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Abstract

Image segmentation plays an important role in computer
vision and image analysis. In this paper, the segmentation
problem is formulated as a labeling problem under a prob-
ability maximization framework. To estimate the label con-
figuration, an iterative optimization scheme is proposed to
alternately carry out the maximum a posteriori (MAP) esti-
mation and the maximum-likelihood (ML) estimation. The
MAP estimation problem is modeled with Markov random
fields (MRFs). A graph-cut algorithm is used to find the
solution to the MAP-MRF estimation. The ML estimation
is achieved by finding the means of region features. Our
algorithm can automatically segment an image into regions
with relevant textures or colors without the need to know the
number of regions in advance. In addition, under the same
framework, it can be extended to another algorithm that ex-
tracts objects of a particular class from a group of images.
Extensive experiments have shown the effectiveness of our
approach.

1. Introduction

Image segmentation has received extensive attention
since the early years of computer vision research. Due to
the limitation of computational ability, the early segmen-
tation methods [12], [15] flaw in efficiency and/or perfor-
mance.

Recently, Shi and Malik proposed to apply normalized
cuts to image segmentation [13], [16], which is able to
capture intuitively salient parts in an image. The normal-
ized cuts has an important advantage in spectral clustering.
However, it is not perfectly fit for the nature of image seg-
mentation because ad hoc approximations must be intro-
duced to relax the NP-hard computational problem. These
approximations are not well understood and often lead to
unsatisfactory results.

Expectation-maximization (EM) [4] is another interest-
ing segmentation method. One shortcoming of EM is that
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the number of regions is kept unchanged during the segmen-
tation, which often causes wrong results because different
images usually have different numbers of regions. Theo-
retically, people can use the minimum description length
(MDL) principle [4] to alleviate this problem, but the seg-
mentation has to be carried out many times with different
region numbers to find the best result. This takes a large
amount of computation, and the theoretically best result
may not accord with our perception.

Tu and Zhu [14] presented an generative segmentation
method under the framework of MAP estimation of MRFs,
with the Markov Chain Monte Carlo (MCMC) used to solve
the MAP-MREF estimation. This method suffers much from
the computation burden. In addition, the generative ap-
proach explicitly models regions in images with many con-
straints, resulting in the difficulty of choosing parameters
to express objects in images. Another popular segmenta-
tion approach based on MRFs is graph cut algorithms. The
algorithms in [2] and [8] rely on human interaction, and
solve the two-class segmentation problem. In [17], Zabih
and Kolmogorov used graph cuts to obtain the segmentation
of multiple regions in an image, but the number of clusters
is given in the beginning and cannot be adjusted during the
segmentation. Besides, the segmentation result is sensitive
to this number, as pointed out by the authors.

Recently, some researchers start to pay attention to
learning-based segmentation of objects of a particular class
from images [9], [1], [10], [11]. Different from common
segmentation methods, this work requires to learn the pa-
rameters of a model expressing the same objects (say, horse)
from a set of images.

This paper proposed a new image segmentation algo-
rithm based on a probability maximization model. An iter-
ative optimization scheme alternately making the MAP and
ML estimations is the key to the segmentation. We model
the MAP estimation with MRFs and solve the MAP-MRF
estimation problem using graph cuts. The ML estimation is
obtained by finding the means of region features.



The contributions of this work include: 1) a novel prob-
abilistic model and an iterative optimization scheme for im-
age segmentation; 2) using graph cuts to solve the multiple
region segmentation problem with the number of regions
automatically adjusted according to the properties of the
regions; and 3) extracting objects from a group of images
containing the objects of the same class.

2. A New Probabilistic Model

For a given image P, the features of every pixel p are
expressed by a four-dimensional vector

L(p) = (IL(p), La(p), In(p), I:(p))", (1

where I1,(p), I,(p) and I(p) are the components of p in the
L*a*b* color space and I;(p) denotes the texture feature of
p. Several classical texture descriptors have been developed
in [4], [6], and, [7]. In this paper, the texture contrast de-
fined in [4] (scaled from [0, 1] to [0, 255]) is chosen as the
texture descriptor.

The task of image segmentation is to group the pixels
of the image into relevant regions. If we formulate it as a
labeling problem, the objective is then to find a label con-
figuration f = {f, | p} where f, is the label of pixel p
denoting which region this pixel is grouped into. Suppose
that we have k possible region labels. A four-dimensional

vector
o(i) = (11.(0), Lo (i), To(0), Io(2)) 2

is used to describe the properties of label (region) ¢, where
the four components of ¢(i) have the similar meanings to
those of the corresponding four components of I(p).

Let & = {¢(i)} be the union of the region features. If
P and @ are known, the segmentation is to find an optimal
label configuration f/’\, which maximizes the posterior possi-
bility of the label configuration:

f= arg max Pr(f|®, P), 3)
f

where ® can be obtained by either a learning process or
an initialized estimation. However, due to the existence of
noise and diverse objects in different images, it is difficult
to obtain @ that is precise enough. Our strategy here is to
refine @ according to the current label configuration found
by (3). Thus, we propose to use an iterative method to solve
the segmentation problem.

Suppose that @™ and f™ are the estimation results in the
nth iteration. Then the iterative formulas for optimization

are
[ = argmax Pr(f|®", P), )
!

o™ = argmax Pr(f" |0, P). 5)
®
This iterative optimization is preferred because (4) can be

solved by the MAP estimation, and (5) by the ML estima-
tion.

2.1. MAP Estimation of f from ®
Given an image P and the potential region features &,
Pr(f|®, P) can be obtained by the Bayesian law:

Pr(f|®, P) o< Pr(®, P|f)Pr(f), (6)

which is a MAP estimation problem and can be modelled
using MRFs.

Assuming that the observation of the image follows an
independent identical distribution (i.i.d.), we define

Pr(®,P|f) x [[ exp (—=D(p, £, @), (7)
peP

where D(p, fp, ®) is the data penalty function which im-
poses the penalty of a pixel p with a label f,, for given ®.
The data penalty function is defined as:

D(p, £, ®) = [L(p) — S(fo)lI*. ®)

We restrict our attention to MRFs whose clique poten-
tials involve pairs of neighboring pixels. Thus

> Vol £ ®

PEP geN (p)

Pr(f) < exp(

where N (p) is the neighborhood of pixel p. V}, 4(fp, fq)s
called the smoothness penalty function, describes the prior
probability of a particular label configuration with the ele-
ments of the clique (p, ¢). It is defined using a generalized
Potts model [3]:

Veallyr fa) = ¢ exp (2L s, 2 ) o)
where A(p, q) = |1 (p) — I (q)| denotes how different the
brightnesses of p and g are, ¢ > 0 is a smoothness factor,
o > 0 is used to control the contribution of A(p, q) to the
penalty, and T'(-) is 1 if its argument is true and 0 otherwise.
Vp.q(fp, fq) depicts two kinds of constraints. The first en-
forces the spatial smoothness; if two neighboring pixels are
labelled differently, a penalty is imposed. The second con-
siders a possible edge between p and g; if two neighboring
pixels cause a larger A, then they have greater likelihood to
be partitioned into two regions.

From (6), (7), and (9), we have

H exp (

D(p, fp,®))):

eXP(*Z Z Voa(Fp: f9))- (1)

PEP geN (p)

Pr(f|2, P)

Taking the logarithm of (11), we have the energy function:

E(f,®) =Y (D(p, fp.®) + > Voglfp: f2). (12)

peEP qeN(p)



It includes two parts: the data term

Baata = »_ D(p, [, ®) (13)

peP

and the smoothness term

Esmooth = Z Z Vpﬂ(fpqu)' (14)

pEP geN (p)

From (12), we see that maximizing Pr( f|®, P) is equiv-
alent to minimizing the Markov energy E(f, ®) for given
®. In this paper, we use a graph cut algorithm to solve this
minimization problem, which is described in Section 3.

2.2. ML Estimation of ¢ from f

If the label configuration f is given, the optimal ® should
maximize Pr(f|®, P), or minimize F(f, ®) equivalently.
Thus we have

Vo log Pr(f|®, P) =0, or Vo E(f,®) =0,  (15)

where V¢ denotes the gradient operator. Since V), ¢( fp, fq)
is independent of ®, we obtain

Vo > D(p, fp,®) =0, (16)

peP

where different formulations of D(p, f,, ®) lead to different
estimations of ®. For our formulation in (8), it follows that

Y D fp®) =" > 11 - @) (17)

pEP i fp=i

From (16) and (17), we obtain the ML estimation ® = ¢(i),
where

Bi) = —— 3" 1(p), (18)
‘ Ip=i

with num; being the number of pixels within region ¢. Here
(18) is exactly the equation to obtain I (i), I,(i), I(i), and
1:(i) in (2).

Note that when the label configuration f = {f,|p} is
unknown, finding the solution of (16) is carried out by clus-
tering the pixels into groups. In the case, the ML estimation
is achieved by the K -means algorithm [5], which serves as
the initialization in the algorithm described in Section 3.

3. The Proposed Algorithm

With E(f, ®) defined in (12), the estimation of f and ®
in (4) and (5) are now transformed to

! = argmin E(f, ®"), (19)
!
®" ! = argmin B(f", ®). (20)
P
The two equations correspond to the MAP estimation and

the ML estimation, respectively. The algorithm to obtain f
and @ is described as Algorithm 1.

() (b)

Figure 1. Relabeling of the regions. (a) The result before the rela-
beling. (b) The result after the relabeling.

Algorithm 1: Our segmentation algorithm.
Input: an RGB color image.

Step 1: Convert the image into L*¥a*b* space and
calculate the texture contrast.

Step 2: Use the K -means algorithm to initialize ®.

Step 3: Iterative optimization.

3.1: MAP estimation — Estimate the label
configuration f based on current ¢ using the
graph cut algorithm [3].

3.2: Relabeling — Set a unique label to each
connecting region to form a new cluster, obtaining
anew f.

3.3: ML estimation — Refine ® based on current
f with (18).

Step 4: If ® and f do not change between two
successive iterations or the maximum number of
iterations is reached, go to the output step;
otherwise, go to step 3.

Output: Multiple segmented regions.

We explain step 3.2 in more details here. After step 3.1, it
is possible that two non-adjacent regions are given the same
label (see Fig. 1(a)). After step 3.2, each of the connected
regions has a unique label (see Fig. 1(b)).

One remarkable feature of our algorithm is the ability to
adjust the region number automatically during the iterative
optimization by the relabeling step. Fig. 2 gives an exam-
ple to show how the iterations improve the segmentation
results. Comparing Figs. 2(b), (¢), and (d), we can see that
the final result is the best.

4. Object Extraction from a Group of Images

The framework proposed in Section 2 can be extended
from single image segmentation to object extraction from a
group of images. These images contain objects of the same
class with similar colors and textures. The purpose of the
specific algorithm developed next is not to segment an im-
age into multiple regions, but to extract interested objects
from a group of images containing these similar objects.
Unlike the learning-based segmentation of a particular class
of objects [9], [1], [10], [11], our algorithm does not need
to learn a deformable shape model representing the objects.
Instead, we assume that one pixel is known which is inside
an interested object in one (only one) image of the group. In
our current experiments, this pixel is provided by the user
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Figure 2. A segmentation example. (a) An original image. (b) The
result of initial K -means clustering with KX = 10. (c) The result

of the first iteration with K adjusted to 8. (d) The converged result
after 4 iterations with K changed to 6.

()

clicking once at the object.

Given a group of N images containing a class of objects
and the known pixels’ position, our algorithm estimates the
features of the interested objects in the group and combines
the estimated features into the same framework of the ML
and MAP estimations to extract the objects from the images.

To estimate the features of the interested objects, we
model them as a Gaussian distribution with a mean vector
¢* and a variance matrix ¥. Using Algorithm 1, we can
segment each image into nj regions, 1 < k < N. In every
image, the features of each region are represented by ¢ (i),
1 < i < ng. Now we need to estimate ¢* and X from the
images.

We use an iterative ML estimation to find the Gaussian
model of the objects (¢*, ). At first, we initialize ¢* as the
features of the region R containing the known pixel in the
image, and set X as an identity matrix. Then the algorithm
selects one region that is most similar to 12 from each image.
These selected regions are used to perform the ML estima-
tion of ¢* and X.. The two iterative steps for the estimation
are described as follows:

Step 1: For each image k,

¢ = arg max Pr(¢ (l¢", X), @1

where

Pr(6,(1)l6", %)
o 5 b (5 (@0(0) — 6775 (@) 7).

Step2: (¢*,Y) = argmax H Pr(¢;|¢*,X). (22)
2 Ty

After ¢* is found, we set the object feature vector ¢pp =

¢*. On the other hand, for each image, mp regions’ feature

vectors (called the background feature vectors) which are

farthest from ¢* are used to form a set ¢ 5. Extracting an

object out of an image £ is to set a binary value f, = 0 or
1 to each pixel p in image k, where f, = 0 (or 1) denotes
pixel p belongs to the background (or object). This task
may be thought of as a two-class segmentation problem that
can be solved using the MAP-ML estimation presented in
Section 3. Here, we define a new data penalty function

D(p, f, =1) = |[I(p) — poll, (23)
D(p, fp = 0) = argmin||I(p) — g5|[>. (24
dpEPB

When ¢¢ is known, we can obtain f by the MAP estimation
via graph cuts to minimize

E(f,$0) =>_ D, fo)+> D> Voullp fa), 25)

peEP pEP qgeN (p)

where D(p, f,) is defined in (23) and (24). Since the ini-
tialized ¢ is generally a rough estimation, it is necessary
to update it with the ML estimation, as described in Sec-
tion 3. Then this MAP-ML estimation is repeated again
until it converges. The summary of the algorithm for object
extraction from one group of images is described in Algo-

rithm 2.
Algorithm 2: Object extraction from a group of images.

Input: N images containing the same class of objects.

Step 1: Click the object in one arbitrary image, and
record the clicked pixel as pg.

Step 2: Segment each image into ny regions using
Algorithm 1,1 < k < N.

Step 3: Learn the object features ¢* and X using (21)
and (22) with a general ML estimation algorithm
with the initial @* from the region containing py and
the identity matrix X.

Step 4: Extract the objects from each image:

4.1: Initialization — Set ¢o to ¢*.

4.2: MAP estimation — Perform the MAP
estimation of the label configuration f via graph
cuts.

4.3: ML estimation — Refine ¢ based on current
f with (18).

Step 5: Perform Steps 4.2 and 4.3 iteratively until
FE converges or the maximum iteration number is
reached.

Output: The extracted objects from the images.

5. Experimental Results

We test the proposed Algorithm 1 with a large set of nat-
ural images and compare the results with those obtained by
the normalized cuts [13] and the blobworld [4]. The nor-
malized cuts is a popular segmentation algorithm, and the
blobworld is recently published using the EM framework.
In our algorithm, we set the initial cluster number in the K-
means algorithm to 10. The region number in the normal-
ized cuts is set to 10. The cluster number in the blobworld
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Figure 3. Results obtained by the three algorithms for single im-
age segmentation. The boundaries of the segmentation results are
marked using yellow curves.

is initialized as 3, 4, and 5, and then the MDL is used to
choose the best one, which is suggested in [4].

Some of the experimental results are shown in Fig. 3,
from which we can see that our algorithm outperforms the
other two. First, the found edges in our results match the

real edges much better. The normalized cut algorithm tends
to partition an image into large regions, making the bound-
aries apart from the real edges. On the other hand, since the
blobworld integrates no edge information, the boundaries of
its results are far from satisfactory with too many rough and
trivial edges. Second, our algorithm can adapt the region
number to different images automatically although all the
initial region numbers set for the K-means algorithm are
10.

To test our Algorithm 2, we try three groups of images,
bulls, horses, and zebras, in the experiment. The results are
given in Fig. 4. Each group has 8 images. The size and
posture of these animals vary significantly, and their legs in
some images are occluded by the grasses. Our algorithm is
able to extract them under these nontrivial conditions. Note
that we need neither a large set of images for training nor
predefined templates in order to extract the objects.

6. Conclusions

In this paper, we have developed two novel algorithms
under the same framework. Algorithm 1 is for single image
segmentation and Algorithm 2 for object extraction from a
group of images. Our algorithms are formulated as a label-
ing problem using a probability maximization model. An it-
erative optimization technique combining the MAP-MRFs
and ML estimations is employed in our framework. The
MAP-MREFs problem is solved using graph cuts and the ML
estimation is obtained by finding the means of the region
features. We have compared our Algorithm 1 with the nor-
malized cuts and the blobworld. The experimental results
show that our algorithm outperforms the other two.

One of our future works aims to generalize the extraction
of objects with homogeneous region features to the extrac-
tion of objects composed of two or more regions with dif-
ferent features, such as humans and cars. One possible way
is to design complex models to describe the region features
of the objects, and consider the image context for the object
extraction.
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