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Abstract

A large family of algorithms for dimensionality reduc-
tion end with solving a Trace Ratio problem in the form of
arg maxW Tr(WT SpW )/Tr(WT SlW )1, which is gener-
ally transformed into the corresponding Ratio Trace form
arg maxW Tr[ (WT SlW )−1(WT SpW ) ] for obtaining a
closed-form but inexact solution. In this work, an efficient
iterative procedure is presented to directly solve the Trace
Ratio problem. In each step, a Trace Difference problem
arg maxW Tr[WT (Sp−λSl)W ] is solved with λ being the
trace ratio value computed from the previous step. Con-
vergence of the projection matrix W , as well as the global
optimum of the trace ratio value λ, are proven based on
point-to-set map theories. In addition, this procedure is fur-
ther extended for solving trace ratio problems with more
general constraint WT CW=I and providing exact solu-
tions for kernel-based subspace learning problems. Exten-
sive experiments on faces and UCI data demonstrate the
high convergence speed of the proposed solution, as well as
its superiority in classification capability over correspond-
ing solutions to the ratio trace problem.

1. Introduction

Variations in a set of high-dimensional data, such as im-
ages, often have an underlying low-dimensional structure
that compactly characterizes the changes among these ob-
servations [1][8]. To uncover this low-dimensional struc-
ture of the data, dimensionality reduction has been an active
research topic in computer vision and pattern recognition.

Yan et al. [10] claimed that most traditional algorithms
for dimensionality reduction can be unified within a gen-
eral framework, called Graph Embedding. This frame-
work derives a low-dimensional feature space which pre-
serves the adjacency relationship between different sam-
ple pairs in addition to constraints from scale normal-

1W is the desired transformation matrix; Sp, Sl and later-introduced
C are constant positive semidefinite matrices.

ization or a penalty graph [10]. Within this context,
many algorithms for dimensionality reduction involve a
search for a transformation matrix W that maximizes a
term Tr(WT SpW ) and at the same time minimizes an-
other term Tr(WT SlW ), where matrices Sp and Sl are
both positive semidefinite. The natural solution to these
dual objectives is to pose a trace ratio optimization prob-
lem, namely maxW Tr(WT SpW )/Tr(WT SlW ), which
however does not have a closed-form solution. Gen-
erally, the trace ratio problem is often simplified into
a more tractable one called the ratio trace problem:
maxW Tr[(WT SlW )−1(WT SpW )]. The ratio trace prob-
lem can be efficiently solved with the generalized eigen-
value decomposition method [3]. However, its solution may
deviate from the original objectives and suffers from the
fact that it is invariant under any non-singular transforma-
tion, which may lead to uncertainty in subsequent process-
ing such as classification and clustering.

In this work, we tackle the original trace ratio prob-
lem, and present a procedure to directly optimize the ob-
jective function Tr(WT SpW )/Tr(WT SlW ) by assuming
that the column vectors of W are unitary and orthogonal
to each other. The procedure iteratively optimizes the ob-
jective function, and the projection matrix Wn of the n-
th step is obtained by solving a corresponding trace differ-
ence problem maxW Tr[WT (Sp − λnSl)W ] where λn is
the trace ratio value computed from Wn−1. Therefore, the
sub-problem in each step can be efficiently solved with the
eigenvalue decomposition method [3]. A detailed proof is
provided to justify that λn will increase monotonically until
reaching the global optimum; the convergence of the pro-
jection matrix Wn is also proven. In addition, this proce-
dure is extended to handle the trace ratio problem with a
more general constraint that WT CW = I , where matrix C
is positive semidefinite. This extension provides the exact
solution to kernel-based subspace learning algorithms with
trace ratio formulations.

The rest of the paper is organized as follows. Section
2 presents a detailed comparison of the trace ratio and ra-
tio trace formulations for dimensionality reduction. Then,
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the iterative procedure to solve the trace ratio problem is in-
troduced in Section 3, and Section 4 gives the convergence
proof. The extension for more general constraints and its
related works are introduced in Section 5. Experimental re-
sults are presented in Section 6, and we conclude this paper
in Section 7.

2. Dimensionality Reduction Formulations:
Trace Ratio vs. Ratio Trace

For a classification problem, assume that the training
data are given as {xi|xi ∈ R

m}N
i=1, where N is the number

of training samples. The corresponding class labels of the
samples are denoted as {ci|ci ∈ {1, ..., Nc}}N

i=1, where Nc

is the number of classes, and the number of samples belong-
ing to the c-th class is denoted as nc. In practice, dimen-
sionality reduction is in great demand owing to the fact that
the effective information for classification often lies within
a lower dimensional feature space.

A simple but effective way for dimensionality reduction
is to find a matrix W = [w1, w2, ..., wd] ∈ R

m×d (Rank(W)
=d, ‖wk‖=1, k=1, 2,. . ., d) to transform the original high-
dimensional data x into a low-dimensional form y ∈ R

d

(usually d � m) as

y = WT x. (1)

Many algorithms [1][8][10][11] with various motiva-
tions have been proposed to find such a W . Yan et al. [10]
claimed that most dimensionality reduction algorithms can
be unified into a general framework, namely graph embed-
ding which is described as follows.

Let G = {X,S} be an undirected weighted graph with
vertex set X and similarity matrix S ∈ R

N×N . Each ele-
ment of the real symmetric matrix S measures the similarity
between a pair of vertices. The diagonal matrix D and the
Laplacian matrix L of a graph G are defined as L = D − S
and Dii =

∑
j �=i Sij , ∀ i. For a specific dimensionality re-

duction algorithm, there may exist two graphs, the intrinsic
graph G = {X,S} and the penalty graph Gp = {X,Sp}
with Lp = Dp − W p and Dp

ii =
∑

j �=i Sp
ij , ∀ i. The in-

trinsic graph characterizes data properties that the algorithm
favors and the penalty graph describes properties that the
algorithm tries to avoid. A graph preserving criterion is im-
posed for these two objectives:

arg min
W

∑
i�=j ‖WT xi − WT xj‖2Sij∑
i�=j ‖WT xi − WT xj‖2Sp

ij

, (2)

which can be further formulated in trace ratio form [10]:

arg max
W

{Tr(WT XLpXT W )
Tr(WT XLXT W )

=
Tr(WT SpW )
Tr(WT SlW )

}, (3)

where Sp = XLpXT and Sl = XLXT . Note that for the
graph embedding framework in [10], the denominator of (2)

can also be defined as a constraint for scale normalization,
which will also result in the trace ratio optimization problem
as in the latter part of (3).

Many popular dimensionality reduction algorithms, such
as Linear Discriminant Analysis (LDA) [1] and the non-
parametric algorithm Marginal Fisher Analysis (MFA) [10]
(or similarly, Local Discriminant Embedding [2]), can be
formulated in the above graph embedding framework. For
example, LDA searches for a subspace that minimizes intra-
class scatter and at the same time maximizes inter-class
scatter:

W ∗ = min
W

∑N
i=1 ‖WT xi − WT x̄ci

‖2

∑Nc

c=1 nc‖WT x̄c − WT x̄‖2
, (4)

where x̄c is the mean of samples belonging to the c-th class
and x̄ is the mean of all samples. From the graph embedding
point of view in (3), the similarity matrices for the intrinsic
and penalty graphs of LDA are defined as

Sij = δci,cj
/nci

, i �= j, (5)

Sp
ij = 1/N − Sij , i �= j, (6)

where δci,cj
=1 if ci=cj , and δci,cj

=0 otherwise.
This optimization problem is typically nonconvex, and

there does not exist a closed-form solution for the gen-
eral trace ratio problem (3); hence such problems are often
transformed into the simpler yet inexact ratio trace problem,
which is equivalent to the determinant ratio problem [3].
For (3), the corresponding ratio trace (determinant ratio)
form is

W ∗ = arg max
W

Tr[(WT SlW )−1(WT SpW )] (7)

= arg max
W

|WT SpW |
|WT SlW | (8)

which can be directly solved with the generalized eigen-
value decomposition (GEVD) method:

Spwk = τkSlwk (9)

where τk is the k-th largest eigenvalue of the GEVD with
the corresponding eigenvector wk, and wk constitutes the
k-th column vector of the matrix W .

Remarks. Despite the existence of a closed-form solu-
tion for ratio trace optimization problem, the obtained so-
lution does not necessarily best optimize the corresponding
trace ratio optimization algorithm, which is the essential ob-
jective function for general dimensionality reduction. For
supervised dimensionality reduction algorithms, this ap-
proximation may sacrifice the potential classification capa-
bility of the derived low-dimensional feature space, which
is demonstrated later in our experiments. This motivates
the need for a procedure to directly solve the trace ratio op-
timization problem.



3. Efficient Solution of Trace Ratio Problem

In this section, we present an efficient procedure to solve
the trace ratio problem with the assumption that WT W =
Id. Denote St = Sp + Sl, then the trace ratio optimization
problem in (3) is equivalent to

W ∗ = arg max
W T W=Id

Tr(WT SpW )
Tr(WT StW )

. (10)

We have 0 ≤ Tr(WT SpW )/Tr(WT StW ) ≤ 1, and the
maximum value 1 of (10) corresponds to the maximum of
(3), namely +∞. Without losing generality, we instead
solve for (10) in the following. Our procedure consists of
two steps.

1. Remove the Null Space of St with Principal Com-
ponents Analysis (PCA) [8]. The matrices Sp and Sl are
both positive semidefinite, and the intersection of their null
spaces is equal to the null space of St, namely, {x|Stx =
0}. As the null space of St does not contain discriminat-
ing information for the training data ( xT Spx = 0 and
xT Slx = 0 ), they may be removed from the solution space
without sacrificing accuracy. Assume that the singular value
decomposition of matrix St is

St = UΛUT ,

where Λ = [λ1, λ2, . . . , λm′ ], λk > 0, k = 1, 2, . . . ,m′,
and m′ is the number of positive singular values of St. Then
the solution is constrained to lie within the space spanned by
the column vectors of U , namely, W = UV, V ∈ R

m′×d,
and the problem defined in (10) is changed to

V ∗ = arg max
V T V =Id

Tr(V T Su
p V )

Tr(V T Su
t V )

. (11)

where Su
p = UT SpU and Su

t = UT StU . Then, the denom-
inator of the objective function (11) is always positive for
non-zero V , that is, Su

t is positive definite.
2. Iterative optimization. Here, we first introduce our

iterative algorithm to solve (11). Its theoretical justifications
will be presented in Section-4. In each step, we solve a trace
difference problem

V ∗ = arg max
V T V =Id

Tr[V T (Su
p − λnSu

t )V ],

where λn is the trace ratio value calculated from the projec-
tion matrix V n−1 of the previous step. The detailed proce-
dure is listed in Algorithm 1.

4. Proof of Convergency to Global Optimum

4.1. Proof of the monotonic increase of λn

Denote the objective function of (11) as

J(V ) =
Tr(V T Su

p V )
Tr(V T Su

t V )
. (16)

Algorithm 1 . Iterative Procedure to Solve the Trace Ratio
Optimization Problem

1: Initialize V 0 as an arbitrary columnly orthogonal ma-
trix;

2: For n=1, 2, . . . , Nmax, Do

1. Compute the trace ratio value λn from the projec-
tion matrix V n−1:

λn =
Tr[V n−1T

Su
p V n−1]

Tr[V n−1T Su
t V n−1]

. (12)

2. Construct the trace difference problem as

V n = arg max
V T V =Id

Tr[V T (Su
p − λnSu

t )V ].

(13)

3. Solve the trace difference problem using the eigen-
value decomposition method:

(Su
p − λnSu

t )vn
k = τn

k vn
k , (14)

where τn
k is the k-th largest eigenvalue of (Su

p −
λnSu

t ) with the corresponding eigenvector vn
k .

4. Reshape the projection matrix for the sake of or-
thogonal transformation invariance:

(a) Set V n = [vn
1 , vn

2 , . . . , vn
d ], where d is the

desired lower feature dimension;

(b) Let Sv
t = V n(V n)T Su

t V n(V n)T ;

(c) Conduct singular value decomposition as

Sv
t = V nΛnV nT . (15)

5. If ‖V n − V n−1‖ <
√

m′d ε (ε is set to 10−4 in
this work), then break.

3: Output V = V n.

Then, the monotonic increase of λn is guaranteed by the
following theorem.

Lemma-1. For Algorithm 1 to solve the trace ratio opti-
mization problem, we must have

J(V n) ≥ J(V n−1), namely λn+1 ≥ λn. (17)

Proof. Denote gn(V ) = Tr(V T (Su
p − λnSu

t )V ), then
gn(V n−1) = 0. Moreover, from Algorithm 1 and the as-
sumption that V T V = Id, we have [6]

sup
V T V =Id

gn(V ) =
d∑

k=1

τn
k .



Also, gn(V n) =
∑d

k=1 τn
k from (14) and (15). Then we

have
gn(V n) ≥ gn(V n−1) = 0.

Namely, Tr[V nT (Su
p − λnSu

t )V n] ≥ 0. As the matrix Su
t

is positive definite, we obtain

Tr(V nT Su
p V n)

Tr(V nT Su
t V n)

≥ λn,

that is,

J(V n) ≥ J(V n−1), namely λn+1 ≥ λn. �

From Theorem-1, we can conclude that the trace ratio
value will monotonically increase.

4.2. Proof of V n convergence and global op-
timum for λ

To prove the convergence of the projection matrix V n,
we first introduce the concept of point-to-set mapping and
some related lemmas [7]. The power set ℘(χ) of a set χ is
the collection of all subsets of χ. A point-to-set map Ω is a
function: χ → ℘(χ) [5]. In our iterative procedure to the
trace ratio optimization problem, the map from V n−1 to V n

can be considered as a point-to-set map, since each V n with
any orthogonal transformation will not change the value of
the objective function J(V n).

Strict Monotonicity [5]. An algorithm is a point-to-
set map Ω:χ → ℘(χ). Given an initial point X1, the al-
gorithm generates a sequence of points via the rule that
Xn ∈ Ω(Xn−1). Suppose J : χ → R+ is a continuous,
non-negative function; an algorithm is called strictly mono-
tonic if 1) Y ∈ Ω(X) implies that J(Y ) ≥ J(X), and 2)
Y ∈ Ω(X) and J(Y ) = J(X) imply that Y = X .

To prove the convergence of the projection matrix V n,
we will utilize the following lemma.

Lemma-2 [7]. Assume that the algorithm Ω is strictly
monotonic with respect to J and that it generates a sequence
{Xn} which lies in a compact set. If χ is normed, then
‖Xn − Xn−1‖ → 0. If Ω is closed at an accumulation
point X̂ , lim

n→∞Xn = X̂ , then X̂ is a fixed point, namely

{X̂} = Ω(X̂).
In our proposed iterative procedure (12-15) for the trace

ratio optimization problem, let χ = R
m′×d ∩ ϕ, where the

set ϕ = {X| ∃ V ∈ R
m′×d, X is the solution of (12-15)

with V n−1=V }. Then the iterative algorithm from (12) to
(15), denoted as Ω, is a point-to-set map (the set contains
one point when V n is constrained to have been obtained
from (12-15)), and it generates a sequence of points via the
rule that V n = Ω(V n−1). This algorithm is strictly mono-
tonic as proven below.

Lemma-3 The iterative algorithm (12-15) for the trace
ratio optimization problem is strictly monotonic with re-
spect to J = J(V ) as defined in (16).

Proof. It is obvious that J(V ) is a continuous, non-
negative function. From Lemma-1, we have J(V n) ≥
J(V n−1), hence the first condition for strict monotonicity
is satisfied. For the second condition, if Y = Ω(X) and
J(Y ) = J(X), then maxV Tr[V T (Su

p − λSu
t )V ] = 0

where λ = Tr(XT Su
p X)/Tr(XT Su

t X); otherwise, we
have J(Y ) > J(X). As Su

t is positive definite, we have

maxV
Tr(V T Su

p V )

Tr(V T Su
t V )

= λ. Since both X and Y achieve

the maximum of the objective function J(V ), they both
maximize Tr[V T (Su

p − λSu
t )V ] [4]. As the maximum of

Tr[V T (Su
p − λSu

t )V ] lies in the space spanned by the first
d eigenvectors of the matrix (Su

p −λSu
t ) [6]2, there only ex-

ists one orthogonal transform between these two matrices.
Given that both X and Y are constrained in the set ϕ, they
are orthogonal transform invariant as in (15); therefore, we
have X = Y . Then, we can conclude that the iterative al-
gorithm (12-15) for the trace ratio optimization problem is
strictly monotonic with respect to J = J(V ) as defined in
(16). �

All possible λn computed from the set {V | V T V =
Id, V ∈ R

m′×d} will constitute a compact set. As described
above, all members of χ are computed from (14) and (15);
hence χ is compact owing to the continuity of the mapping
from λn to V n. A more detailed proof is omitted here.

Based on the above lemmas, we can have the following
theorem on the convergence of the λn to the global opti-
mum.

Theorem-1. For the iterative procedure (12-15) defined
in Algorithm 1, we have ‖V n − V n−1‖ → 0. Denote

lim
n→∞V n = V , then V ∈ arg maxV

Tr(V T Su
p V )

Tr(V T Su
t V )

, that is,

λn will monotonically increase and converge to the global
optimum.

Proof. From Lemma-2 and Lemma-3, we can directly
reach the conclusion that ‖V n − V n−1‖ → 0. From
Lemma-2, we have J(V ) = J(Ω(V )). According to the

proof of Lemma-3, we have V ∈ arg max Tr(V T Su
p V )

Tr(V T Su
t V )

.

As proven in Lemma-1, λn will monotonically increase,
hence we can conclude that λn will monotonically increase
and converge to the global optimum along with the corre-
sponding projection matrix V n. �

5. Extension and Discussion

5.1. Extension to General Constraints

As mentioned previously, we have the assumption
WT W = I for the trace ratio optimization problem. In
practice, a more general constraint WT CW = I , where C
is any positive semidefinite matrix, may be imposed. Here,

2It is deduced with the assumption that there do not exist duplicated
eigenvalues for (Su

p − λSu
t ).



we take as example the kernelization of the graph embed-
ding framework in [10], where C is a kernel matrix, to in-
troduce how to solve the trace ratio optimization problem
with general constraints.

The intuition of the kernel trick is to map the data from
the original input feature space to another higher dimen-
sional Hilbert space as φ : x → F , and then perform
linear dimensionality reduction in this new feature space.
This approach is well suited to algorithms that need only
to compute the inner product of data pairs k(xi, xj) =
φ(xi) · φ(xj). Assuming that the transformation matrix
W = [φ(x1), φ(x2), · · · , φ(xN )]W̃ and K is the kernel
Gram matrix with Kij = φ(xi) · φ(xj), we have the fol-
lowing optimization problem from (3):

max
W̃ T KW̃=I

{Tr(W̃T KLpKW̃ )
Tr(W̃T KLKW̃ )

=
Tr(W̃T Sk

pW̃ )

Tr(W̃T Sk
l W̃ )

}, (18)

where the constraint matrices are Sk
p = KLpK and Sk

l =
KLK.

Assume that the singular value decomposition of the ker-
nel matrix K is K = UkΛk(Uk)T , where Λk is a diag-
onal matrix with positive diagonal elements. Let W̃ =
UkΛ−1/2

k W1, then we can simplify the optimization prob-
lem (18) into

max
W T

1 W1=I

Tr(WT
1 S1

pW1)
Tr(WT

1 S1
l W1)

, (19)

where the constant matrix S1
p = Λ−1/2

k UT
k Sk

pUkΛ−1/2
k and

S1
l = Λ−1/2

k UT
k Sk

l UkΛ−1/2
k . Now this optimization prob-

lem is converted into the form in (3), and hence we can use
the proposed Algorithm 1 to search for the global optimum.

5.2. Discussion

Trace Ratio vs. Ratio Trace: Trace ratio and ratio trace
present two different formulations to the general dimension-
ality reduction problem. They are interlinked in the fol-
lowing aspects. First, for the trace ratio formulation, the
objective function is invariant under any orthogonal trans-
formation of V ; while for the ratio trace formulation, it is
invariant under any non-singular transformation matrix of
V . Hence, the former is invariant for classification if based
on Euclidean distance, while different solutions of the latter
may change the similarity and thus is unstable for classi-
fication. Second, the ratio trace formulation has a closed-
form solution and is more efficient compared to the trace
ratio formulation. Third, for the ratio trace formulation,
the column vectors of the projection matrix are not required
to be orthogonal, hence it essentially puts different weights
on different projection directions. Assume that the singular
value decomposition of W is W = UwΛwV T

w ; then, as the
right orthogonal matrix Vw will not change the similarity if

it is based on the Euclidean distance, the projection direc-
tions encoded by the column vectors of Uw are given dif-
ferent weights from the diagonal elements of Λw. Finally,
the trace ratio formulation is the essential formulation for
general dimensionality problem, which directly leads to the
superiority of the solution from the trace ratio formulation
over that from the ratio trace formulation.

Relationship with Guo’s Work [4]: Guo et al. [4] pro-
posed a method to solve the trace ratio problem. Our pro-
posed algorithm is different from Guo’s in many aspects.
First, Guo’s work proves convergence of only the trace ra-
tio value, and does not prove the convergence of the pro-
jection matrix V ; while our algorithm provides conver-
gence proofs for both the trace ratio value and the projec-
tion matrix V . Second, Guo’s work utilizes the dichotomy
method to select the trace ratio value for their trace differ-
ence formulation, which commonly exhibits slow conver-
gence of the trace ratio value. As shown in the experiment
section, our proposed method converges much faster than
Guo’s work. Third, in our proposed algorithm, the trace
ratio value increases monotonically, hence it is guaranteed
that the performance improves step-by-step; while in Guo’s
work, the derived trace ratio value may fluctuate. Finally,
our algorithm is proposed for general dimensionality re-
duction problems and further extended for solving kernel-
based subspace learning problems formulated in trace ratio
form. The work in [9] also discussed the trace ratio problem
and applied the multi-scale search for pursuing the solution;
hence also suffers from the same issues as Guo’s work.

6. Experiments

In this section, our proposed Iterative algorithm for the
Trace Ratio (ITR) optimization problem is systematically
evaluated in four aspects, taking the LDA and MFA [10]
algorithms as instances of trace ratio problems. The first is
the evaluation of convergence speed in comparison to Guo’s
work [4]; the second is visualization of the projection ma-
trices of ITR compared to PCA and the ratio trace based
LDA; the third is evaluation of the classification capability
of the derived low-dimensional feature spaces from linear
dimensionality reduction algorithms; and the fourth is eval-
uation of the classification capability of the derived low-
dimensional feature space for kernel-based dimensionality
reduction algorithms.

6.1. Dataset Preparation

In our experiments, we use six data sets. The first
three are the benchmark face databases FERET, ORL, and
CMU PIE1 with high-dimensional features. For the face
databases, all images are aligned by fixing the locations of
the two eyes. From the FERET database, we use seventy

1Available at http://www.face-rec.org/databases/.



(a) ‖V n − V n−1‖ Error. (b) Trace Difference. (c) ‖V n − V n−1‖ Error. (d) Trace Difference.

Figure 1. ‖V n − V n−1‖ error vs. iteration number, and the trace difference |Tr[V nT (Sp − λnSt)V
n]| (implies the error between V n

and the optimum) vs. iteration number. (a-b) FERET database, and (c-d) CMU PIE database.

people with six images for each person; the images are nor-
malized in size to 56-by-46 pixels. The ORL database con-
tains 400 images of 40 persons, where each image is nor-
malized in size to 56-by-46 pixels. The CMU PIE (Pose,
Illumination, and Expression) database contains more than
40,000 facial images of 68 people. In our experiment, a
subset of five near frontal poses (C27, C05, C29, C09 and
C07) and illuminations indexed as 08 and 11 is used. Each
person has ten images and all the images are normalized to
64-by-64 pixels. The other three data sets are wine, iris, and
ionosphere (iono) from the UC Irvine repository2; this data
has relatively small feature dimensions.

6.2. Convergence Speed

In this subsection, the convergence property of our pro-
posed algorithm ITR is compared to Guo’s method. The
convergence property is evaluated in two aspects. One is the
convergence of the projection matrix V n, determined ac-
cording to the difference of V n and V n−1 (‖V n −V n−1‖).
The other is the speed of |Tr[V nT (Sp − λnSt)V n]| con-
verging to zero. As described in the proof of Lemma-
3, the largest trace ratio value results in Tr[V nT (Sp −
λnSt)V n] = 0; hence this evaluation measures the conver-
gence speed of the trace ratio value to the global optimum,
and the accuracy of the projection matrix V .

The FERET and CMU PIE databases are used for these
evaluations. For both ITR and Guo’s method, we optimize
the objective function in (11) and from the LDA algorithm.
Detailed results are shown in Figure 1, from which we can
see that ITR converges much faster than Guo’s method.
Commonly, ITR converges after about 5 iterations. More-
over, the accuracy of the trace ratio value, characterized by
the value of |Tr[V nT (Sp − λnSt)V n]|, from the ITR algo-
rithm is much better than that from Guo’s method.

6.3. Visualization of Projection Matrix

In this subsection, we examine the visual properties of
the projection matrix W computed by our proposed ITR al-
gorithm within LDA, and compare it to the traditional ratio
trace formulation within LDA and to the PCA algorithm.

2Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.

Figure 2. Visualization of the projection matrix W of PCA, ratio
trace based LDA, and trace ratio based LDA (ITR) on the FERET
database.

The FERET and ORL databases are used for this exper-
iment. From the FERET database, three images of each
subject are randomly selected for the computation of the
projection matrices, while four images of each subject are
taken from the ORL database. For the ITR algorithm, the
reduced feature dimension is set to d = 10 for the computa-
tion of the projection matrix. For LDA related algorithms,
we first conduct PCA to reduce the dimension to N -Nc as
in [1], and then perform LDA. The final projection matrix
is the product of the PCA projection matrix and the LDA
projection matrix.

The column vectors of the projection matrix are reshaped
into a matrix of the original image size. All the results are
shown in Figure 2. They demonstrate that PCA vectors look
similar to a face, which agrees with the motivation of PCA;
while the results from LDA related algorithms are more
noisy, which indicates that the most discriminating features
perhaps do not possess explicit global semantics.

6.4. Classification by Linear Trace Ratio Al-
gorithms with Orthogonal Constraints

In this subsection, we conduct classification experiments
on the face databases with high feature dimensions. Our
proposed ITR procedure is compared to the ratio trace so-
lution using LDA and MFA as examples. For MFA related
algorithms, the number of nearest neighbors of each sam-
ple is fixed as 4, and the number of shortest pairs from
different classes is set as 40. To speed up model training,
PCA is computed as a preprocessing step for LDA/MFA re-
lated algorithms. Two PCA dimensions are tested before
LDA/MFA: one is N -Nc, which is equivalent to the Fisher-



Table 1. Recognition error rates (%) of PCA, PCA (N -Nc)+Ratio Trace based LDA (RLDA), PCA (N -Nc)+Trace Ratio based LDA (ITR-
LDA), PCA (N -1)+Ratio Trace based LDA (RLDA2), PCA (N -1)+Trace Ratio based LDA (ITR-LDA2), PCA (N -Nc)+Ratio Trace based
MFA (RMFA), PCA (N -Nc)+Trace Ratio based MFA (ITR-MFA), PCA (N -1)+Ratio Trace based (RMFA2), PCA (N -1)+Trace Ratio
based MFA (ITR-MFA2), and the method without dimensionality reduction on the three face databases. Note that the boldtype numbers
are those with the best classification accuracies for LDA and MFA respectively.

Configure Unsupervised LDA Related Algorithms MFA Related Algorithms
FERET w/o DR. PCA RLDA ITR-LDA RLDA2 ITR-LDA2 RMFA ITR-MFA RMFA2 ITR-MFA2

N3T3 17.1 16.2 8.6 7.6 7.6 6.7 9.5 5.3 6.2 4.8
N2T4 32.9 33.2 21.1 21.8 18.9 17.1 20.7 22.0 18.6 16.8

ORL w/o DR. PCA RLDA ITR-LDA RLDA2 ITR-LDA2 RMFA ITR-MFA RMFA2 ITR-MFA2
N4T6 12.1 10.8 11.7 6.7 11.7 5.8 10.8 6.7 7.1 5.4
N3T7 18.6 17.5 15.7 13.2 16 11.8 15.4 11.8 12.1 11.8
N2T8 28.4 27.5 28.4 24.4 22.2 22.5 27.5 23.7 24.7 22.2

PIE w/o DR. PCA RLDA ITR-LDA RLDA2 ITR-LDA2 RMFA ITR-MFA RMFA2 ITR-MFA2
N4T6 14.3 11.3 4.0 0.8 4.0 0.5 4.2 0.5 1.8 0.5
N3T7 19.0 15.9 7.0 2.7 4.8 2.0 7.3 2.5 2.9 2.0
N2T8 22.4 17.5 18.1 12 12.9 6.1 16.9 11.9 8.7 5.7
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Figure 3. Recognition error rates over different dimensions. The
configuration is N3T7 on the CMU PIE database. For LDA and
MFA, the dimension of the preprocessing PCA step is N -Nc.

face algorithm [1] for LDA; the other is (N -1), and in this
case, LDA and MFA are implemented by first transform-
ing the objective functions into the form of Eqn. (11) for
avoiding the singular value issue. With our ITR algorithm,
we also test these two dimensions for PCA before formally
performing ITR, and the maximum iteration number Tmax

in Algorithm 3 is set to 16 in all the experiments. For com-
parison, the classification result from PCA and that on the
original gray-level features without dimensionality reduc-
tion are also reported as the baselines, denoted as ’PCA’
and ’w/o DR.’ in the tables and figures. In all experiments,
the Nearest Neighbor method is used for final classification.
For each database, we test various configurations of training
and testing sets, where ′NxTy′ indicates that x images of
each subject are randomly selected for model training and
the remaining y images of each subject are used for testing.
Detailed results are listed in Table 1, and recognition error
rates over different feature dimensions for the experiment
N3T7 on the CMU PIE database are displayed in Figure 3.
From the results, we can reach the conclusion that the trace
ratio formulation generally outperforms the corresponding
ratio trace formulation in terms of classification capability
of the derived low-dimensional feature space, with only one
exception for N2T8 of RLDA2 in the ORL database.

We also conduct classification experiments on the UCI
databases with features of low dimensions. The sample
data are normalized such that each feature has a standard
deviation of one, and no PCA step is used for preprocess-
ing before LDA/MFA since the feature dimension is already
relatively small for these data sets. For LDA/MFA related
algorithms, the best result of all possible LDA/MFA feature
dimensions is reported. We randomly split each data set
100 times into training (70%) and testing (30%) sets, and
the classification errors (mean and standard deviation of the
testing error) are charted in Figure 4. These results again
validate the superiority of the trace ratio formulation over
the ratio trace formulation.

6.5. Classification by Kernel Trace Ratio al-
gorithms with General Constraints

We also evaluate the effectiveness of the ITR proce-
dure for solving the trace ratio problem with general con-
straints. Kernel-based LDA and MFA are used as examples
for the trace ratio and ratio trace formulations. In all the
experiments, the Gaussian Kernel exp{−‖x − y‖2/δ2} is
used, and parameter δ is set as δ = 2(n−10)/2.5δ0, n =
0, 1, . . . , 20, where δ0 is the standard derivation of the train-
ing data set. The reported result is the best one among the
21 configurations. The three face databases and the three
UCI databases are used for experiments. Detailed results
are listed in Table 2 and Figure 4. They show that for both
kernel-based Discriminant Analysis and kernel-based MFA
algorithms, the trace ratio based solutions are consistently
superior to the ratio trace based solutions.

Discussion: Over the past few decades, many algorithms
have been proposed for dimensionality reduction [12][13];
even for just the PCA+LDA/MFA paradigm, numerous dif-
ferent procedures have been proposed on how to select the
PCA dimension, and there are two parameters in MFA that
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Figure 4. Testing classification errors on three UCI databases for both linear and kernel-based algorithms. Results are obtained from 100
realizations of randomly generated 70/30 splits of data.

Table 2. Recognition error rates (%) of Ratio Trace + Kernel
Discriminant Analysis (RKDA), Trace Ratio + Kernel Discrimi-
nant Analysis (ITR-KDA), Ratio Trace + Kernel MFA (RKMFA),
and Trace Ratio + Kernel MFA (ITR-KMFA) on the three face
databases.

FERET RKDA ITR-KDA KMFA ITR-KMFA
N3T3 8.0 6.3 8.0 4.8
N2T4 26.4 17.5 26.4 17.5

ORL RKDA ITR-KDA KMFA ITR-KMFA
N4T6 6.7 6.7 6.7 5.0
N3T7 14.3 12.1 14.3 12.1
N2T8 26.6 22.2 26.6 21.6

PIE RKDA ITR-KDA KMFA ITR-KMFA
N4T6 2.4 1.3 2.4 1.1
N3T7 3.4 2.7 3.4 2.7
N2T8 11.9 7.7 11.9 6.9

can be tuned for better performance. In this work, we did
not try to evaluate all the algorithms to determine which
one is best; instead, we claim that for each algorithm, so-
lutions based on the trace ratio formulation are better than
those from the corresponding ratio trace versions. For the
PCA+LDA/MFA paradigm, when the PCA dimension is
fixed, this benefit of the trace ratio formulation can also be
gained in the LDA/MFA step.

7. Conclusion

In this paper, an efficient iterative procedure (ITR) has
been proposed to directly solve the trace ratio optimization
problem. The convergence of the projection matrix and the
global optimality of the trace ratio value were proven. ITR
truly provides the optimal solution for the joint objectives
of most popular dimensionality reduction algorithms.The
superiority of solutions from ITR over those from the ra-
tio trace formulation has been extensively verified by large
number of experiments on various data sets.
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