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Abstract

This paper presents a framework to automatically de-
tect and recover the occluded facial region. We first de-
rive a Bayesian formulation unifying the occlusion detec-
tion and recovery stages. Then a quality assessment model
is developed to drive both the detection and recovery pro-
cesses, which captures the face priors in both global corre-
lation and local patterns. Based on this formulation, we fur-
ther propose GraphCut-based Detection and Confidence-
Oriented Sampling to attain optimal detection and recovery
respectively. Compared to traditional works in image re-
pairing, our approach is distinct in three aspects: (1) it frees
the user from marking the occlusion area by incorporating
an automatic occlusion detector; (2) it learns a face qual-
ity model as a criterion to guide the whole procedure; (3)
it couples the detection and occlusion stages to simultane-
ously achieve two goals: accurate occlusion detection and
high quality recovery. The comparative experiments show
that our method can recover the occluded faces with both
the global coherence and local details well preserved.

1. Introduction

Face occlusion that often occurs in practical face recog-
nition systems may incur performance degradation. Thus a
technique that can automatically recover the occluded parts
of the faces is important for these systems.

A related topic called image inpainting[5][6][3][4]. has
been extensively studied in recent years. Most of the cur-
rent inpainting methods share the same principle: to make
use of the consistency between neighboring pixels or tex-
tured patches to infer the target area. Hence, their success
relies on the condition that the colors or textures in the target
region should be basically homogeneous and similar to the
surrounding parts. Consequently, they will encounter great
difficulty in recovering heterogeneous structures, especially
when some components are completely occluded.

In face recovery, the capability of restoring unseen struc-
tures is necessary due to the structural nature of faces.

Figure 1. The relations between components in the framework.

Generic image inpainting methods would fail in this case,
due to the fundamental limitation that they lack the prior
knowledge of face appearance. Hence, utilizing the face
appearance priors is essential to recover occluded faces.

Recently, some algorithms are proposed to recover par-
tially occluded faces using examplar-based face priors.
Hwang and Lee[2] presented a method to recover damaged
faces by linear combination of faces. Mo et al[12] further
enhance the reconstruction quality by enforcing the local
convex constraint in coefficient estimation. Though these
methods are feasible approaches, they suffer from the fol-
lowing drawbacks: (1) linear combination of holistic ap-
pearance often lead to blurred results; (2) the errors in coef-
ficient estimation may break the overall coherence; (3) they
need user input to determine the occluded region.

This paper addresses the face recovery problem with two
targets: detecting the occlusion automatically and recov-
ering the occluded parts in high quality. We consider the
formation of an occluded image as a generative process,
and thus derive a Bayesian MAP formulation unifying both
goals. The quality assessment model is first constructed
by learning the prior knowledge from a set of face images,
which is then used to guide the procedure of recovery. This
model characterizes the face appearance in two aspects: the
global correlation defining the overall appearance structure,
and the local patterns characterizing the textured details.
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Figure 2. The generative model of occluded images

They are integrated in our probabilistic formulation.
The framework is illustrated in fig.1. When a new image

is input, the occlusion detector localizes the occluded region
by solving a belief map using convex quadratic program-
ming. Based on the detection results, the recovery stage
then exploits both the face priors and the information in the
reliable parts to restore the occluded parts using confidence-
oriented sampling. Subsequently, the initially recovered im-
age is fed back to the detector to refine the localization of
the occlusion by GraphCut. In this progressive procedure,
the detection stage works in cooperation with the recovery
stage to enhance the quality of the reconstructed image.

In sum, the contributions of our work lie in the following
aspects: (1) the probabilistic unification of detection and re-
covery; (2) a quality assessment model coupling both global
correlation and local patterns to drive the recovery process;
(3) an automatic occlusion detector; (4) new techniques to
efficiently achieve optimal solutions: GraphCut-based de-
tection and Confidence-oriented sampling.

2. Unified Probabilistic Formulation

In our generative model as illustrated in fig.2, an oc-
cluded face image I is a masked combination of a true face
image S and a covering object O. The occlusion locations
are indicated by a binary mask B, in which a value 1 means
that the corresponding pixel is non-occluded. In addition,
we use m to denote the number of pixels in each image, j
to index the pixels in the images, and sj , bj , oj , and vj to
denote the j-th pixel in S, B, O, and I .

Suppose that the true face image, the covering object,
and the occlusion locations are mutually independent, then
the joint probability can be written as

p(S, O, B, I) = p(S)p(O)p(B)p(I|S, O, B). (1)

Here, p(S), p(O), and p(B) respectively capture the prior
knowledges of faces, covering objects, and the occlusion
locations; while p(I|S, O, B) reflects the relation between
these elements in the generative process. p(S) is given by
the quality assessment model introduced in next section.
Here, we first analyze the other three factors.

The prior of the covering object p(O) depends on what
we know about the occlusion. In a general case, we have
little information about the occlusion, and thus simply use
an independent uniform distribution as

p(O) =
M∏

j=1

p(oj); (2)

p(oj) =

{
c oj is in a valid range,

0 otherwise.
(3)

The prior of the occlusion locations p(B) is deter-
mined by the shape of the occlusion. Generally, we can
set the prior by considering the probability of occlusion and
the connectivity of the occluded parts. Then p(B) can be
given in the following form as an Markov Random Field.

p(B) =
1

ZB

M∏
j=1

η(1−bj)
∏

l∈Na(j)

a(j, l)|bj−bl|, (4)

a(j, l) = exp
(
− 1

σ2
a

((xj − xl)2 + (yj − yl)2).
)

(5)

Here, η is an estimation on the tendency to occlusion, Na(i)
is pixel j’s neighborhood, and a(j, l) is the spatial affinity
between two pixels. The factor η(1−bi) reflects the occlu-
sion potential, a(j, l)|bj−bl| reflects the spatial continuity of
the occluded parts. We can rewrite the Eq.(4) into the en-
ergy form as p(B) = exp(−EB(B) − log ZB):

EB(B) =
M∑

j=1

(1 − bj) log
1
η

+
1
σ2

a

M∑
j=1

∑
l∈N (j)

|bj − bl|d2(j, l).

(6)

The conditional pdf of the observation p(I|S, O, B)
describes the relationship between the variables. Assume
that the generation of each pixel can be formulated as the
following function:

vj =

{
sj + εj (bj = 1),
oj + εj (bj = 0),

(7)

and the noise term εj independently satisfy normal distribu-
tions: εj ∼ N(0, σ2

v). Then we have

p(I|S, O, B) =
m∏

j=1

p(vj |sj , oj , bj) =

1
ZI

m∏
j=1

exp
(

bj(vj − sj)2

σ2
v

)
exp

(
(1 − bj)(vj − oj)2

σ2
v

)
.

(8)



Furthermore, if p(O) satisfies Eq.(2), we have

p(I|S, B) =
m∏

j=1

p(vj |sj , bj), (9)

p(vj |sj , bj) = (p(vj |sj, 1))bj (
∫

o

p(vj |o, 0)do)1−bj . (10)

Accordingly, the pdf can be written into an energy form
p(I|S, B) = exp(−E(I|S, B) − log ZI):

E(I|S, B) =
m∑

j=1

bjEv(vj |sj , 1) + (1 − bj)Ev(vj |0), (11)

Ev(vj |sj , 1) =
1
σ2

v

(vj − sj)2, (12)

When p(oj) is given by Eq.(3), Ev(vj |0) = Ec.

Bayesian MAP Formulation Since the occlusion detec-
tion and recovery are respectively to infer the true image S,
and the occlusion locations B, they can be formulated as a
Bayesian MAP problem to maximize p(S, B|I) as follows:

p(S, B|I) ∝ p(S)p(B)p(I|S, B). (13)

We adopt the alternate optimization strategy here, and solve
the problem by iterating the following two updating steps:

S(t+1) = argmax
S

p(S)p(I|S, B(t)); (14)

B(t+1) = argmax
B

p(B)p(I|S(t+1), B). (15)

Eq.(14) and Eq.(15) respectively correspond to the detec-
tion and recovery stages. They are coupled in the Bayesian
formulation.

3. Quality Assessment Model

The perceptual quality of a face has two aspects: global
correlation and local patterns.

3.1. Global Correlation

In the paper, we describe the global correlation by a
Gaussian subspace model. The model considers the im-
age S as an m-dimensional vector of pixel values s =
{s1, s2, . . . , sm}. Since there exist strong correlation be-
tween the pixels, we can assume that its major components
reside on a subspace of much lower dimension r:

s = µ + Wx + ε. (16)

Here, µ is an m×1 mean vector, W is an m×r matrix, the
intrinsic factor x and the noise term ε are r × 1 and m × 1
vectors, independently satisfying Gaussian distributions:

x ∼ N(0r×1, Ir×r); ε ∼ N(0m×1, σ
2
gIm×m). (17)

Thus, s also satisfies a Gaussian distribution

s ∼ N(µ,Σ) : Σ = WWT + σ2
gIm. (18)

It is essentially the probabilistic PCA model[7]. According
to PPCA, with the optimal solution of W and σ2

g , we have

Σ = Ur

(
Dr 0
0 σ2

gIm−r

)
UT

r . (19)

Here, D is an r× r diagonal matrix containing the r largest
eigenvalues of covariance matrix C, Ur is an m× r matrix
composed of the corresponding eigenvectors, σg is the mean
of the remaining eigenvalues. With the Gaussian model, the
prior on global correlation can be written in an energy term:
pg(S) = pg(s) = exp(−Eg(S) − 1

2 log(2π|Σ|)), with

Eg(S) = (s− µ)T G(s− µ). (20)

Here, G = 1
2Σ

−1 encodes the connections between pixels.

3.2. Local Patterns

We analyze the local patterns based on patches of radius
rp. The patch centered at pixel j is notated by P(j) as

P(j) = {q | (xq − xj)2 + (yq − yj)2 ≤ r2
p}. (21)

In addition, we use R(j) to denote the set of non-centered
values in P(j): R(q) = {sq|q ∈ P(j), q �= j}.

In this paper, we characterize a local pattern using the
dependency of the center pixel on its surrounding pixels in
a patch, which is modeled by belief-based multiple hypoth-
esis integration. For the j-th pixel in S, a set of referenced
patches are collected from all training samples in the cor-
responding position and neighboring positions. The center
pixel values of these patches are denoted by s′1, . . . , s

′
K , and

the set of non-centered pixel values by R′
1, . . . ,R′

K . Each
referenced patch gives an evaluation, which are then com-
bined together with a belief value

φj(P(j)) =
K∑

k=1

bel(R′
k|R) exp

(
− (sj − s′j)

2

σ2
l

)
. (22)

The belief values are determined based on the similarity of
non-centered values in the patch,

bel(R′
k|R) =

exp(−d2(R,R′
k)/σ2

l )∑K
k=1 exp(−d2(R,R′

k)/σ2
l )

; (23)

d2(R,R′
k) =

∑
q∈P(j)−{j}

(sq − s′q)
2. (24)

Then the joint probability of all patches in the image is

pl(S) =
1
Zl

m∏
j=1

φj(P(j)). (25)



Table 1. The procedure of occlusion recovery

1. Initialize the confidence map CM : set the confidence of
the known pixel to 1, and that of the unknown pixel to 0.

2. Initialize the parent confidence map PCM based on initial
CM . The parent confidence of a pixel j is the average
confidence of the other pixels in P(j).

3. Repeat the following cycles until convergence:

3.a: Initialize the set of pixels to be updated: U =
{j | bj = 0};

3.b: Find the pixel in U with highest parent confidence,
denote its index by jc;

3.c: Select a set of candidate values for pixel jc: C(jc).

3.d: Compute the conditional posteriori of the candidate
values, and draw the value snew from the candidates
according to the posteriori (Gibbs sampling);

3.e: Compute the new confidence: cnew = PCM(jc)×
the posteriori ofsnew ;

3.f: If cnew > CM(jc), accept the update: set sjc to
snew ; set CM(jc) to cnew ; and update all affected
parent confidences;

3.g: Remove jc from U : U = U − {jc};

3.h: Repeat the steps from 3.b to 3.g until U = ∅.

It can be written in an energy form as pl(S) =
exp(−El(S) − log Zl):

El(S) =
m∑

j=1

El(j)(P(j)) =
m∑

j=1

(− log φj(P(j))). (26)

The energy El actually measures the deviation of all local
patches from the expected patterns.

4. Optimization Algorithms

4.1. Recovering Occluded Parts

Occlusion recovery is based on Eq.(14), which has two
factors: p(S) and p(I|S, B(t)). Since the occlusion recov-
ery only concerns the values of sj with bj = 0, which do
not affect the latter factor p(I|S, B(t)), the objective can
therefore be simplified to maximize p(S) by pursuing the
optimal values of sj in the occluded parts.

We develop the Confidence-oriented sampling method
for recovery. Given the occluded region B, it restores the
occluded pixel values by Gibbs sampling, and simultane-
ously maintains a confidence map to direct the process. The
procedure of the algorithm is specified in table.1. Its strat-
egy can be briefly explained in two points:
(1) It updates the pixels in an order from high confidence to
low confidence, such that information is flowed from high

confidence regions to low confidence ones.
(2) Each pixel is updated by Gibbs sampling: drawing its
value from conditional distribution.

In this procedure, we have to address two issues: (1) how
to select the candidate values for each target pixel; (2) how
to compute their conditional posteriori. They are both re-
lated to the quality assessment model. As discussed above,
the quality model comprises two aspects: global correlation
and local patterns, respectively measured by the energy Eg

in Eq.(20) and El in Eq.(26). Thus, the sum of the global
correlation terms related to sj is

Eg(j)(sj) = 2
∑
i�=j

gij(si − µi)(sj − µj) + gjj(sj − µj)2,

(27)
here gij = gji = G(i, j) (G is symmetric). While the
relevant local pattern term is φj(P(j)) given in Eq.(22).

With other pixel values fixed, we have

sj(gopt) = argmin
sj

Eg(j)(sj) = µj − 1
gjj

∑
i�=j

gij(si − µi).

(28)
During the recovery process, the pixels in target region is
uncertain, so we use the confidences in the computation as

sj(gopt) = µj − 1
gjj

∑
i�=j

CM(i)gij(si − µi). (29)

Then we can construct the candidate set C(j) by select-
ing two types of candidates: (1) the value given by opti-
mizing the global correlation: sj(opt); (2) the pixel values
hypothesized by the referenced patches for local patterns:
s′1, s′2, . . . , s′K . After the candidates are selected, we com-
pute the relevant quality energy for each candidate value s
based on the quality assessment model:

Ej(rele)(s) = Eg(j)(s) − log φj(R(j) ∪ {s}). (30)

Then the probability to set value s for pixel j is

p(s|j) =
exp(−Ej(rele)(s))∑

s∈C(j) exp(−Ej(rele)(s))
. (31)

4.2. Detecting Occlusion by GraphCut

Under the Bayesian formulation, with the true image S
given, occlusion detection can be accomplished by optimiz-
ing B as in Eq.(15), which can be considered as an energy
minimization problem to minimize ED(B) as

ED(B) = EB(B) + E(I|S, B). (32)

Here, EB(B) corresponds to the connectivity of the oc-
cluded regions, while E(I|S, B) measures how the de-
tection results match the generative model. According to



Eq.(6) and Eq.(11), it can be rewritten as

ED(B) =
m∑

j=1

ED(j)(bj) +
m∑

j=1

m∑
j′=1

ED(j,j′)(bj , bj′); (33)

ED(j)(bj) =

{
Ev(vj |sj , 1) (bj = 1)
Ev(vj |0) + log( 1

η ) (bj = 0)
, (34)

ED(j,j′)(bj , bj′) =

{
1

σ2
a
d2(j, j′) (bj �= bj′)

0 (bj = bj′)
. (35)

We can see that in this formulation, the interaction terms
satisfy the sub-modular condition E(0, 0) + E(1, 1) <
E(0, 1) + E(1, 0), thus it can be formulated as a binary
GraphCut problem[10]: the connections from each node to
the source 0 and sink 1 respectively indicate the cost of
assigning a pixel to be occluded or non-occluded; while
the connections between different nodes reflect their spatial
affinity. Hence, we can readily obtain the globally optimal
solution to this problem by GraphCut[11].

4.3. Initialize the Detection

Initially, both the true image S and the occlusion loca-
tions B are unknown. To activate the alternate updating
procedure, we first initialize B. It is accomplished by cou-
pling the prior of B and the quality assessment, so that we
can attain a balance between the spatial continuity of B and
the image quality in the non-occluded region. The problem
can be formulated as an optimization problem as

B(0) = argmin
B

EB(B) + Eg(B)(B) + El(B)(B). (36)

Here, Eg(B) is the energy of global correlation in the region
with bj = 1 , while El(B) is the energy of local patterns in
that region. For convenience of derivation, we introduce an
m-dimensional binary vector b = (b1, . . . , bm)T . Then,

EB(B) = 2bT (DA − A)b + log
1
η
(1 − b), (37)

where A is an m×m matrix with A(i, j) = a(i, j), DA is
an m × m diagonal matrix with DA(i, i) =

∑m
j=1 a(i, j).

According to Eq.(20), we have

Eg(B)(B) =
m∑

i=1

m∑
j=1

bibjgij(si−µi)(sj −µj) = bTMgb,

(38)
where Mg is an m × m matrix with Mg(i, j) = gij(si −
µi)(sj − µj). In addition, from Eq.(26), we have

El(B)(B) = hT b, (39)

in which l is an m × 1 vector with h(j) = El(j)(P(j)) =
− logφj(P(j)). Integrating Eq.(37), Eq.(38), and Eq.(39),

we arrive at the following expression of the objective

bT (2(DA − A) + Mg)b + (h − log
1
η
)Tb. (40)

By relaxing the value of bj to be real value in [0, 1], we can
solve the global optima of the relaxed problem using convex
quadratic programming. After that, the binary value of b

(0)
j

can be obtained by thresholding the real values.

5. Experiments

5.1. Data Preparation and Experiment Settings

We conduct the experiments on a mixed dataset from
FERET[8] and Purdue AR[1] databases, which consists of
1400 face images, and is divided into two disjoint sets: a
training set with 700 face images, and a testing set with the
other 700 images. In the preprocessing stage, we first use
an alignment algorithm[9] to locate the key points on a face,
and thereby normalize the face shape. Then we normalize
the pixel values of each image, such that their mean is 0,
and the variance is 1. The occluded images are obtained by
superposing objects on the face images. To test the algo-
rithms under different circumstances, we use different ob-
jects to simulate the occlusion in different cases: black and
white circular masks, dogs, flowers, oranges, and text.

For the global correlation model, the mean vector µ and
the matrix G are estimated on the training set. The dimen-
sion of the principal subspace of r is determined such that
98% of the energy is preserved in the space. While for lo-
cal pattern model, the training images are used as source of
referenced patches for evaluating the local energy, and the
pixel variance σl is set to 0.01. In addition, there are several
design parameters in the prior formulation. For the occlu-
sion prior given in Eq.(6), we set η = 0.3, and σa = 2.0.
For the conditional pdf of observations in Eq.(8), we set
σv = σl = 0.01. In the experiments, we find that the selec-
tion of the parameter values does not notably affect the final
results if they are in a reasonable range.

5.2. Testing the Quality Assessment Model

We first test the quality assessment model, which is com-
posed of a global correlation model and a local pattern
model. In order to investigate how the proportion of occlu-
sion influence the quality measurement, we generate differ-
ent sets of occluded images by scaling the covering objects
to different sizes such that they occlude specific ratios of
the target faces. The testing results acquired by averaging
the quality energies Eg and El (divided by the number of
pixels) in different cases are shown in fig.3.

From the results, we can see that the quality energy val-
ues are acute to occlusion: the average value is below 1.0
when there is no occlusion, while it drastically rises when
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occlusion 0 10% 20% 30% 40%
blackmask 0.98 38.04 90.53 145.49 209.29
whitemask 0.98 11.31 23.89 36.50 53.21

dog 0.98 24.96 42.40 60.87 80.01
flower 0.98 7.54 12.67 22.14 26.11
orange 0.98 8.91 20.41 29.60 40.50

text 0.98 74.40 132.49 196.41 266.18
(c) combined energies (gcm + lpm)

Figure 3. The average quality measure vs. occlusion proportion

only a small part of the face image is occluded. Moreover, it
continuously increase when the proportion of occlusion in-
creases. This clearly shows that the our quality assessment
model is a good criterion to evaluate the occlusion.

5.3. Testing Occlusion Detection and Recovery

We compare our method with Hwang’s method[2] and
Mo et al.’s method[12]. Since their works do not address
the occlusion detection problem, we launch their recovery
methods based on the initial detection results yielded by our
occlusion detection algorithm. Fig.6 illustrates the results.

The first two rows show the recovery from occlusion by
circle masks. In both these cases, most of the algorithms can
work out satisfactory results, except that Hwang’s method
lead to some artifacts in the masked region. The 3rd to
6th rows show the recovery from occlusion by real objects.
which are more difficult cases. The results produced by our
method (column (h)) is remarkably better than those yielded
by Hwang’s (column (d)) and Mo et al’s (column (e)). Their
approaches cause over-blurring and notable artifacts in the
recovered region and loss some subtle details. While our
method preserves both the global coherence and the local
details in a high quality.

We also compare the results yielded by the global model
(column (f)), the local model (column (g)), and their combi-
nation (column(h)). Notice that the results acquired by only
using the local pattern model have some artifacts when the
eye is partially occluded. It is due to that the local model
does not encode the information of global relation, thus it
is weak in maintaining global coherence. With the global
model incorporated, we can see that the faces recovered by
the combined model are near perfect.

In addition to subjective observation, we compare the al-
gorithms by quantitative evaluations. The recovered images

Table 2. The table of recovery evaluation by SNR (dB)
occlusion Hwang’s Mo et al.’s gcm lpm gcm + lpm
blackmask 50.95 53.76 59.38 51.14 64.15
whitemask 53.18 55.80 63.67 54.16 69.35
dog(small) 40.09 45.30 48.67 40.36 53.46
dog(large) 36.43 40.29 43.84 36.14 48.60

flower 40.96 43.86 55.12 41.27 55.74
orange 42.76 48.75 49.69 42.37 54.78

text(small) 51.87 56.58 88.16 63.33 90.92
text(large) 42.67 56.21 81.48 57.62 83.43

Note: gcm = global correlation model, lpm = local pattern model.

are compared against the ground truth, and the signal-noise
ratio (SNR) is computed by

SNR = 10 log

∑n
i=1

∑m
j=1(rpij − gpij)2∑n

i=1

∑m
j=1 gp2

j

(dB), (41)

here rpij and gpij are respectively the recovered value and
ground truth value of the j-th pixel on the i-th image. The
evaluation results are shown in table 2. The table shows
that our algorithm achieves SNR 10dB higher than other al-
gorithms. It means that recover error energy is reduced to
1/10 compared to others, which is a significant improve-
ment. Moreover, the integration of the global and local
models leads to further gain in SNR (about 2 − 6dB) com-
pared to only using the global model.

6. Conclusion

This paper presented a new algorithm to detect and re-
cover the occluded parts in face images, which is guided by
a quality assessment model evaluating both global coher-
ence and local details. It has been sufficiently manifested
by the experimental results that our algorithm consistently
outperforms others in recovery quality.
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