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Abstract

Discriminant feature extraction plays a fundamental role

in pattern recognition. In this paper, we propose the Lin-

ear Laplacian Discrimination (LLD) algorithm for discrim-

inant feature extraction. LLD is an extension of Linear

Discriminant Analysis (LDA). Our motivation is to address

the issue that LDA cannot work well in cases where sam-

ple spaces are non-Euclidean. Specifically, we define the

within-class scatter and the between-class scatter using

similarities which are based on pairwise distances in sam-

ple spaces. Thus the structural information of classes is

contained in the within-class and the between-class Lapla-

cian matrices which are free from metrics of sample spaces.

The optimal discriminant subspace can be derived by con-

trolling the structural evolution of Laplacian matrices. Ex-

periments are performed on the facial database for FRGC

version 2. Experimental results show that LLD is effective

in extracting discriminant features.

1. Introduction

Discriminant feature extraction plays the central role in

recognition and classification. Principal component analy-

sis (PCA) is a classic linear method for unsupervised fea-

ture extraction. PCA [10] learns a kind of subspaces where

the maximum covariance of all training samples are pre-

served. The Eigenfaces [19] method for face recognition

applies PCA to learn an optimal linear subspace of facial

structures. PCA also plays a fundamental role in face sketch

recognition[18, 17]. Locality Preserving Projections (LPP)

[7] is another typical approach for un-supervised feature ex-

traction. LPP is the linearization of Laplacian Eigenmaps

[4] which can find underlying clusters of samples. LPP

shows the superiority in terms of image indexing and face

recognition. The Laplacianfaces face recognition method

[8] is based on the combination of PCA and LPP, in the

sense that LPP is performed in the PCA-transformed fea-

ture space.

However, un-supervised learning cannot properly model

underlying structures and characteristics of different

classes. Discriminant features are often obtained by class-

supervised learning. Linear discriminant analysis (LDA) is

the traditional approach to learning discriminant subspaces

where the between-class scatter of samples is maximized

and the within-class scatter is minimized at the same time.

The Fisherfaces algorithm [3] and many variants of LDA

hae shown good performance in face recognition in com-

plex scenarios. [24, 9, 20, 22, 11, 12, 28]. By defining

the representations of intra-personal and extra-personal dif-

ferences, Bayesian face recognition [2] proposes another

way to explore discriminant features via probabilistic simi-

larity measure. The inherent connection between LDA and

Bayesian faces was unified by Wang and Tang [21] in a

more general form.

LDA algorithm has the advantages of reasonable moti-

vation in principle and the simplicity in form. The conven-

tional LDA algorithm is formulated by the ratio of between-

class scatter and the within-class scatter which are repre-

sented by norms measured with Euclidean metrics. So there

is an underlying assumption behind LDA that it works in

Euclidean spaces. However there are many scenarios where

sample spaces are non-Euclidean in computer vision. For

instance, distances between feature vectors yielded by his-

tograms cannot be measured by Euclidean norms. In this

case, some non-Euclidean measures are usually applied,

such as the Chi squares statistic, the log-likelihood statis-

tic, and the histogram intersection. The primary formula-

tion of LDA does not hold in non-Euclidean spaces. As

a consequence, LDA fails to find the optimal discriminant

subspace.

We propose an improved method, named Linear Lapla-

cian Discrimination (LLD), for discriminant feature extrac-

tion in this paper. We formulate the within-class scatter and

the between-class scatter by means of similarity-weighted

criterions. These criterions benefit from the advantages of

Laplacian Eigenmaps and LPP. Similarities here are com-

puted from the exponential function of pairwise distances in

the original sample spaces, which is free from various forms

of metrics. So, LLD can be applied to any linear space for
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classification. The structural information of classes is gov-

erned by the within-class Laplacian matrix and the between-

class Laplcian matrix. These two matrices evolve with the

time which is a free parameter in similarity measure. From

this viewpoint, LDA is exactly a special case when the time

approaches the positive infinity. Therefore, LLD not only

overcomes the problems of non-Euclidean metrics but also

presents an alternative way to find better discriminant sub-

spaces.

Experiments are performed for face identification on a

subset of facial database for FRGC version 2. We compare

our LLD method with PCA, LPP, LBP, and the traditional

LDA. Discriminant features are extracted on PCA and LBP

expressive features [16], implying that LLD, LPP, and LDA

are performed in the PCA and LBP transformed spaces,

respectively. The PCA expressive features can be viewed

Euclidean whereas the LBP expressive features are non-

Euclidean. Experimental results show that LLD outper-

forms existing methods in terms of discrimination power.

2. Linear Lapacian Discrimination

2.1. Motivations

Since LDA encounters the problem of the metric mea-

sure, we consider similarity as the inherent characteristic of

pairwise points instead of the distance in our work. Our

work is inspired by the application of Laplacian Eigenmaps

[4] in manifold learning and its linearization LPP [7] in

clustering and recognition. The geometric distances be-

tween mapped points that lie on an underlying manifold can

be controlled by similarities between corresponding points

in the original space. Underlying clusters will appear auto-

matically after non-linear maps. By extensive experiments,

He et al. [8] concluded that the linearization of such crite-

rions yields a good performance in image indexing, cluster-

ing, and face recognition. From above considerations, we

propose the LLD algorithm.

2.2. Discriminant scatters

Specifically, let xs
i denote the i-th sample in the s-th

class, where xs
i ∈ MD andMD is the D-dimensional sam-

ple space. We obtain the associated discriminant feature ys
i

of xs
i by projection

ys
i = UTxs

i , (1)

where the d columns of the projection matrix U are the

orthogonal bases of discriminant subspace. Let X =
[x1,x2, . . . ,xn] denote all original samples, where n is the

number of all samples. Then we have Y = UT X, where

Y = [y1, . . . ,yn]. Given two points xs
i and xt

i , the Euclid-

ean distance between them is defined as

‖xs
i − xt

i‖
2

RD =

D
∑

k=1

(xs
ik − xt

ik)2, (2)

where xs
ik is the k-th component of xs

ik.

Let αs denote the within-class scatter of class s. Define

it as

αs =

cs
∑

i=1

ws
i ‖y

s
i − ȳs‖2

RD , s = 1, . . . , c, (3)

where ws
i is the weight, defined by

ws
i = exp

(

−
‖xs

i − x̄s‖2

MD

t

)

, i = 1, . . . , cs. (4)

Here t is the time variable, and exp(•) denotes the exponen-

tial function. It suffices to note that the distance between

ys
i and ȳs are measured by the Euclidean norm ‖ • ‖RD ,

and the distance between xs
i and x̄s are measured by the

norm ‖ • ‖MD which depends on the metric of the orig-

inal sample space. The space may be Euclidean or non-

Euclidean. To obtain the compact expression of (3), let

Ws = diag(ws
1
, ws

2
, . . . , ws

cs
) be a diagonal matrix and

Ys = [ys
1
,ys

2
, . . . ,ys

cs
]. Besides, let ecs

denote the all-one

column vector of length cs. Then ȳs = 1

cs

Ysecs
. Rewrit-

ing (3) shows

αs =

cs
∑

i=1

ws
i tr

{

(ys
i − ȳs)(ys

i − ȳs)T
}

(5)

= tr

{

cs
∑

i=1

ws
i y

s
i (y

s
i )

T

}

(6)

− 2tr

{

cs
∑

i=1

ws
i y

s
i

(

1

cs

Ysecs

)T
}

(7)

+ tr

{

cs
∑

i=1

ws
i

(

1

cs

Ysecs

) (

1

cs

Ysecs

)T
}

(8)

= tr(YsWsY
T
s ) −

2

cs

tr
{

YsWsecs
(ecs

)T YT
s

}

(9)

+
ecs

Ws(ecs
)T

c2
s

tr
{

Ysecs
(ecs

)T YT
s

}

. (10)

Thus we obtain

αs = tr(YsLsY
T
s ), (11)

where

Ls = Ws −
2

cs

Wsecs
(ecs

)T +
ecs

Ws(ecs
)T

c2
s

ecs
(ecs

)T .

(12)



Let α denote the total within-class scatter of all samples.

We have

α =

c
∑

s=1

αs =

c
∑

s=1

tr(YsLsY
T
s ). (13)

There is a 0-1 indicator matrix Ss satisfying Ys = YSs.

Each column of Ss records the class information which is

known for supervised learning. Substituting the expression

of Ys to (13) gives

α =

c
∑

s=1

tr(YSsLsS
T
s YT ) = tr(YLwYT ), (14)

where

Lw =

c
∑

s=1

SsLsS
T
s , (15)

is the within-class Laplacian matrix. If the ma-

trix X is ordered such that samples appear by class

X = [x1

1
, . . . ,x1

c1
, . . . ,xc

1
, . . . ,xc

cc
] , then the within-class

Laplacian matrix Lw reads the diagonal block form of

Lw = diag(L1,L2, . . . ,Lc). Such alignment technique is

applicable for problems that can be formulated as the simi-

lar expression (11) [25, 26].

Plugging the expression of Y into (14), we arrive at the

final form of the total within-class scatter, showing

α = tr(UT DwU), (16)

where Dw = XLwXT is the within-class scatter matrix.

Next, the between-class scatter β of all classes is defined

as

β =

c
∑

s=1

ws‖ȳs − ȳ‖2

RD , s = 1, . . . , c, (17)

where ws is defined by

ws = exp

(

−
‖x̄s − x̄‖2

MD

t

)

. (18)

Let Ȳ = [ȳ1, . . . , ȳc] denote the matrix consisting of all

center vectors of classes and Wb = diag(w1, w2, . . . , wc).
Following similar formulations from (5) to (12), we can

rewrite (17) as

β = tr(ȲLbȲ
T ), (19)

where

Lb = Wb −
2

c
Wbec(ec)

T +
ecWb(ec)

T

c2
ec(ec)

T (20)

is the between-class Laplacian matrix. Let X̄ =
[x̄1, . . . , x̄c]. We have Ȳ = UT X̄. Rewriting (19) yields

β = tr(UT DbU), (21)

where Db = X̄LbX̄
T is called the between-class scatter

matrix.

2.3. Finding the optimal projection

Like LDA, to make projected samples favor of classifi-

cation in feature space, we expect that samples within the

same classes cluster as close as possible and samples be-

tween classes seperate as far as possible. Let us examine the

formulations of the within-class scatter (3) and the between-

class scatter (17), respectively. One can see that the smaller

the distance between xs
i and x̄s is, the larger the similar-

ity ws
i is. If the within-class scatter αs keeps constant,

we know from (3) that ‖ys
i − ȳs‖RD will be small if the

weight ws
i is large, implying that ys

i will be close to its cen-

ter ȳs. So, ys
i will approach its center ȳs as αs approaches

the minimum. Therefore, our expectation on within-class

samples will be fulfilled if the total within-class scatter α

is minimized. By the similar analysis, our expectation on

between-class samples being far apart will be realized if the

between-class scatter β is maximized. To summary, we get

the following dual-objective optimization model [27]


















arg
U

min tr(UT DwU)

arg
U

max tr(UT DbU)

UT U = Id.

(22)

To simplify the optimization, we construct the following

Fisher criterion

J(U) =
β

α
=

tr(UT DbU)

tr(UT DwU)
. (23)

Then the optimization reduces to the similar fashion of the

conventional LDA






arg
U

maxJ(U)

UT U = Id.
(24)

To solve for U, the above optimization can be done on

Grassmann manifolds [6] where U is viewed as a point on

geodesic flows. However, the formal discussion pertaining

to this topic is beyond the scope of this paper. Here, we take

the similar approach used in the traditional LDA to solve

the above optimization problem. We take the d eigenvec-

tors from the following generalized eigen-analysis

Dbui = λiDwui (25)

that are associated with the d largest eigen-values λi, i =
1, . . . , d.

2.4. Computational considerations

Like LDA, LLD encounters the computational trouble as

well when Dw is singular. Dw is not invertible when Lw is

not of full rank. Such case frequently occurs in computer vi-

sion since images have large dimensions whereas the num-

ber of classes is usually small. However, the generalized



eigen-analysis (25) needs a positive definite Dw. Several

strategies exist to address the issue. Here we propose two

approaches.

2.4.1 Approach I: PCA subspace

When the original sample space is Euclidean, discrimi-

nant features can be extracted from expressive features

yielded by PCA. Namely LLD can be performed in the

PCA-transformed space. Fisherfaces [3] successfully em-

ployed this strategy for recognition. Specifically, let UPCA

denote the matrix whose columns are a set of orthogo-

nal base of the principal subspace. We first project Dw

and Db into the PCA-transformed space to give D̃w =
(UPCA)T DwUPCA and D̃b = (UPCA)TDbUPCA.

Then perform the generalized eigen-analysis (25) using

D̃w and D̃b instead. Let ULLD denote the discrimi-

nant subspace. Then the final transformation is given by

UPCAULLD.

2.4.2 Approach II: dual subspaces

The ideas of dual spaces were proposed in [20]. Specifi-

cally, let the eigen-decomposition of Dw be Dw = VΛVT ,

where V is the eigen-vector matrix and Λ is the diagonal

eigenvalue matrix. Suppose V is split into V = [V1,V2],
where V1 consists of eigenvectors corresponding to the r

non-zeros eigenvalues and V2 consists of eigenvectors as-

sociated with the d zero eigenvalues, where r is the rank

of Dw. The method of Wang and Tang’s dual-subspace

[20] is to project Db into V1 and I − V1V
T
1

respectively,

then perform eigen-analysis on the projected between-class

scatter matrices, which is equivalent to projecting the cen-

ter of each class in this two spaces and performing PCA

respectively. Next compute D1

b
= VT

1
DbV1 and D2

b
=

VT
2
DbV2. Let Q1 and Q2 denote the principal eigenvec-

tor matrices of D1

b
and D2

b
, respectively. Then we get two

dual projection matrices W1 = V1Q1 and W2 = V2Q2.

Given two samples xi and xj , the distance between their

feature vectors yi and yj is determined by

d(yi,yj) = ‖WT
1
(xi−xj)‖Rd +‖WT

2
(xi−xj)‖Rd . (26)

Note that, for LDA, projecting samples only on the sub-

space spanned by W1 is essentially the approach of tack-

ling the singular problem of the within-class scatter matrix

by simultaneous diagonalization [16, 20]. In the following,

the dual LLD and the dual LDA means that LLD and LDA

are performed by dual subspaces.

2.5. Connections with existing methods

It is not hard to see that LLD is exactly LDA if t ap-

proaches the positive infinity in the similarity functions (4)

and (18). So, the discriminant subspace of LDA is the sta-

ble state of the evolution of that of LLD with respect to the

time t. Therefore, LLD is a more general version of LDA.

LLD inherits the strengthes of LDA.

The LLD method also has connections with Chen et al.’s

LDE [5] and Yan et al.’s MFA [23]. Overall, these methods

can be viewed as specific forms of graph embedding for-

mulated in [23]. However in principle, they are essentially

different. LDE and MFA are more complicated. They take

advantage of the partial structural information of classes and

neighborhoods of samples at the same time while LDA and

LLD purely explore the information of classes for discrim-

ination.

3. Experiments

3.1. Dataset

We focus our attention on the problem of face identi-

fication. Given a novel face, the identification problem is

that the system is asked to find the identity of the person

in the gallery where the portrait of the person is presented.

The motivation of this task comes from the current trends

of performing face recognition or retrieval based on the fa-

cial images on the web or photos in digital family albums.

In such cases, one is usually interested in finding the most

similar faces of a given sample, which can be converted to

be the face identification problem.

We perform the related experiments on a subset of facial

data in experiment 4 of FRGC version 2 [14]. The query

set for experiment 4 in this database consists of single un-

controlled still images which contains all the diverse factors

of quality presented in the preceding subsection. There are

8014 images of 466 subjects in the set. However, there are

only two facial images available for some persons. To guar-

antee the meaningful reference of our work for the tasks

given above, we select a subset in the query set for our ex-

periments.

To ensure the reproductivity of the tests, we clearly

present the procedures. First, we search all images of each

person in the set and take the first ten facial images if the

number of facial images is not less than ten. Thus we get

3160 facial images of 316 subjects. Then we divide the 316

subjects into three subsets. First, the first 200 subjects are

used as the gallery and probe set and the remaining 116 sub-

jects are used as the training set. Second, we take the first

five facial images of each person as the gallery set and the

remaining five images as the probe set. Therefore, the set

of persons for training is disjoint with that of persons for

the gallery and the probe. Table 1 contains the information

of facial data for experiments. We align the facial images

according to the positions of eyes and mouth. Each facial

image is cropped to a size of 64 × 72. Figure 1 shows ten

images of one subject.



Set Number of subjects Number of images

Training 116 1160

Gallery 200 1000

Probe 200 1000

Table 1. Information of facial data for the experiments. These sets

are selected from the query set for experiment 4 of FRGC version

2.

Figure 1. Facial images of one subject for the experiment in FRGC

version 2. The facial images in the first row are in the gallery set

and the second row is in the probe set.

3.2. Experimental results

We perform the disciminant feature extraction on the ex-

pressive features yielded by PCA and LBP [13, 1], respec-

tively. This means that LLD, LPP, and LDA are performed

in the PCA and LBP transformed spaces, respectively. PCA

is the classic and well-recognized method for expressive

feature extraction. LBP is a new approach which is proved

effective for un-supervised feature extraction [13, 1]. The

PCA feature space is Euclidean. The distances in this space

are measured by the Euclidean norm (2). The LBP feature

space is non-Euclidean. A distance measure in such a space

is the Chi square, defined as

χ2(xs
i ,x

t
i) =

D
∑

k=1

(xs
ik − xt

ik)2

xs
ik + xt

ik

. (27)

PCA and LBP are the baselines, respectively.

3.2.1 Based on PCA features

For the PCA-based two step strategy, the number of prin-

cipal components is a free parameter. Wang and Tang

[22, 21] showed that the dimension of principal subspaces

significantly affects the performance of recognition for the

PCA plus LDA strategy. Besides, they confirmed by exper-

iments that the optimal number lies in the interval [50, 200].
Based on their work, we search the optimal number of prin-

cipal components in this interval. We find that PCA per-

forms best when the dimension of feature vectors is 190.

So we take 190 as the number of principal components.
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Figure 2. Recognition rates based on PCA features. Eigenfaces

is the baseline. Eigenfaces (PCA), Laplacianfaces (PCA plus

LPP), Fisherfaces (PCA plus LDA), and Lapalcian Fisherfaces (L-

Fisherfaces in short, PCA plus LLD) are tested. We take 190 prin-

cipal components in the PCA step due to that PCA performs best

in this dimension. In the figure, t1 = 0.01, t2 = 0.1, t3 = 1,

t4 = 10, and t5 = 100. Laplacian Fisherfaces converge to Fisher-

faces with a fast speed in the Euclidean feature space.

We name our method Laplacian Fisherfaces (L-

Fisherfaces in short) due to that it is Laplacian-kernelized

and formulated by Fisher criterion. As shown in Figure

2, L-Fisherfaces converge to Fisherfaces with a fast speed.

The best performance of LLD is approximately achieved

when LLD arrives at its stable state where each Ws is essen-

tially the identity matrix when t ≥ 100. This result means

that the principal subspace of LLD yields the best discrim-

inant performance in the Euclidean feature space when it

approaches the stable state. Figure 3 shows various eigen-

faces and their evolution across time.

3.2.2 Based on LBP features

We perform LBP on each facial image and then sub-divide

each facial image by 7 × 7 grids. Histograms with 59 bins

are performed on each sub-block. A LBP feature vector

is obtained by concatenating the feature vectors on sub-

blocks. Here we use 58 uniform patterns for LBP and each

uniform pattern accounts for a bin. The remaining 198 bi-

nary patterns are put in another bin, resulting in the 59-bin

histogram. So, the number of tuples in a LBP feature vector

is 59×(7×7) = 2891. The (8, 2) LBP is adopted. Namely,

the number of circular neighbors for each pixel is 8 and the

radius of the circle is 2. The above steps are consistent with

that in [1].



Figure 3. Eigenfaces of three different methods. The first row shows eigenfaces of PCA, the second row Laplacianfaces, the third row

Fisherfaces (L-Fisherfaces with t = 100), the fourth row L-Fisherfaces with t = 1, and the fifth row L-Fisherfaces with t = 0.01.
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Figure 4. Recognition Rates based on LBP features. The performance of the LBP algorithm is the baseline. The left figure shows

recognition rates with respect to dimension and the right one with respect to rank. The rank here is the top n criterion applied in the

FERET evaluation methodology [15]. The legend also applies to the right figure. The time is t = 500 in Dual LLD.

As illustrated in Figure 4, Dual LLD (t = 500) consis-

tently outperforms other methods with the recognition rate

of 92.6%. The baseline (LBP) is 86.6%. The performance

of LLD is equivalent to that of LDA for Euclidean features.

However, LLD shows superiority to LDA for non-Euclidean

features. The performance of LDA is limited when the fea-

ture space is non-Euclidean. LLD performs better in this

case and is less limited by the change of attributions of fea-

ture spaces.

4. Conclusion

We develop a novel method (LLD) for pattern classifica-

tion and discriminant feature extraction. Using similarity-

weighted discriminant criterions, we define the within-class

Laplacian matrix and the between-class Laplacian matrix.

Thus LLD has the flexibility of finding optimal discrimi-

nant subspaces.

Experiments are performed on a subset in FRGC ver-

sion 2. Experimental results show that LLD is equivlant



to the traditional LDA when the feature space is Euclid-

ean and is superior to LDA when the feature space is non-

Euclidean. In addition, LLD can significantly improve the

discriminant performance of expressive features yielded by

PCA and LBP. These results indicate that discriminant crite-

rions formulated in LLD are more suitable for discriminant

feature extraction. Whether the sample space is Euclidean

or non-Euclidean, LLD is capable of capturing the discrim-

inant characteristics of samples The performance of LLD

will be further enhanced by trying other improved LDA

methods.
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