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Abstract

Outdoor face recognition is among the most challenging
problems for face recognition. In this paper, we develop
a discriminant mutual subspace learning algorithm for in-
door and outdoor face recognition. Unlike traditional al-
gorithms using one subspace to model both indoor and out-
door face images, our algorithm simultaneously learn two
related subspaces for indoor and outdoor images respec-
tively thus can better model both. To further improve the
recognition performance we develop a DMSL-based multi-
classifier fusion framework on Gabor images using a new
fusion method called adaptive informative fusion scheme.
Experimental results clearly show that this framework can
greatly enhance the recognition performance.

1. Introduction

Most current face recognition algorithms work well on
dataset obtained under controlled lighting condition. How-
ever, the performance drops significantly for data collected
under uncontrolled outdoor lighting condition. This is
clearly shown in the face recognition vendor test 2002
(FRVT 2002) [1], where the best face recognition systems
perform poorly on the outdoor probe face images.

A number of approaches have been proposed tackling the
difficulty caused by varying illumination conditions. Most
use the Lambertian reflectance model to describe the fa-
cial variations under different lighting conditions. Under
the Lamberitian assumption, the set of images of one face
lies in a 3D linear space, which can be reconstructed using
three training samples taken under different lighting condi-
tions [8]. Basri et. al. [9] proved that this image set can
be approximated as a 9D linear space considering the at-
tached shadows but ignoring the cast shadows. Georghiades
et. al. [10] proposed an illumination cone with infinite di-

mension accounting for attached shadows and cast shadows.
However, under complicated outdoor conditions these ap-
proaches are not suitable. There are multiple light sources,
and the reflectance from each lighting source will be signifi-
cantly affected by the cast shadows caused by other objects.
These produce complicated variations on the outdoor facial
images and thus make them significantly different from the
indoor facial images. Such great discrepancies between the
indoor and outdoor facial images make it infeasible to use a
simple model for their comparison.

Recently, Wang and Tang [2] showed that both the Gabor
features [6] and unified subspace analysis [7][15] can re-
duce the lighting variation in face recognition and integrate
them to solve the indoor and outdoor face recognition prob-
lem [2]. However, this method still uses a single subspace to
describe both indoor and outdoor face images. In this paper,
we develop a novel framework called discriminant mutual
subspace learning (DMSL), in which two related subspaces
are simultaneously learned to model the indoor and outdoor
samples. An efficient scheme is derived for optimization
through mutual interactions between the two subspaces. In
addition, to further improve the recognition performance,
we develop a DMSL-based multi-classifier fusion frame-
work on Gabor images using a new fusion method called
adaptive informative fusion scheme. Experimental results
clearly show that this framework can greatly enhance the
recognition performance.

The major contributions of this paper are:
1. Considering the specific property of the indoor and

outdoor face recognition problem, we develop a novel
algorithm called discriminant mutual subspace learning
(DMSL) to improve the recognition performance.

2. Based on the developed DMSL algorithm, we further
develop an integrated multi-classifier framework incorpo-
rating several techniques including an extended Gabor rep-
resentation, DMSL, and a new fusion scheme called adap-
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tive informative fusion scheme to further boost the recogni-
tion performance.

3. The developed algorithms can also be used for other
pattern recognition applications. For example, the DMSL
algorithm can be used to address the generic inter-modality
face recognition problem [16][17][18]; the proposed new
fusion scheme is also a generic fusion method for combin-
ing the discriminant information from different classifiers.

2. Discriminant Mutual Subspace Learning
(DMSL)

2.1. Problem Formulation

In our algorithm, each face is represented by a vec-
tor in a d-dimensional sample space X . Suppose
we are given a training set with NI indoor and NE

outdoor face samples from C different persons, de-
noted by {(x(I)

1 , c
(I)
1 ), (x(I)

2 , c
(I)
2 ), . . . , (xNI , c

(I)
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)} and
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(E)
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(E)
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)} respectively.

Here c
(I)
i and c

(E)
i are class labels of the corresponding in-

door and outdoor samples.
The dimension of original face representation is very

high, which incurs great computational difficulty and nu-
merical instability in classification. Due to the highly struc-
tured nature of human faces, it is justifiable to assume that
the face samples lie on a subspace with much lower dimen-
sion. In traditional subspace analysis methods, a projection
matrix learned from the training set is applied to all samples
to transform them to the subspace. Among various subspace
methods, LDA[4] is among the most popular and widely
used in face recognition literature, which aims at maximiz-
ing the ratio of between-class scatter matrix to within-class
scatter matrix.

Though LDA shows its effectiveness in the face recog-
nition with well-controlled condition, however, it works
poorly for outdoor face images with significant illumination
and environment changes. Considering that indoor and out-
door samples present greatly different characteristics, they
should be separately modeled. In addition, considering that
both the indoor and outdoor samples are associated to the
same face object, there should be a discriminant mutual sub-
space reflecting the intrinsic face characteristics within the
indoor and outdoor samples. Motivated by this rationale,
we develop a novel subspace learning algorithm called Dis-
criminant Mutual Subspace Learning. In the developed ap-
proach, we simultaneously learn two coupled transform ma-
trices WI and WE for indoor and outdoor samples based
on their mutual interactions. After the dual transforms are
learned, the samples are projected to the mutual subspace
by

y(I) = WT
I (x(I) − m(I)),y(E) = WT

E(x(E) − m(E)),
(1)

where m(I) and m(E) are the mean vectors of the indoor
and outdoor samples respectively.

In addition, instead of using Euclidean distance, we em-
ploy magnitude of correlation to measure the similarities
between an indoor sample x(I) and an outdoor sample x(E),
which is written as

s(x(I);x(E)) = (x(I)T x(E))2. (2)

For the purpose of discriminant learning, the learning ob-
jective of our method consists of two associative aspects:
maximizing the similarity between indoor and outdoor sam-
ples from the same person; while minimizing the similarity
between the samples from different persons. The two tar-
gets can be unified in the following form:
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For conciseness of discussion, we convert the formulation
into an equivalent form:

WI ,WE = argmax
WI ,WE
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Here the coefficients r
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2.2. Learning by Optimization

The transform matrices WI and WE can be learned by
optimizing the objective function given in Eq.(4). To sim-
plify our discussion, we first rewrite it in matrix form as
follows:

SimW (WI ,WE) =
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Since, we have
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Thus

SimW (WI ,WE)

= tr




NI∑
i=1

NE∑
j=1

r
(W )
ij WT

I x(I)T x(E)WEWT
Ex(E)Tx(I)WI




= tr




NI∑
i=1

NE∑
j=1

r
(W )
ij WT

Ex(E)Tx(I)WIWT
I x(I)Tx(E)WE




Likewise, we have
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Thus Eq.(4) can be expressed as

WI ,WE = argmax
WI ,WE

SimW (WI ,WE)
SimB(WI ,WE)

(8)

Recognizing the duality between WI and WE reflected
in the formulas above. We devise an alternate optimization
scheme which alternately optimizes WI and WE with the
other fixed.

With WE fixed, then we can construct

M(I)
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Thus WI can be solved by following optimization problem:
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This is a problem of maximizing Rayleigh quotient, which
can be efficiently solved using eigen-decomposition as in
LDA, and step-wise global optima is guaranteed.

Similarly, we can optimize WI with WE fixed as fol-
lows
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B WE)
, (12)
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2.3. Discussions

1. By using the developed dual transforms for indoor
and outdoor samples, the different characteristics of indoor
and outdoor images are explicitly taken into consideration.
Hence, the learned model is more adapted to the indoor-
outdoor problem. The experiments will further validate the
effectiveness of our method.

2. The derived procedure is step-wise globally optimal,
i.e. with WI fixed, the WE obtained is global optima, and
vice versa. Note that by employing correlation as similar-
ity measurement, we can deduce the elegant optimization
scheme introduced above without compromising the classi-
fication performance.

3. The formulation unifying WI and WE virtually em-
bodies their duality. The optimization is in essence accom-
plished by their mutual interactions.

3. Integrated Multi-classifier Fusion Frame-
work

The outdoor environment is subject to significant illu-
mination change and other interferences, thus a single dis-
criminant mutual subspace classifier may lack sufficient ca-
pability in modeling such complicated variations. To this
end, we develop a multi-classifier fusion framework, which
constructs multiple classifiers based on different features of
face images, and then integrates them to form a sophisti-
cated system. The structure of this framework is illustrated
in Figure 1.

3.1. Feature Description Using Extended
Gabor Representation

The Gabor wavelet has been shown to outperform the
original appearance features in recent study [2][6]. It in-
herently possesses spatial locality and orientation selectiv-
ity. These properties endow the Gabor-based representation
with capability in capturing the facial features of diverse
scales and orientations and robustness to illumination and
expression change. Wang and Tang [2] have shown that
face recognition in an uncontrolled environment can sub-
stantially benefit from the Gabor features. However, in their
work, the Gabor wavelet feature extraction is restricted in
some fiducial points, thus the information contained in the
Gabor representation is not sufficiently utilized. To over-
come this problem, Li et. al. [11] proposed an extended
Gabor representation which makes full use of the Gabor fea-
tures of the whole image by convolving the image with 40
Gabor kernels (five different scales and eight different direc-
tions). Compared with the discrete landmark-based Gabor
representation [6][2], the extended representation conveys
more information and thus is more expressive. So in this
work we will employ extended Gabor-based representation
[11] in this paper.



For each image, construct 40 Gabor images

Gabor
Image 1

Gabor
Image 2

Gabor
Image 40

DMSL(1) DMSL(2) DMSL(40)

Fusion Method

Recognition 
Result

Input Image

Figure 1. DMSL-based Multi-classifier Fusion Framework on Ga-
bor Images

3.2. DMSL-based Multi-classifier Fusion
Framework

By applying the extended Gabor representation [11], for
each face, we can obtain an image sequence composing of
40 Gabor images. The Gabor images obtained by differ-
ent kernels are similar to multiple frames in a video se-
quence, thus the fusion framework for video sequence de-
veloped in [14] can be applied here to improve the recog-
nition accuracy and efficiency. Inspired by this idea, we
propose a DMSL-based multi-classifier fusion framework
with a novel fusion scheme developed. We first break the
sequence into slices, with feature from each Gabor image
as a slice. Then we apply DMSL to deal with each slice.
Finally all the DMSL-based classifiers are combined into a
final decision via a novel fusion scheme.

Previous researches have shown that combination of
multiple classifiers can significantly improve accuracy and
robustness of single classifier. There are a large number
of fusion rules, such as the widely used majority voting
rule and sum rule [12][13]. However, most of these fusion
schemes are done in a heuristic manner, so the information
that the ingredient classifiers convey is not fully utilized.
In this section, we derive a novel classifier fusion scheme
called adaptive informative fusion, which can adaptively
weights more on confident classifiers to achieve the best
performance for the final decision.

Suppose that there are c classes {Ci}c
i=1 in total, and n

samples in the training set. K classifiers are trained to clas-

sify samples using DMSL to extract features. Denote the
distance value between the sample x and the i-th person in
the k-th classifier space as di

k(x). It is reasonable to assume
that the random samples follow a normal distribution in the
k-th classifier space, i.e.

Pk(di
k(x)|Ci) =

1√
2πσ

exp (− (di
k(x))2

2σ2
), (15)

where σ is the standard deviation. According to the
Bayesian rule, we derive the posterior probability

Pk(Ci|di
k(x)) =

Pk(di
k(x)|Ci)Pk(Ci)∑c

j=1 Pk(di
k(x)|Cj)Pk(Cj)

, (16)

Usually each gallery class has the same prior probability,
i.e. Pk(C1) = · · · = Pk(Cc), so we have

Pk(Ci|di
k(x)) =

Pk(di
k(x)|Ci)∑c

q=1 Pk(di
k(x)|Cj)

, (17)

which serves as an individual classifier.
It is commonly believed that it is impossible to find a

classifier that can outperform others for all of the test sam-
ples. Some classifiers may perform better for a subset of
test samples, while other classifiers may perform better for
a different subset, although on average they may be very
similar to each other in terms of overall accuracy. Hence it
is desirable to design an adaptive weighting function to re-
flect each individual classifier’s confidence on its decision
accommodating a variety of test samples. Motivated by this
rationale, we then define an adaptive weighting function be-
low

Wk(x) = 1 − Ek(x). (18)

where Ek(x) is the entropy of classes conditioned on test
sample x in the k-th classifier space, defined by

Ek(x) =
c∑

i=1

Pk(Ci|di
k(x)) logc

1
Pk(Ci|di

k(x))
. (19)

The combined decision rule is accordingly derived to
classify sample x to the i∗th class

i∗ = argmax
i

K∑
k=1

Wk(x)Pk(Ci|di
k(x)), (20)

in which Pk(Ci|di
k(x)) denotes the posterior probability of

test sample x belonging to the gallery class Ci in the k-th
classifier space.

The adaptive weighting function has the following prop-
erty. If posterior probabilities of test sample x belonging
to all classes in the k-th classifier are equal, that means this
classifier will fail to make any decision, then Ek(x) = 1,
i.e. Wk(x) = 0. On the contrary, if there is a classifier



evaluating Pk(Ci|di
k(x)) = 1, which can definitely deter-

mine the class label of x, then Ek(x) = 0, i.e. Wk(x) = 1.
By using such an adaptive weighting function, the highly
confident individual classifier can be emphasized with good
adaptation to the test data. In the experimental section, we
will see the advantage of our fusion scheme over traditional
fusion schemes.

Eventually, the procedure of our fusion method is sum-
marized as follows.

In training stage,
1. For each training sample, obtain the Gabor-based im-

age sequence composing of 40 Gabor images using the in-
troduced Gabor feature description technique.

2. Construct DMSL-based classifiers based on Gabor
images obtained with different Gabor kernels. There are 40
different kernels, so there are 40 DMSL-based classifiers.

In testing stage,
1. For each test sample, obtain the Gabor-based image

sequence using the similar method as the training stage.
2. Use DMSL-based classifier to determine the classifi-

cation respectively based on the corresponding Gabor im-
age.

3. Combine the decisions made by DMSL-based classi-
fiers with the new developed fusion scheme.

4. Experiments

Until now almost all face databases only contain pho-
tos captured under well-controlled indoor conditions and
few have uncontrolled outdoor facial images. In order to
systematically investigate this new research topic in face
recognition, we first build a large mixed indoor and out-
door face database containing 1444 facial images from 62
distinct persons. The data size of this database is compa-
rable to existing face databases for indoor face recognition.
In this database, there are 23 persons with each one hav-
ing 9 indoor images and 8 outdoor images, and 39 persons
with each one having 15 indoor images and 12 outdoor im-
ages. So there are totally 1444 indoor and outdoor facial
images with great indoor and outdoor discrepancies. For
each person, we use three indoor images and three outdoor
images as training data, and select one indoor image as ref-
erence sample and the remaining outdoor images as probe
samples. There are totally 466 probe samples under uncon-
trolled outdoor conditions. To better evaluate the recogni-
tion performance we preprocess the face images through the
following steps: 1) rotate the face images to align the ver-
tical face orientation; 2) scale the face images so that the
distances between the two eyes are the same for all images;
3) crop the face images to remove the background and the
hair region; 4) apply histogram equalization for photometric
normalization.

We first compare our discriminant mutual subspace
learning (DMSL) algorithm with conventional subspace

methods: Eigenface [3], Fisherface [4], Bayesian method
[5], and Unified subspace analysis [2] on the traditional
Gabor features, as shown in Table 1. The poor results of
the traditional subspace methods confirm that the traditional
subspace models are not suitable for the indoor and out-
door recognition problem due to the great discrepancies be-
tween the two styles of images. It is encouraging to see that
our method, discriminant mutual subspace learning, signif-
icantly outperforms all the traditional subspace methods by
a large margin.

Table 1. Comparison of recognition results on the traditional Ga-
bor features.

Recognition methods Recognition Rate %

PCA 28.97
LDA 75.11

Bayesian 75.54
Unified subspace analysis 80.26

Discriminant mutual subspace learning 87.98

Table 2. Comparison of recognition results on the extended Gabor
features.

Recognition methods Recognition Rate %

Unified subspace analysis
based multi-classifier

framework using sum rule 85.41
Unified subspace analysis

based multi-classifier
framework using voting rule 86.05

Unified subspace analysis
based multi-classifier

framework using our fusion scheme 89.06
DMSL-based multi-classifier

framework using sum rule 93.56
DMSL-based multi-classifier
framework using voting rule 94.64
DMSL-based multi-classifier

framework using our fusion scheme 96.78

In the second experiment, we investigate the perfor-
mance of our proposed multi-classifier fusion framework on
the extended Gabor features (Gabor images) under different
fusion schemes, and also compare the DMSL-based multi-
classifier fusion framework and the unified subspace anal-
ysis based multi-classifier fusion framework. In our multi-
classifier framework, 40 Gabor wavelet images are acquired
for each facial image, accordingly 40 subspace classifiers
are constructed. Then the generated multiple classifiers are
combined into a final decision via a fusion rule. In this ex-
periment, three kinds of fusion rules are used here, includ-
ing the adaptive fusion rule and the two widely used tradi-
tional fusion rules (sum rule and majority rule). The com-
parative results are summarized in Table 2. From the results,



we have the following observations. Firstly, compared with
the results in Table 1, the developed multi-classifier fusion
framework further boosts the recognition performance, re-
gardless of which subspace method is used. This clearly
shows the advantage of our fusion framework. Secondly,
the DMSL-based multi-classifier fusion framework outper-
forms the unified subspace analysis based multi-classifier
fusion framework. Thirdly, among the three kinds of fu-
sion methods, the new fusion scheme achieves the best per-
formance. This shows the superiority of this new fusion
scheme over the traditional fusion methods such as sum rule
and voting rule. Finally, by incorporating all the new algo-
rithms into this framework, we achieve the best recognition
performance, 96.78%. Considering the great difficulty of
this problem, this result is very encouraging and clearly val-
idates the effectiveness of our framework.

5. Conclusions

In this paper, we develop a novel algorithm called dis-
criminant mutual subspace learning (DMSL) for the chal-
lenging problem of indoor and outdoor face recognition.
Different from the conventional subspaces methods that
simply train a subspace model based on the face space
for classification, our approach first learns two associative
transforms for indoor and outdoor samples respectively and
then find the discriminant mutual subspace for classifica-
tion. Moreover, to enhance the performance of DMSL, we
further develop a DMSL-based multi-classifier framework
by integrating several novel techniques including extended
Gabor representation, DMSL, and adaptive informative fu-
sion scheme. Extensive experiments clearly show the ef-
fectiveness of our new algorithms on a large indoor-outdoor
face database.
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