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Abstract In this paper, we propose a novel approach

for foreground layer extraction using flash/no-flash image

pairs, which we call flash cut. Flash cut is based on the

simple observation that only the foreground is significantly

brightened by the flash and the background appearance

change is very small, if the background is distant. Changes

due to flash, motion, and color information are fused in

an MRF framework to produce high quality segmentation

results. Flash cut handles some amount of camera shake,

and foreground motion, which makes it practical for any-

one with a flash-equipped camera to use. We validate our

approach on a variety of indoor and outdoor examples.

1. Introduction

Image segmentation is a fundamental problem in com-

puter vision. However, achieving a good or perfect seg-

mentation result from a single image, even for fore-

ground/background separation, is still challenging. There

are two basic types of approaches for segmentation. One

is interactive image segmentation [7, 14, 21] with mini-

mal user assistance. The other relies on the use of ad-

ditional information and/or more images, such as mo-

tion [4, 27, 31, 32], stereo [9], and infrared light [6], or

the assumption of a known and static background [26]. In

general, approaches that use multiple images tend to pro-

duce better and more robust results [2, 8]. To be practical,

however, we want to minimize the number of shots neces-

sary (e.g., two shots) and be able to handle the inevitable

appearance changes due to camera motion (caused by hand

shake) and scene motion.

In this paper, we propose a practical approach to au-

tomatically extract high-quality foreground layer using a

flash/no-flash image pair. Figure 1(a) shows a typical por-

trait/travel photo—a near subject against a distant back-

ground scene. Automatic foreground extraction from a sin-

gle image is non-trivial because of the arbitrary color dis-

tributions of the foreground and background. Figure 1(b)

is another photo taken with flash immediately after the first

one. There are misalignments between the two photos be-

cause of small camera and subject motion. Notice that only

the foreground is significantly brightened by the flash and

the background appearance change is very small. This is

due to the rapid flash intensity falloff with distance. We use

this simple observation to design a technique, which we call

flash cut, for producing high-quality foreground extraction

results. Figure 1(c) and (d) show the new composition re-

sults generated by our technique.

Active lighting has long been exploited for segmentation.

In the film industry, sodium or ultraviolet light [29, 12] is

used in a well-controlled studio environment and recorded

on an additional strip of film. Image or video matting re-

lies on this extra film. The “SegCam” system [6], by turn-

ing on and off an infrared LED, tags brightened pixels as

foreground. The flash/no-flash idea has been used for non-

photorealistic rendering [20]; here, depth edges are detected

through shadows cast by spatially distributed flashes. This

idea is extended for stereo vision [11] by requiring shad-

ows be cast and observed on the background nearby. The

work most related to ours is flash matting [25], in which a

flash/no-flash image pair is used to automatically produce

very accurate matting results. However, flash matting gen-

erally requires the two input images to be pixel aligned and

the scene to be static. Techniques that capitalize on the flash

tend to be easy to implement (and thus practical), as the typ-

ical off-the-shelf camera is equipped with flash.

A common drawback of approaches that rely on active

lighting is that images taken under different lighting con-

ditions must be well-aligned and/or image capture is lim-

ited to indoor scenes. In our work, we combine flash, mo-

tion, and color cues in an MRF framework to handle mod-

erate amounts of camera and subject motion. Our technique

makes it more practical to obtain high-quality segmentation

results for both indoor and outdoor scenes.

1.1. Related work

There are many approaches that use motion informa-

tion to separate out the foreground [3, 4, 27, 30, 31, 32].

Such approaches typically require motion to be segmented

or grouped. Unfortunately, foreground and background mo-

tions are similar for small parallax. On the other hand,

if the parallax is large, there is the difficult issue of han-
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Figure 1. Images taken sequentially with the camera flash off (a) and then on (b). (c,d) are the results of applying flash cut and pasting the

extracted foregrounds onto new backgrounds.

dling occlusions and disocclusions. Textureless regions and

non-rigid motion also complicate the segmentation prob-

lem. Because motion-based techniques rely on neighbor-

hood information for grouping, foregrounds with thin struc-

tures are particularly difficult to extract. Examples of such

foregrounds can be seen in Figures 6 and 7.

Also related to our work is background substraction or

modeling. To relax the requirement of a known and static

background, many approaches [13, 17, 18, 23, 28] have

been proposed to handle background changes or dynamic

backgrounds. Usually, these approaches require an image

sequence (e.g., 8-15 frames) so that the background pixels

are visible in parts of the frames. The results produced by

these approaches are typically not accurate enough for high-

quality foreground extraction.

Flash-based techniques have also been used in computer

graphics. Examples include enhancement of flash pho-

tos [10] and removal of artifacts and flash-exposure sam-

pling [1]. Other applications that rely on flash/no-flash in-

formation include denoising, detail transfer, white balanc-

ing, continuous flash, and red-eye correction [19].

1.2. Our approach

Our flash cut technique handles the segmentation prob-

lem by fusing flash, motion, and color cues. The flash infor-

mation is exploited globally using histogram analysis and

locally with the help of background motion estimation. The

segmentation problem is formulated in an MRF framework

which can be efficiently solved by min-cut. Our approach

is insensitive to misalignments caused by camera shake and

small foreground object movement. It is also able to han-

dle highly complex objects such as plants and trees. The

biggest advantage of our approach lies in its simplicity—

it is easy to automatically extract high-quality foreground

objects using an off-the-shelf, flash-equipped camera.

2. Problem Formulation

In this section, we describe our flash cut technique,

which capitalizes on the flash imaging model.

2.1. Flash imaging model

Assuming the flash is a point light source with intensity

L, the radiance E of a surface point P caused by the flash

is E = L ·ρ ·r−2 ·cosθ, where ρ is the surface BRDF under

given flash and view directions, r is distance from the flash

unit, and θ is the angle between flash direction and surface

normal at P . Hence, the flash intensity falls off quickly with

distance r.

In this paper, we assume that the background layer is dis-

tant compared with the foreground layer and camera flash.

Under this assumption, the appearance of the foreground

will be dramatically changed by the flash while the back-

ground appearance is marginally changed. Figure 1(a) and

(b) show a no-flash/flash image pair; this pair is a typical

example under our assumption. The change difference be-

tween the foreground and the background caused by the

flash provides us a very strong cue for the foreground layer

extraction.

2.2. Segmentation model

Foreground/background segmentation can be formulated

as a binary labeling problem. Given one of the two input im-

ages, i.e., flash image If or no-flash image Inf , the goal is

to label pixel p by xp ∈ {background(= 0), foreground(=
1)}. The foreground layer is extracted by minimizing the

following energy of an Markov Random Field (MRF):

E(X) =
∑

p

Ed(xp) + α
∑

p,q

Es(xp, xq), (1)

where Ed(xp) is the data term for each pixel p, and

Es(xp, xq) is the smoothness term associated with two ad-

jacent pixels p and q. The parameter α balances the influ-

ence of these two terms. In our experiments, the values used

range between 20 and 40.

The smoothness Es(xp, xq) penalizes the different label-

ing for two adjacent pixels p and q in textureless areas. It is

defined as

Es(xp, xq) = |xp − xq| · exp(−β||Ip − Iq||
2), (2)

where β = (2〈||Ip − Iq||
2〉)−1 [5] and 〈·〉 indicates expec-

tation. The energy (1) with this kind of contrast dependent

smoothness term is originally formulated and solved using

graphs cut by [7].

The data term Ed(xp) models the flash effects on the

foreground, the (motion compensated) background, and the

color likelihood. It consists of three terms:

Ed(xp) = γfEf (xp) + γmEm(xp) + Ec(xp). (3)



Figure 2. Illustration of flash ratio for a flash/no-flash pair. For

each histogram, the intensity is increasing downward, with the

number of pixels indicated within each bin. The left of each bin

is the flash ratio. In the top-most bin, there are 100 pixels in the

no-flash image and 20 in the flash image. Hence, the flash ratio =

(100-20)/100 = 0.80. In this case, 80 pixels are brightened by the

flash and moved out onto the other bins in the flash image. For the

fifth bin (from top), there is a 62% addition to the number of pixels

in the flash image caused by pixels brightened by the flash.

γf and γm are both set to 10 in all our experiments.

• Ef is the foreground flash term, which tends to label

the pixel with significant appearance change as fore-

ground. This energy term uses the color histogram of

two images as a global cue (Section 3.1).

• Em is the background flash term, which models the

motion-compensated flash effect on the background. It

tends to label the pixel with good matching and small

appearance changes as background. This energy term

considers both flash and motion cues (Section 3.2).

• Ec is the color term, which models the foreground and

background color likelihoods in the image. The fore-

ground and background color distributions are mod-

eled as Gaussian Mixture Models (Section 3.3).

3. Flash Cut

In this section, we describe the details of three energy

terms defined in the previous section.

3.1. Foreground flash term

We model the flash effect on the foreground by analyzing

the histograms of the flash/no-flash images. This is global

information on changes caused by flash, which is insensitive

to small camera and scene movements.

Let Hf = {hf
k} and Hnf = {hnf

k } be the RGB color

histograms of the flash image and the no-flash image, re-

spectively; hf
k and hnf

k are their respective pixel counts in

the kth bin. If hnf
k > hf

k , some pixels in the kth bin of Hnf

are sufficiently modified by the flash and moved to other

bins in Hf (these bins are unknown). As a result, the pixels

in this bin for the no-flash image has a higher probability

to be foreground pixels. Similarly, hnf
k < hf

k means that

some pixels have been modified by the flash and transferred

to the kth bin of Hf . Hence, in the flash image, the pixels

in this bin have a higher probability to be foreground pixels.

We quantify these simple observations by defining the flash

ratio for each pixel p in the flash/no-flash images as

rf
p = max{

hf
kp

− hnf
kp

hf
kp

, 0}, rnf
p = max{

hnf
kp

− hf
kp

hnf
kp

, 0},

where kp is the bin index of the pixel p. The larger the flash

ratio for a pixel is, the higher probability the pixel belongs

to the foreground. Figure 2 is a 1D illustration of flash ratio.

Figure 3(b) shows the flash ratios of the no-flash/flash

image pair. Because the histogram is global, the flash ratio

map may not be entirely correct. For example, the flash

ratio of the ground in the no-flash image is high because the

color of the ground is similar to the color of clothes in the

no-flash image. The flash ratios of the black eye-glasses in

both images are low due to the low reflectance of the black

object.

We define the energy term based on the flash ratio with a

robust parameter ζ as

Ef (xp) =

{

0 , xp = 1
1

1−ζ
[max{rp, ζ} − ζ] , xp = 0

. (4)

The default value of ζ is set to 0.2. The significance of this

robust parameter is the following: if rp is larger than ζ, we

are more likely to label pixel p as the foreground. Other-

wise, the costs for labeling pixel p as the foreground and

background are the same. Thus, the energy term Ef (xp)
provides a conservative estimate of the foreground layer.

3.2. Motion-compensated background flash term

Suppose we have dense motion field m = {m(p)} that

registers the no-flash image Inf to the flash image If . The

flash difference between the pixel p in Inf and its corre-

sponding pixel p′ = m(p) in If is

△Ip = If

m(p) − Inf
p = If

p′ − Inf
p . (5)

Since the user is expected to capture the flash/no-flash im-

ages with distant background in quick succession, the ap-

pearance change of the background is expected to be small

and uniform. It is thus reasonable to model the flash dif-

ference distribution of all background pixels as a Gaussian

distribution N(△Ip|µ, σ2) with mean µ and variance σ2.

Then, we can define the probability of a pixel p belonging

to the background as

pb(x) = exp(−σb(△Ip − µ)2). (6)

We set σb = ln 2/(3σ)2 so that the pixel with flash dif-

ference within the ±3σ interval around µ will be given a

higher probability (≥ 0.5) to be background. We call pb(x)



Figure 3. Intermediate results of the flash/no-flash image pair in Figure 1. (a) input images. (b) flash ratio maps. (c) one-to-one sparse

matching (top) and background sparse matching (bottom). (d) background probability maps. (e) results by flash cut. In (d), the brighter

the pixel, the higher the probability.

Figure 4. Flash difference histograms of sparse matched features

for two different flash/no-flash pairs. (a) Histogram with one peak,

and (b) histogram with multiple peaks. The parameter µ is esti-

mated using the first maximum, and T is the first minimum on the

right of µ.

the background probability, as shown in Figure 3(d). Fi-

nally, the energy term Em(xp) is defined as

Em(xp) =

{

2 max{pb(xp), 0.5} − 1 , xp = 1
0 , xp = 0

. (7)

With this definition, Em(xp) is normalized to be in the

range [0, 1]. The energy for the flash image is similarly de-

fined.

In the above definition, we assume that we know the pa-

rameters {µ, σ2} and the dense motion field m. We now

describe how these parameters are estimated.

Parameter estimation. We estimate the parameters

{µ, σ2} by analyzing the one-to-one sparse feature match-

ing between two images. The one-to-one sparse feature

matching is established using the SIFT detector [15] and

nearest-neighbor matching. We require the nearest neighbor

to be significantly better than the second-nearest neighbor

(we set the distance ratio threshold as 0.6). The uniqueness

of matching is enforced using cross-checking. Figure 3(c)

shows the matched sparse features for the image pair.

Given matched sparse features, we construct the 1D his-

togram of the flash difference. In most cases, only a few or

even no matched features are from the foreground layer be-

cause of the dramatic appearance change of the foreground,

as shown in Figure 3(c). The corresponding flash differ-

ence histogram is shown in Figure 4(a). In some cases,

the matched features come from both the foreground and

background, resulting in multiple peaks in the histogram.

For example, the histogram in Figure 4(b) is constructed

from the matching between the image pair in Figure 6. In

both cases, we are only concerned about the first local peak,

which corresponds to background matches. The flash differ-

ence mean µ is estimated by the first local maximum bin in

the histogram. The flash difference variance σ2 is estimated

using the matched features whose flash difference is lower

than a threshold T . We set the threshold T at the first local

minimum bin above µ, as shown in Figure 4. The histogram

is smoothed using a Gaussian kernel to reduce noise.

Motion estimation. Because our purpose is to only es-

timate the background motion, we first discard matched

sparse features with flash difference above the threshold T
(the same parameter in the previous paragraph). For ex-

ample, the bottom of Figures 3(c) and 5(d) show the back-

ground sparse matching. For the case where the background

is stationary and distant, e.g., Figure 7(a) and (c), a global

motion model such as a homography or affine is sufficient

to model the background motion. We can directly compute

a global motion from the matched background sparse fea-

tures. However, a global motion is inadequate to model a

dynamic background, radially distorted images, or parallax,

e.g., Figure 5 with a mildly dynamic background. In these

cases, applying dense motion refinement will improve the

result.

Taking the no-flash image as an example, we refine the

initial dense background motion field m
0 interpolated by

Adaptively Locally Weighted Regression (ALWR) [15] us-

ing matched background sparse features. The matching

residual with compensated flash difference is

ep = If

m(p) − Inf
p − µp. (8)

Recall that If and Inf refer to the flash image and no-flash

image, respectively.



For each pixel p, its initial flash difference µp is set as µ.

Then, the motion field is iteratively refined using the Lucas-

Kanade [16] algorithm. The motion correction △mk(p) in

iteration k is estimated by

△mk(p) = −(
∑

q∈w(p)

∇If

mk(q)
∇IfT

mk(q)
)−1

∑

q∈w(p)

∇If

mk(q)
ek

q .

w(p) is the 5 × 5 window around the pixel p. After conver-

gence, we re-estimate µp for each pixel locally in a 11× 11

window w′(p) by µp = 1
11×11

∑

q∈w′(p)(I
f

m(q) − Inf
q ).

Then, the Lucas-Kanade algorithm is run again to further

refine the motion field. The iteration number is 2 or 3 in our

experiments.

Figure 5(e) and (f) show the background probability map

of the flash image by a global homography, and our refined

dense motion field. (The brighter the pixel, the higher the

background probability.) Clearly, the background probabil-

ity map is improved with the use of the motion field. Notice

that while the foreground layer may be incorrectly regis-

tered, it will always be assigned a lower probability due to

the significant foreground luminance changes.

3.3. Color term

The foreground color likelihood is modeled as Gaussian

Mixture Models (GMMs) [5]:

pc(Ip|xp = 1) =

K
∑

k=1

wf
kN (Ip|µ

f
k , Σf

k), (9)

where N(·) is a Gaussian distribution and {wf
k , µf

k , Σf
k}

represent the weight, mean, and covariance matrix of the

kth component of the foreground GMMs. The typical val-

ues of component number K is 10 in our implementa-

tion. The background GMMs is estimated using all pix-

els with pb(x) > 0.6. The foreground color likelihood

pc(Ip|xp = 0) is similarly defined and estimated using all

pixels with pb(x) < 0.4. Finally, the color term Ec(xp) is

defined as

Ec(xp) =

{

− log(pc(Ip|xp = 1)) , xp = 1
− log(pc(Ip|xp = 0)) , xp = 0

. (10)

The color models can be refined after minimizing

the flash cut energy, using the newly estimated fore-

ground/background area. However, we found that the im-

provement is marginal because our initial color models are

generally accurate enough.

4. Experimental Results

Figure 6 shows the intermediate results of flash cut and

comparison with several other approaches. The top two

rows of Figure 6 are input image, flash ratio map, motion

compensated background probability map, and flash cut re-

sult for the flash/no-flash pair. To see the contributions of

Figure 5. Motion-compensated background probability. (a) Flash

image, (b) no-flash image, (c) sparse matching, (d) background

sparse matching, i.e., matching with flash difference lower than

threshold T . (e) Background probability map for the flash image

by a global homography. Areas highlighted within red (dotted)

rectangles are areas incorrectly matched due to the background

being dynamic. (f) Background probability map by ALWR and

refinement.

the foreground flash term and background flash term, Fig-

ure 6 (e) and (f) show unsatisfactory segmentation results

using (flash ratio + color) terms and (background prob. +

color) terms. It demonstrates the necessity of combining all

cues.

We also compared flash cut with two other state-of-the-

art segmentation algorithms, namely, GrabCut [21] and co-

segmentation [22]. Figure 6 (g) shows the segmentation re-

sults by GrabCut applied to each image individually, which

is not accurate due to color ambiguity. We used the whole

image boundary as the initial rectangle as the input to Grab-

Cut. Co-segmentation is a histogram-based algorithm to

segment the regions with the same color distribution from

an image pair. In our implementation of co-segmentation,

we used the ground-truth background color distribution of

one image to infer the segmentation in another image. The

results in Figure 6 (h) demonstrate the inadequacy of using

the global histogram to segment thin structures.

We have tested our approach on a variety of indoor and

outdoor flash/no-flash image pairs. Figure 7(a) shows an

example of a walking person. Motion-based segmentation



Figure 6. Comparison of results. (a-d) Input images, flash ratio maps, background probability maps, and final flash cut results, (e) flash

cut with flash ratio and color only, (f) flash cut with background probability and color only, (g) GrabCut, and (h) CoSegmentation. By

combining flash ratio, background probability, and color, our flash cut technique yielded the most accurate result.

techniques would find this example very challenging be-

cause of the large motion. Figure 7(b) shows an image

pair with a moving background, while Figure 7(c) demon-

strates an example of a foreground with fine structures. It

is hard for GrabCut, co-segmentation, and motion-based

algorithms to achieve satisfactory results for all of these

examples simultaneously. Our flash cut was able to ex-

tract the detailed structures well. In Figure 7(d), the fore-

ground is a plant (with complicated structures) captured un-

der windy conditions. Figure 7(e) is the flash cut result for

the scene with a fence in a bamboo grove; here, the back-

ground is complicated. Figure 7(f) is an indoor image pair

with both foreground movement and mildly dynamic back-

ground. Due to the limited space of the indoor environ-

ment, it is necessary to decrease the flash intensity to only

light the foreground objects. Figure 7(g) shows another pair

of segmentation results in an indoor environment. In these

examples, we used the coherent matting [24] on the trimap

computed by eroding and dilating flash cut result to produce

a more natural composition result.

5. Conclusion
In this paper, we proposed a foreground layer extraction

approach using flash/no-flash image pair. By combining

flash, motion, and color information, flash cut is able to pro-

duce high-quality segmentation results and tolerate small

camera and scene motions. It is thus practical and easy for

the average user with a flash-equipped camera to use.

Since we formulated segmentation as a binary labeling

problem, our approach cannot handle the foreground object

with furry, long hair, or transparent boundaries. Combining

our technique with a sophisticated matting technique is a

possible solution. Like other flash-based techniques, our

approach is sensitive to large amounts of self-shadowing in

the foreground (small shadow regions can be handled by

the smoothness term, e.g., thin shadow regions in Figures 3,

5, 6, and 7 (d) (f)). The flash constraint can be made

stronger since the flash chroma is typically the same. In

other words, the pixels are not arbitrarily brightened, but

rather, brightened with a specific chroma contribution (with

different magnitudes). This assumes, of course, that the

camera radiometric response is approximately linear and



Figure 7. Flash cut results. From left to right: no-flash image, flash image, segmentation results on no-flash image and flash image.



there’s no saturation. Another future direction is to extend

the flash cut idea to video segmentation.
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