, we focus on 3D reconstruction of piecewise pla-
nar objects from single images. These objects are often seen
in daily life. Because so far there are no edge detection al-
gorithms that can provide only the useful edges reliably in
a common scene, some human interaction is required. In

our system, the user draws the edges of the objects in an
image, and then the system recovers the 3D shapes of the
objects. In our approach, we formulate the whole shape of
the objects in an image as a shape vector consisting of the
normals of all the faces of the objects. On the shape vec-
tor, we develop several linear constraints using connectivity
and perspective symmetry of the objects. A closed-form
solution to the 3D reconstruction problem can be obtained.
We also develop an efficient algorithm to detect a face of
perspective symmetry.

2. Related work

Many methods have been proposed for 3D reconstruc-
tion from single images [2], [3], [4], [5], [6], [7], [8], and
[9]. Zhang et al. [2] tried to reconstruct free-form 3D model
from a single image. This method needs a lot of user inter-
action and may take more than an hour for the user to spec-
ify constraints from an image. Prasad et al. [3] recovered a
curved 3D model from its silhouettes in an image, which is a
development of that in [2] and does not need so much inter-
action, but the reconstructed objects are restricted to those
whose silhouettes are contour generators where the surface
normals are known. The Facade system [4] models a 3D
building using parametric primitives from a single view or
multiple views of the scene. Liebowitz et al. [5] created
architectural models using geometric relationships from ar-
chitectural scenes. Their method requires to rectify two or
more planes and to compute the vanishing lines of all the
planar faces. Besides, the reconstruction errors may accu-
mulate. Sturm and Maybank’s method [6] first does cam-
era calibration, then recovers part of the points and planes
by assuming the availability of some vanishing points and
lines, and finally obtains the 3D positions of other faces by
propagation. The drawbacks of this method are that the
parts of the objects have to be sufficiently interconnected
and the reconstruction errors may be accumulated. Jelinek
and Taylor [7] proposed a method of polyhedron reconstruc-
tion from single images using several camera models. The
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Figure 1. The camera model and the coordinate system.

main restriction of this method is that the polyhedra have
to be linearly parameterized, which limits the application
of the method. Shimodaira [8] used the shading informa-
tion, one horizontal or vertical face, and convex and con-
cave edges to recover the shape of polyhedra in single im-
ages. This method handles very simple polyhedra only. Li
et al. [9] utilized image regularities, such as connectivity,
parallelism, and orthogonality, to infer the 3D structure of
piecewise planar objects. The common point in 3D recon-
struction from single images is that user interaction is a nec-
essary step.

The above methods do not exploit the regularity of sym-
metry for 3D reconstruction. Symmetry is known as one of
the basic features of a large variety of objects and shapes.
The fact that symmetry can impose strong constraints on
3D shapes has been noted for a long time. Kanade [10] first
used skewed symmetry to help infer 3D shapes under or-
thography projection. Ulupinar and Nevatia [11] extended
the skewed symmetry to convergent symmetry. Some re-
searchers focused on 3D reconstruction of one symmetric
object [12], [13] [14], [15].

3. The imaging model and the shape vector

In this paper, homogeneous coordinates are used for the
analysis of the problem unless Euclidean coordinates are
specified somewhere. Besides, due to limited cues pre-
sented in a common image, we assume that a simplified
camera model is given with such a calibration matrix

K =

⎛
⎝

−f 0 0
0 −f 0
0 0 1

⎞
⎠ , (1)

where f is the focal length that needs to be found. Further-
more, without loss of generality we align the world frame
with the camera frame as shown in Fig. 1, where the im-
age plane is Z = −f , and the projection matrix takes a
simple form P = [K|0]. The relation between a point
M = (X, Y, Z, 1)T in the world frame and its projection
m = (x, y, 1)T in the image is λm = PM, from which we
have λ = Z , X = −Zx/f , and Y = −Zy/f .

A scene is said to be projected from a generic view if per-
ceptual properties in the image are preserved under slight

variations of the viewpoint. We suppose that the objects in
an image are the projection in a generic view where no any
face is projected to a line. Let π = (a, b, c, d)T denote a
plane ax + by + cz + d = 0 in 3D space. It is easy to show
that d �= 0 when π is in a generic view. Assume, to the con-
trary, that d = 0. Then the camera center, v = (0, 0, 0, 1)T ,
satisfies πT v = d = 0, implying that π passes through v
and is projected as a line, which contradicts the assumption
that π is in a generic view.

Therefore, a plane in a generic view can be written as
π = (a, b, c, 1)T = (RT , 1)T , where R = (a, b, c)T is
the normal of the plane. Since we are dealing with pla-
nar objects consisting of faces, R is also called the nor-
mal of a face that is passed through by π. We repre-
sent the objects of interest in a scene with a vector q con-
sisting of all the normals of the faces of the objects, i.e.,
q = (RT

1 ,RT
2 , ...,RT

Nf
)T , where Nf is the number of

faces. We call q the shape vector of the objects. It is worth
noting that the objects are determined by the shape vector
up to a scale. In Sections 5 and 6, we impose geometric
constraints on the shape vector using the regularities of con-
nectivity and perspective symmetry in the image.

4. Finding the focal length and the faces

We employ the well-known method presented in [16] to
find the focal length as long as two finite vanishing points
associated with two perpendicular directions in 3D space
can be located in the image. From most man-made planar
objects, it is not difficult for the user to find two sets of lines
where in 3D space the lines in each set are parallel and two
lines from different sets are perpendicular. For example, if
the user can identify a quadrilateral that is the projection of
a rectangular, then the two sets of lines are available.

Let v1 = (x1, y1, 1)T and v2 = (x2, y2, 1)T be the
two vanishing points obtained from such two sets. Then
((K−1v1)T , 0)T and ((K−1v2)T , 0)T are the associated
directions in 3D space [16]. Thus (K−1v1)T (K−1v2) = 0,
from which we have

f =
√

−(x1x2 + y1y2). (2)

In the case where there are more than one pair of such van-
ishing points, we take the average of the values obtained by
(2) as the final focal length. In what follows, we assume
that the focal length f has been obtained using this method
(or some other methods).

After the user draws a line drawing along the edges of
the objects in an image, we use the algorithm proposed in
[20] to identify the faces of the objects. Therefore, we also
assume that the faces of the objects are available.

5. Connectivity

In a planar object, a vertex is often shared by more than
one face. This connectivity leads to constraints that relate



the normals of these faces through the vertex.
Let x = (x, y, 1)T be the imaged vertex of X =

(X, Y, Z, 1)T which lies on both the ith face (plane) πi =
(ai, bi, ci, 1)T = (RT

i , 1)T and the jth face (plane) πj =
(aj , bj, cj , 1)T = (RT

j , 1)T . Then, λx = PX, πT
i X = 0,

and πT
j X = 0, where λ is some nonzero scalar. From these

relations, we have

RT
i x′ = RT

j x′ = f/Z, (3)

where x′ = (x, y,−f)T is the 3D Euclidean coordinate of
x. Furthermore, we have

(x′T ,−x′T ) · (RT
i ,RT

j )T = 0. (4)

The constraint in (4) is called the shared vertex con-
straint. Similarly, if the vertex x′ is shared by n faces,
π1, π2, ...,πn, we have n − 1 independent constraints:

(x′T ,−x′T ) · (RT
k ,RT

k+1)
T = 0, k = 1, 2, ..., n− 1. (5)

In terms of the shape vector q = (RT
1 ,RT

2 , ...,RT
Nf

)T , (5)
can be written in matrix form:

A1q = 0, (6)

where A1 is a matrix of size (n − 1) × (3Nf). This is the
shared vertex constraint contributed by one imaged vertex
x′ shared by the n faces. Putting the constraints from all
the shared vertices together, we have

Aq = 0, (7)

where A = (AT
1 ,AT

2 , ...,AT
Nv

)T , Nv is the number of all
the vertices of the objects. We call (7) the connectivity con-
straints.

6. Perspective symmetry

A planar face of bilateral symmetry usually does not
exhibit bilaterally symmetric in its perspective projection.
However, this projection still preserves some kind of sym-
metry, which is called the perspective symmetry. In this pro-
jection, all lines joining corresponding points intersect at a
common point called the perspective point, and the projec-
tion of the symmetry axis is called the perspective symmetry
axis. In this section, we formulate constraints on the shape
vector q using perspective symmetry. We also develop an
efficient algorithm to detect faces of perspective symmetry.

It should be noted that a non-bilaterally symmetric face
may be projected as a face of perspective symmetry. For ex-
ample, a face of perspective symmetry is always projected
as another face of perspective symmetry. However, it is a
common experience that a face of perspective symmetry in
an image is usually the projection of a face of bilateral sym-
metry in 3D space. Previous research has shown that this
phenomenon is non-accidental [19]. Therefore, it is reason-
able to make the following assumption.

Assumption 1. A face of perspective symmetry in an image
is the projection of a face of bilateral symmetry.

6.1. Constraints on the Shape Vector

The orientation of a face of bilateral symmetry turns out
to be encoded in its projection, as stated in the following
theorem.

Theorem 1. The normal R of a face of bilateral symmetry
in 3D space is given by

R = (K−1x) × (K−1x × KT l). (8)

where K is the calibration matrix, x and l are the perspec-
tive point and the perspective symmetry axis of the projec-
tion of the face.

The proof can be found in [17]. Below we impose con-
straints on the shape vector q using this theorem. Let Fi,
xi and li, i = 1, ..., m, be the faces of perspective symme-
try, the corresponding perspective points, and the perspec-
tive symmetry axes, respectively. Let c1

i = K−1xi and
c2

i = K−1xi × KT li. Then from (8), we have c1T
i Ri =

c2T
i Ri = 0. Thus

BT
i q = 0, i = 1, ..., m, (9)

where Bi = (02×3(i−1) Ci 02×3(Nf−i))T , Ci =
(c1

i , c
2
i )

T , and 02×3(i−1) and 02×3(Nf−i) are two zero ma-
trices of size 2 × 3(i − 1) and 2 × 3(Nf − i), respectively.
Putting all these equations in matrix form, we have

Bq = 0, (10)

where B = (B1,B2, ...,Bm)T . We call (10) the symmetry
constraints.

6.2. Detecting faces of perspective symmetry

In this section, we discuss how to detect faces of per-
spective symmetry, as well as the corresponding perspective
points and the perspective symmetry axes.

Given a face of perspective symmetry, there exists a
transformation that maps a point to its corresponding point
[18]. In particular, under this transformation, the perspec-
tive point is a fixed point, and the perspective symmetry
axis is a line of fixed points. Such a transformation can
be represented as a 3 × 3 nonsingular matrix, denoted by
H = (hij)3×3. Note that H has 8 degrees of freedom in
homogeneous coordinates. Once H is known, the perspec-
tive point is given by the eigenvector of H corresponding
to the eigenvalue with algebraic multiplicity 1, and the per-
spective line is determined by the two eigenvectors of H
corresponding to the eigenvalue with algebraic multiplicity
2 [18]. Below we show how to find H.



Let (xi,x∗
i ), i = 1, 2, ..., n, be n pairs of corresponding

points. Then we have x∗
i × Hxi = 0 and xi × Hx∗

i = 0,
i = 1, 2, ..., n, which can be expressed in matrix form as

Sh = 0, (11)

where h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)T .
The optimal solution to (11) in the sense of least squared
error is well known as the eigenvector of ST S associated
with the smallest eigenvalue.

Before giving the algorithm for detecting a face F of per-
spective symmetry, it is necessary to discuss two facts. Let
F be a polygon with {x0,x1, ...,xN−1} being the set of
clockwise ordered corner points. Then a corner point of
F must be mapped to another corner point or itself. The
second fact is that given one pair of corresponding cor-
ner points, other pairs of corresponding corner points can
be deduced. Specifically, if xi corresponds to xj , then
x(i−k)modN corresponds to x(j+k)modN , k = 0, 1, ..., N −
1. Based on H and these facts, we develop Algorithm 1.

Algorithm 1 Detecting a Face of Perspective Symmetry

1: Let {x0,x1, ...,xN−1} be the ordered corner points of
the face.

2: For every xi, take (x(1+k)modN ,x(i−k)modN ) as the
pair of corresponding points, k = 0, 1, ..., N − 1.

3: Form S in (11) using
(x(1+k)modN ,x(i−k)modN), k = 0, 1, ..., N − 1.

4: Solve for hi (Hi) from (11).
5: Compute the perspective symmetry cost ci =∑N−1

k=0 d(Hi(x(1+k)modN ),x(i−k)modN ),
where d(·, ·) denotes the Euclidean distance
between two points in Euclidean coordinates.

6: If cj = mini{ci} < t, where t is a threshold, then
the face is judged as a face of perspective symmetry,
and the perspective point and the perspective symmetry
axis are computed from Hj .

7. Constraint by fixing a vertex

Prior to 3D reconstruction, we set a depth (Z-coordinate)
Z0 to one vertex x0 = (x0, y0) which is assumed to be
on the ith face with normal Ri. Note that it should satisfy
−Z0 > f since the 3D objects are on the right-hand side of
the image plane (see Fig. 1). Then by (3) we have

RT
i x′

0 − f/Z0 = 0, (12)

where x′
0 = (x0, y0,−f)T is the 3D Euclidean coordinate

of x0. Let E = (01×3(i−1),x′T
0 ,01×3(Nf−i−1)). Then (12)

can be rewritten as

Eq = f/Z0. (13)

8. Constraint by a common plane

In many cases, there are more than one object present in
an image. To obtain the 3D reconstruction of these objects
simultaneously, we need to impose an additional constraint
to relate them. A direct and simple cue comes from the
observation that these objects are usually located on a com-
mon plane, such as those shown in the experiments. This
cue is pointed out by the user specifying which vertices are
on this common plane. Suppose that the common face is
the jth face of the objects. For instance, for the objects in
Fig. 2(a), the common plane is the one passing through the
6th face (see Fig. 2(b)), and the vertices 1, 3, 11, 12, 16, 21,
30, and 31 are on this face (see Fig. 2(c)). Thus the 1st ver-
tex is on both the 1st face and the 6th face, the 3rd vertex is
on the 1st, the 5th, and the 6th faces, and so on. Similar to
the analysis in Section 5, we can impose these connectivity
constraints on the shape vector in matrix form

Gq = 0. (14)

9. Algorithm for 3D reconstruction

So far we have obtained a number of constraints on the
shape vector with connectivity, perspective symmetry, fix-
ing a vertex, and a common plane, which result in the fol-
lowing equation:

Mq = b, (15)

where M = (AT ,BT ,GT ,ET )T , b = (0, ..., 0, f/Z0)T .
Thus the optimal solution, in the sense of least squared er-
ror, to this system is q = (MT M)−1MT b. The complete
algorithm for 3D reconstruction is listed in Algorithm 2.

Algorithm 2 3D Reconstruction of Piecewise Planar Ob-
jects from Single Images

1: Draw lines along the edges of the objects in an image.
2: Use the algorithm in [20] to find the faces of the objects.
3: Form the connectivity constraints in (7): Aq = 0.
4: Find the faces of perspective symmetry with Algorithm

1.
5: Form the symmetry constraints in (10): Bq = 0.
6: Form the depth constraint in (13): Eq = f/Z0.
7: Form the common plane constraint in (14) when there

are multiple objects: Gq = 0.
8: Form the system in (15): Mq = b.
9: Compute the shape vector q = (MT M)−1MTb.

10: For any vertex (X, Y, Z) (with x′ = (x, y,−f)T as its
image in the image plane), compute all the Z-coordinate
Zi by Zi = f/(RT

i x′) (see (3)) if it is on ith face (with
normal Ri). Take the average as the final Z-coordinate
Z if there are multiple Zi. Compute the X-coordinate
and Y-coordinate by X = −Zx/f , Y = −Zy/f .
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Figure 2. (a) An image with lines drawn on the edges of the desired objects. (b) The 16 faces. (c) The 36 vertices of the objects.
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Figure 3. (a) The 10th face with ordered corner points. (b) The
log(c) vs. vertex figure for (a). (c) The 5th face with ordered
corner points. (d) The log(c) vs. vertex figure for (c).

10. Experiments

To illustrate our approach, we first focus on detecting
faces of perspective symmetry with the image in Fig. 2(a),
then give a number of 3D reconstruction examples.

10.1. Detecting faces of perspective symmetry

We first draw lines along the edges of the objects in
Fig. 2(a). Then the 16 faces found by the algorithm in [20]
are shown in Fig. 2(b). Next we use Algorithm 1 to identify
the faces of perspective symmetry from these 16 faces.

Let us take two faces in the objects as examples. Fig. 3(a)
shows the 10th face (see Fig. 2(b)) with ordered corner
points. Fig. 3(b) is the log(c) vs. vertex figure where c
is the perspective symmetry cost (see Algorithm 1). It is
clear that the pair (x1,x5) is of the smallest cost 0.0014. In
all our experiments, the threshold t is set to 0.01. Thus this
face is considered as a face of perspective symmetry.

For the 5th face with ordered corner points shown in
Fig. 3(c), Fig. 3(d) is the log(c) vs. vertex figure. In this
case, the pair (x1,x5) results in the smallest perspective
symmetry cost 0.040. since 0.040 > t, this face is not con-
sidered as a face of perspective symmetry.

For the objects in Fig. 2(a), 14 faces (1, 2, 3, 4, 7, 8,
9, 10, 11, 12, 13, 14, 15, and 16) are identified as faces of
perspective symmetry.

10.2. 3D Reconstruction

We have conducted a number of experiments on real im-
ages to verify the effectiveness of our approach. Due to the
space limitation, only part of them are given here. In Fig. 4,
(a1)–(d1) are the original images with the drawn red lines
superimposed on the edges of the objects, and (a2)–(d2)

and (a3)–(d3) are the reconstructed 3D objects with texture
mapped, with each result shown in two different views.

Our algorithm can reconstruct objects with hidden lines
drawn by the user. This provides more useful 3D informa-
tion from the reconstruction result. In Figs. 4(a1) and (b1),
no hidden edges are drawn. In Fig. 4(c1), all the hidden
edges are drawn which are guessed by the user. Fig. 4(c3)
shows the backs of the buildings. In Fig. 4(d1), part of
the hidden edges of the buildings are drawn. These results
clearly demonstrate that our method successfully creates the
desired 3D objects from the images.

11. Conclusions

We have proposed an approach to reconstructing 3D
piecewise planar objects from single images based on con-
nectivity and perspective symmetry. The objects in an im-
age are represented by a shape vector consisting of the nor-
mals of the faces in the objects. On the shape vector, a
number of linear constraints are imposed using the connec-
tivity and perspective symmetry of the objects. Finally, a
closed-form solution for the shape vector can be obtained.
We also develop an efficient algorithm for detecting faces
of perspective symmetry. If the user provides the hidden
edges, our algorithm can recover both the visible and invis-
ible shapes of the objects. Experiments have demonstrated
the effectiveness of our approach.
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