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Abstract—Supervised subspace learning techniques have been
extensively studied in biometrics literature; however, there is little
work dedicated to: 1) how to automatically determine the subspace
dimension in the context of supervised learning, and 2) how to
explicitly guarantee the classification performance on a training
set. In this paper, by following our previous work on unified sub-
space learning framework in our earlier work, we present a gen-
eral framework, called parameter-free graph embedding (PFGE)
to solve the above two problems by posing a general supervised
subspace learning task as a semidefinite programming problem.
The semipositive feature Gram matrix, namely the product of the
transformation matrix and its transpose, is derived by optimizing
a trace difference form of an objective function extended from that
in our earlier work with the constraints that guarantee the class
homogeneity within the neighborhood of each datum. Then, the
subspace dimension and the feature weights are simultaneously ob-
tained via the singular value decomposition of the feature Gram
matrix. In addition, to alleviate the computational complexity, the
Kronecker product approximation of the feature Gram matrix is
proposed by taking advantage of the essential matrix form of image
pixels. The experiments on simulated data and real-world data
demonstrate the capability of the new PFGE framework in esti-
mating the subspace dimension for supervised learning as well as
the superiority in classification performance over traditional algo-
rithms for subspace learning.

Index Terms—Semidefinite programming, subspace dimension
determination, subspace learning.

I. INTRODUCTION

TECHNIQUES for subspace learning [10], [17], [31], [23],
[28] have been actively studied for decades. Most of them,

such as principal component analysis (PCA) [12], [22], linear
discriminant analysis (LDA) [2], [9], [31], and marginal fisher
analysis (MFA) [29], are solved with the spectral-analysis [6],
[9] methods. The supervised techniques often optimize objec-
tive functions characterizing the discriminative power in the
sense of expectation or with certain assumptions on data distri-
bution, and cannot ensure that the training samples are best clas-
sified with the nearest neighbor method in an obtained low-di-
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mensional feature space, especially when the number of training
samples is small.

How to automatically determine the dimension of the desired
low-dimensional feature space is seldom discussed in previous
algorithms for supervised dimensionality reduction. Hence,
the dimension is often intuitively set, or all possible subspace
dimensions are explored in order to obtain the optimal one
for classification, which is impractical and easily overfits the
specific testing data. In the literature of unsupervised learning,
intrinsic data dimension estimation [13], [16], [11] has been
widely discussed in past decades. Kegl [13] utilized the geo-
metric properties of the data to estimate the intrinsic data
dimension in a nonparametric way. Hu [11] studied the auto-
matic subspace dimension determination under the framework
of Bayesian Ying–Yang (BYY) harmony learning. Lin et al.
[16] estimated the intrinsic data dimension by constructing a
Riemannian manifold in the form of a simplicial complex, and
the dimension is defined as the maximal dimension of its sim-
plices. Brito et al. [4] treated as a random variable the average
reach of vertices in a -nearest-neighbors graph associated with
the interpoint distance matrix, and showed that this variable
can be used to accurately (from a probabilistic viewpoint)
identify the unknown dimension at low computational cost.
Brito [5] discussed the application of linear combinations of
the degree frequencies in the minimal spanning tree to the
problem of identifying the appropriate dimension for a data set
from its interpoint distance matrix. Costa [7] and Yang [30]
studied the data dimension estimation problem by using trees
to approximate manifold structures. All of these methods focus
on unsupervised learning, and do not utilize the information
of data-class labels that are available in supervised subspace
learning.

Motivated by the above observations, we present a param-
eter-free framework for general supervised subspace learning
by following our previous work on graph embedding as a
unified framework for subspace learning [29]. The new frame-
work searches for a low-dimensional feature space where the
neighboring points of each datum share the same class label,
which is optimal in the sense of the nearest neighbor clas-
sification.

The whole framework, referred to as parameter-free graph
embedding (PFGE), consists of the following steps. First,
instead of directly computing the transformation matrix for
dimensionality reduction, we search for the feature Gram
matrix (i.e., the product of the transformation matrix and its
transpose). Then, the ratio form of the objective function in
the graph embedding framework [29] is transformed into a
difference form in PFGE. After that, the feature Gram ma-
trix is learned by posing the supervised subspace learning
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problem as a semidefinite programming problem [26], [27],
[25], with the constraints of neighborhood homogeneity and
scale normalization. The neighborhood homogeneity property
guarantees the classification accuracy on the training set and is
expressed as a set of linear inequalities with the variables from
the feature Gram matrix. Finally, the optimal transformation
matrix encoding the projection directions and their weights is
obtained from the singular value decomposition of the derived
feature Gram matrix.

It is worthy of highlighting some aspects of our proposed
PFGE framework.

1) PFGE guarantees the classification accuracy on the
training set by the hard constraints of the semidefinite
programming problem. It is different from traditional
subspace learning methods, which are often irrelevant to
the classification accuracy, such as PCA, or the objective
functions of which do not directly optimize the classifica-
tion accuracy such as LDA and MFA.

2) PFGE can automatically determine the optimal feature
dimension by retaining the positive components of the
feature Gram matrix. In traditional subspace learning
methods, no criterion is provided to guide the selection of
the feature dimension.

3) PFGE finds a transformation matrix, instead of a projection
matrix, for dimensionality reduction. It simultaneously se-
lects the projection directions and determines the weights
to fuse them, which directly leads to its superiority over tra-
ditional algorithms for subspace learning in terms of clas-
sification capability.

The rest of the paper is structured as follows. The graph
embeddingframeworkis reviewedandthen thePFGEframework
is introduced in Section II. In Section III, the Kronecker product
approximation of the feature Gram matrix is discussed. In
Section IV, experiments on some toy problems and on face
recognition are showed to demonstrate the effectiveness of our
framework. Finally, we give concluding remarks in Section V.

II. PARAMETER-FREE GRAPH EMBEDDING

Let with be a set of
sample points where the corresponding class labels are denoted
as . Denote the sample number of the
th class as . Since in practice the dimension is often very

large, it is usually necessary to transform the data from the input
high-dimensional space to a low-dimensional one for alleviating
the curse of dimensionality [9].

A. Review of Graph Embedding [29]

Let be an undirected similarity graph, called
an intrinsic graph, with the vertex set and the similarity ma-
trix which characterizes the similarities among
all sample pairs. The corresponding diagonal matrix and the
Laplacian matrix [1] are defined as

(1)

The purpose of graph embedding [29] is to determine a low-
dimensional representation of the vertex set that preserves the

similarities between pairs of data characterized in the original
high-dimensional space. Denote the low-dimensional embed-
ding of the vertices as , where the column
vector is the embedding for the vertex . Direct graph em-
bedding [29] aims to maintain similarities among vertex pairs
by following the graph preserving criterion [29]:

(2)

where is a constant, is the trace of an arbitrary square ma-
trix, and is called the constraint matrix here. may simply be
a diagonal matrix and used for scale normalization [29], or may
represent more general constraints among the vertices charac-
terized by a penalty graph [29]. The penalty graph describes
similarities between nodes that are unfavorable and should be
avoided (i.e., ) where is the similarity
matrix of graph , and or is the Laplacian matrix of ,
defined similarly as (1).

The similarity preservation property of the graph preserving
criterion works in two ways. If the similarity between samples

and is greater (positive), then the distance between and
should be smaller to minimize (2); on the other hand, if the

similarity between and is lower (negative), the distance be-
tween and should instead be larger. Hence, the similarities
and differences among vertex pairs in a graph are preserved
in the embedding.

As shown in the embedding framework [29], (2) can be solved
by converting it into the following Trace Ratio problem:

(3)

If the constraint matrix represents only scale normalization,
this ratio formulation can be directly solved by eigenvalue
decomposition [6]. However, for a more general constraint
matrix, it can only be approximately solved with general-
ized eigenvalue decomposition (GED) by transforming the
objective function into a more tractable approximate form

or ,
referred to as ratio trace or trace difference in the remainder of
this paper.

While direct graph embedding computes a low-dimensional
representation of the vertices in , it does not determine how
new out-of-sample high-dimensional data can be mapped to the
low-dimensional space. To this end, linearization and kerneliza-
tion as described in [29] are needed. Let us take linearization as
an example. Assume that the low-dimensional vector represen-
tations of the vertices can be obtained from the linear projection

, where is the projec-
tion matrix that we want to find for mapping out-of-sample data,
and is the expected dimension after dimensionality reduction.
Then, the objective function (2) is changed to

(4)
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In practical applications, the determination of the number
of the columns in is significant for achieving the best clas-
sification capability on the low-dimensional feature space. In
the following, we present a new framework in the context of
supervised subspace learning that can automatically derive the
optimal subspace dimension .

B. Feature Gram Matrix Learning for PFGE

As described before, the direct learning of the transformation
matrix for dimensionality reduction results in the feature dimen-
sion selection issue. In this work, instead of directly computing
the transformation matrix , we learn the feature Gram matrix

which characterizes the similarity of different features and is
defined as

(5)

We search for by solving a semidefinite programming
problem [3], [26].

1) Neighborhood Homogeneity Constraints: When there is
no assumption on the data distribution, it is desirable that the
neighboring samples of each point share the same class label,
which is optimal in the sense of classification with the nearest
neighbor method. Then, we have

(6)

where is the nearest neighbor of belonging to the same
class, measured with the Euclidean distance in the original fea-
ture space. Equation (6) can be expressed in another form

(7)

where . It
is easy to verify that the matrix is symmetric.

2) Scale Normalization: To remove the degree of freedom
of scale, we may constrain the sum of the column norms of the
transformation matrix to be 1, that is

(8)

3) Objective Function: As mentioned before, the objective
function of graph embedding is often changed to the ratio trace
or trace difference form for a more tractable solution. In this
work, we utilize the trace difference formulation of graph em-
bedding for semidefinite programming formulation. The objec-
tive function in this new formulation is defined as

(9)

With the above constraints and the objective function, the
feature Gram matrix can be obtained by optimizing the
semidefinite programming problem given in Algorithm 1. The
object function in Algorithm 1 is convex and the optimization
does not suffer from the local optimum problem [26], [27],
[25]. There are several general-purpose toolboxes and polyno-
mial time solvers available for the semidefinite programming
problem. In this paper, we utilize the solver SeDuMi and

CSDP 4.9 toolbox in MATLAB [3].

Algorithm 1 Direct Feature Gram Matrix Learning for
PFGE

Minimize

1) 0;

2) 1;

3) 0, .

C. Transformation Matrix From the Feature Gram Matrix

After obtaining the feature Gram matrix by using the
semidefinite programming approach, we can derive the trans-
formation matrix by preserving the positive components
of the feature Gram matrix, which is similar to the multidi-
mensional scaling (MDS) algorithm [8]. The singular value
decomposition of results in

(10)

where is the th largest eigenvalue of with the corre-
sponding eigenvector . Then, we have

(11)

In practice, noise probably exists in the data, and there may
be some of very small values. Hence, we only keep the di-
mensions that preserve sufficient information of the matrix as
PCA does; we retain 98% energy in all of the experiments.

III. KRONECKER PRODUCTION APPROXIMATION

When the original feature dimension is too large, Algo-
rithm 1 is impractical in both computation and memory require-
ments. As the constraint matrix is not sparse, we can mostly
only handle the cases with less than 400 features. In this section,
we discuss how to solve this computational problem.

A. Kronecker Production Approximation of the Feature Gram
Matrix

In the real world, the extracted features of an object often have
some special structures, and these structures are in the form of
second- or even higher order tensors. For example, a captured
image is a second-order tensor (i.e., a matrix), and a video se-
quence is in the form of a third-order tensor. It would be de-
sirable to uncover the underlying structures in the problems for
data analysis. In the following, we investigate how to utilize the
latent data structure to solve the computational problem suffered
by the PFGE framework.

Algorithm 2 Feature Gram Matrix Learning from
Kronecker Approximation for PFGE

Minimize

1) 0, 0;

2) 1;

3) 0, .
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Assume that the training samples are denoted as second-order
tensors (matrices) and its corresponding
column-wise concatenated vector is still represented as

with . Assume that the low-dimensional
representation of is obtained from two transformation ma-
trices and . Then

(12)

It means that the transformation matrix is approximated as the
Kronecker product of two transformation matrices ,
where is the Kronecker product with .

Then, we have

(13)

where means the vectorization of a matrix by column-
wise connecting all of the elements. Consequently, it follows
that the feature Gram matrix

with and .
Based on the above kronecker product approximation, the PFGE
framework is modified as follows.

1) Neighborhood Homogeneity Constraints: The hard con-
straint on neighborhood homogeneity in (6) is changed to

(14)

2) Scale Normalization: To remove the degree of freedom
of scale, we can constrain the sum of the column norms of the
transformation matrix to be 1, that is

(15)

3) Objective Function: From the objective function in (9),
we have

(16)

With the above constraint and the objective function, we can
have the Kronecker product approximation-based algorithm for
PFGE as shown in Algorithm 2.

The optimization problem formulated in Algorithm 2 is not
a standard semidefinite programming problem, and commonly
nonconvex. However, when or is known, the optimization
problem with respect to the other one is a standard semidefinite
programming problem and can be solved by using the semidefi-
nite programming toolbox as in Algorithm 1. Therefore, we can
optimize these two matrices in an iterative manner until conver-
gence is reached. Finally, the transformation matrices and

can be derived from the singular value decompositions of
and .

Based on the Kronecker product approximation of the feature
Gram matrix, the optimization problem defined in each step runs
on a much lower dimensional feature space. For example, when
the image matrix is of size 100 100, the parameter number in
the previous formulation is , making it impractical for Al-
gorithm 1 to run on a PC with a common configuration. How-
ever, in the Kronecker product approximation version, there are

only parameters, which greatly alleviates the computational
complexity of the optimization problem.

4) Discussions: To further reduce the complexity of the opti-
mization problem, in Algorithm 1 or 2, we do not use all of the
constraints for optimization in the beginning. In the first opti-
mization step, for each sample, we only use the constraint from
the nearest samples of different classes. After each optimization
step, we add a certain percentage of the sample pairs that do not
satisfy the neighborhood homogeneity constraints and then op-
timize again until all of the constraints are satisfied. Moreover, it
is possible that not all of the constraints must be satisfied. Thus,
in our experiments, we relax the constraints by adding two re-
laxation parameters and , and modify Algorithm 1 to be
Algorithm 3. More details on the use of the relaxation parame-
ters can be found from [3].

The optimization problem in Algorithm 3 can also be
solved by using the solver SeDuMi and CSDP 4.9 toolbox in
MATLAB. Note that if all of the constraints can be satisfied,
the value of will not affect the final results and, thus, even
in this case, there is no parameter to select. Similarly, we can
use Algorithm 3 to optimize the step optimization problem of
Algorithm 2.

Algorithm 3 Feature Gram Matrix Learning with
Relaxation for PFGE

Minimize 0.

1) 0.

2) 1.

3) 0, 0, 0, .

Algorithmic Analysis

In this subsection, we discuss some characteristics of the pro-
posed PFGE framework and its relationship with other state-of-
the-art algorithms for dimensionality reduction.

5) Training Accuracy is Guaranteed by Hard Constraints:
The classification accuracy on the training set is guaranteed with
the hard constraints imposed on the semidefinite programming
problem; while in most traditional algorithms of dimensionality
reduction, the training accuracy is not their direct targets, espe-
cially for the unsupervised ones.

6) Feature Dimension and Fusing Weights are Automatically
Determined: The dimension of the low-dimensional feature
space is automatically determined by preserving the informa-
tion of the feature Gram matrix in (11); while in the previous
algorithms for dimensionality reduction, the subspace dimen-
sion can only be experimentally set, or it is needed to explore
all of the possible dimensions and select an optimal one for
a specific data set. Moreover, PFGE derives a transformation
matrix, instead of a projection matrix, for dimensionality reduc-
tion, which automatically determines the weight (importance)
of each feature.

7) Relationship With Distance Metric Learning for Large
Margin Nearest Neighbor Classification (LMNN) [24]: LMNN
and our PFGE both utilize the semidefinite programming tool
to formulate and solve their problems, and both use nearest
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neighbor classifiers to help design effective algorithms; yet, they
are essentially different in several aspects.

1) The motivation of PFGE is to provide some general con-
straints for supervised subspace learning, such that the re-
quired subspace dimension for classification can be auto-
matically determined and the classification accuracy on the
training set is guaranteed. The former target is not studied
in LMNN. Moreover, the constraints of LMNN cannot
be directly used for general supervised subspace learning
since they do not provide a constraint to bound the scale
of the matrix , and PFGE will not have solutions if these
constraints are imposed on PFGE. The constraints in PFGE
do not suffer from those problems and can be used for all
supervised subspace learning algorithms.

2) PFGE is a general framework for supervised subspace
learning, while LMNN is only a specifically designed
algorithm. Similarly to the original graph embedding
framework [29], PFGE can help develop new algo-
rithms for subspace learning without suffering from the
above-mentioned problems.

3) PFGE has been extended to the Kronecker production ap-
proximation form, which is applicable for common im-
ages, while LMNN is impractical even for images of mod-
erate size 64 64 pixels.

8) Relationship With Maximum Margin Criterion [15]: The
objective function of MMC shares the similar formulation as
that of PFGE. However, MMC directly optimizes the map ma-
trix and cannot guarantee that the neighborhood homogeneity
constraints are satisfied. Moreover, MMC cannot automatically
determine the subspace dimension.

9) Convergence of the Kronecker Production Approximation:
It is easy to prove that the solution space

is closed and bounded. On one hand, the objective function
is nonincreasing in each iteration.

On the other hand, as is closed and bounded, the objective
function is also bounded. Therefore, Algorithm 2 converges to
a local optimum.

IV. EXPERIMENTS

In this section, we present two sets of experiments to eval-
uate the effectiveness of the proposed PFGE framework by com-
paring it with the Eigenfaces [2] and Fisherfaces [2]. In order to
compare with the Fisherfaces algorithm [2] fairly, we apply the
intrinsic and penalty graphs from Fisherfaces as demonstrated
in [29] to define a specific algorithm from the PFGE framework,
and this specific algorithm is referred to as Fisherfaces–PFGE
(F–PFGE) in the following. For the simulated data, we demon-
strate the effectiveness of PFGE in determining the optimal fea-
ture dimension for classification and in satisfying the neighbor-
hood homogeneity constraints. For the real face data, we eval-
uate the classification capability of the low-dimensional repre-
sentations derived from the F–PFGE algorithm and from the tra-
ditional Eigenfaces, and Fisherfaces. In our experiments, we uti-
lize the Kronecker product approximation version of F–PFGE
to conduct dimensionality reduction for face recognition task
since the vector-based version is impractical.

Fig. 1. Subspace dimensions automatically determined by F–PFGE. Note that
from (A) to (F), the top plot is the multiclass data distributions, and the lower
plot is the eigenvalue distribution computed from (11). For the lower plots, the
horizontal axes denote the value of

p
� in (11), and the vertical axes denote the

index number of � .

A. Toy Problems

1) Automatic Subspace Dimension Determination: We
present two series of experiments, one is to demonstrate the
capability of F–PFGE in determining the optimal subspace
dimension for classification. Fig. 1 displays a series of exper-
imental results on the derived eigenvalues from different data
sets. The results show that F–PFGE successfully uncovers the
required feature dimension for classification. Traditional super-
vised dimensionality reduction algorithms such as LDA cannot
automatically determine which dimension is optimal, and for
the sample sets in (B) and (C), the LDA algorithm will output
one and two ( ) dimensions, respectively [2]. Actually,
the required dimensions of these two problems are two and one,
respectively, which are uncovered by F–PFGE successfully.

2) Neighborhood Homogeneity: The other series of experi-
ments is to evaluate the capability of F–PFGE in ensuring that
the neighboring points of each point share the same class label.
We use two sets of data, one is plotted in Fig. 2(A), and the de-
rived low-dimensional representations are plotted in Fig. 2(B).
In Fig. 2(B), each sample is connected to its nearest sample mea-
sured in the derived representations, and we can see that the
nearest neighbor of each sample shares the same label as it does.
The other data set is the digital numbers from the MNIST data-
base [14]. We select digital numbers 0–3 and use 39 samples for
each number. The data distribution in the derived low-dimen-
sional representations is displayed in Fig. 2(C), and the results
show that the nearest neighbor of each sample also has the same
class label as the sample does.

B. Face Recognition

In this subsection, the F–PFGE algorithm is compared with
Eigenfaces [22] and Fisherfaces [2], for face recognition on
three benchmark databases XM2VTS [18], CMU PIE [21], and



74 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 2, NO. 1, MARCH 2007

Fig. 2. Neighborhood homogeneity results. (a) Simulated data. (b) Rrepresen-
tations derived from F–PFGE. (c) Low-dimensional representations of digital
numbers obtained by F–PFGE.

Fig. 3. Cropped samples from the XM2VTS database.

TABLE I
BEST RECOGNITION ACCURACIES (%) COMPARED AMONG EIGENFACES,

FISHERFACES, AND F–PFGE ON THE XM2VTS DATABASE

ORL [20]. In the experiments, the nearest neighbor method is
used for final classification. For Fisherfaces, we first project the
images into a PCA space of dimension , and then ex-
plore all possible LDA dimensions and report the best results.

The XM2VTS database contains 295 persons where each
person has four frontal face images taken in four different
sessions. In this experiment, the samples in the first three ses-
sions are used for training, and the samples in the first session
and the last session are used, respectively, as the gallery and
probe sets. The size of each image is 64 64. Some cropped
samples are displayed in Fig. 3. Table I and Fig. 4 show the
face recognition results of F–PFGE compared with Eigenfaces,
and Fisherfaces. The results indicate that although there is
no user-selectable parameter in F–PFGE, its performance is
still better than Eigenfaces and Fisherfaces algorithms which
need to explore all possible feature dimensions to obtain the
best results. Note that since the result of F–PFGE is free from
the final feature dimension, we plot it as a line in Fig. 4. The
training times used by different algorithms are also given in
Table I. From the results, we can see that the time complexity
of F–PFGE is relatively higher than those of Eigenfaces and
Fisherfaces.

The CMU Pose, Illumination, and Expression (PIE) database
contains more than 40 000 facial images of 68 people. The im-
ages were acquired over different poses, under variable illu-
mination conditions, and with different facial expressions. The

Fig. 4. Face recognition error rates versus feature dimension of Eigenfaces,
Fisherfaces, and F–PFGE on the XM2VTS database.

Fig. 5. Cropped samples from the CMU PIE database.

TABLE II
BEST RECOGNITION ACCURACIES (%) COMPARED AMONG EIGENFACES,

FISHERFACES, AND F–PFGE ON THE PIE DATABASE

gallery set and probe set are selected as in Fig. 5, and nine im-
ages of each person are used for training and 12 images of each
person for testing. All of the images are aligned by fixing the
locations of the eye centers and normalized to the size of 64

64 pixels, and 63 people are used in our experiments due to
the data incompleteness of the other five people. Table II and
Fig. 6 list the face recognition results of F–PFGE compared with
Eigenfaces and Fisherfaces, which again show that F–PFGE is
superior to the other two algorithms. An interesting observation
is that the performance of Eigenfaces is even better than that
of Fisherfaces, which has been reported in [19] and is caused
by the data distribution inconsistence between the training and
testing data.

The ORL database contains 400 images of 40 individuals.
Some cropped sample images are displayed in Fig. 7. In the ex-
periments, all of the images are in gray level and rescaled to
the resolution of 56 46 pixels. Histogram equalization is ap-
plied as a preprocessing step. Half of the data are used for model
training and the others are used for testing. The comparison re-
sults are given in Table III and Fig. 8, which show that the other
two algorithms perform worse than F–PFGE does.

V. DISCUSSIONS AND FUTURE WORK

In this paper, we have presented a unified solution, called pa-
rameter-free graph embedding, for the following two problems
for general supervised subspace learning: 1) how to directly
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Fig. 6. Face recognition error rates versus feature dimension of Eigenfaces,
Fisherfaces, and F–PFGE on the CMU PIE database.

Fig. 7. Cropped samples from the ORL database.

TABLE III
BEST RECOGNITION ACCURACIES (%) COMPARED AMONG EIGENFACES,

FISHERFACES, AND F–PFGE ON THE ORL DATABASE

Fig. 8. Face recognition error rates versus feature dimension of Eigenfaces,
Fisherfaces, and F–PFGE on the ORL database.

optimize the classification accuracy and 2) how to automati-
cally determine the optimal subspace dimension and combine
the selected features for final classification. More specifically,
in our solution, the feature Gram matrix is learned by using the
semidefinite programming method and ensuring that the neigh-
boring points of each sample share the same class label; then,
the optimal subspace dimension and feature fusing weights are
automatically obtained from the singular value decomposition
of the learned feature Gram matrix. Our proposed framework
elicits some new research directions for further study, such as
how to efficiently solve the semidefinite programming problem
when the feature dimension is above 1000.
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