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Abstract—A novel patch-based correspondence model is presented in this paper. Many segment-based correspondence approaches

have been proposed in recent years. Untextured pixels and boundaries of discontinuities are imposed with hard constraints by the

discontinuity assumption that large disparity variation only happens at the boundaries of segments in the above approaches. Significant

improvements on performance of untextured and discontinuity area have been reported. But, the performance near occlusion is not

satisfactory because a segmented region in one image may be only partially visible in the other one. To solve this problem, we utilize the

observation that the shared edge of a visible area and an occluded area corresponds to the discontinuity in the other image. So, the

proposed model conducts color segmentation on both images first and then a segment in one image is further cut into smaller patches

corresponding to the boundaries of segments in the other when it is assigned with a disparity. Different visibility of patches in one segment

is allowed. The uniqueness constraint in a segment level is used to compute the occlusions. An energy minimization framework using

graph-cuts is proposed to find a global optimal configuration including both disparities and occlusions. Besides, some measurements are

taken to make our segment-based algorithm suffer less from violation of the discontinuity assumption. Experimental results have shown

superior performance of the proposed approach, especially on occlusions, untextured areas, and near discontinuities.

Index Terms—Stereo, correspondence, segmentation, graph-cuts, occlusion, energy minimization.

Ç

1 INTRODUCTION

STEREO correspondence is considered as a classical difficult
problem due to its significance in computer vision and

inherited ambiguity. It takes two or more images simulta-
neously captured by cameras from different viewpoints as its
input. The resultant output is a dense disparity map that
represents the correspondence between points in different
images. The obtained disparity map can be used to recover
the three-dimensional structure in the scene.

Two of the main challenges in stereo are discontinuity and
occlusion problems. The discontinuity issue stems from a
smoothness assumption, which is explicitly or implicitly used
in many dense stereo approaches [1]. It assumes the disparity
map to be smooth almost everywhere. However, this is
violated at the boundary of the object. The convex smoothness
function entails a significant penalty for large discontinuity
and, therefore, leads to poor object boundary results [2], [3].
To cure this, some discontinuity-preserving smoothness func-
tions are designed to improve the accuracy at discontinuity
areas [1]. Common discontinuity preserving smoothness
functions include the Potts function [4] and the truncated
function [5]. A fixed amount of penalty is imposed for large

discontinuity in these methods. Moreover, the intensity
differences between neighboring pixels are also used to
guide the smoothness criteria [6], [5] so that neighboring
pixels with similar colors are given harder smoothness
constraints because they are more likely to have similar
disparities. Recently, several segment-based methods have
been proposed [7], [8], [9], [10], [11], [12]. Tao et al. [7]
provided a global matching framework using image seg-
mentation information. Hong and Chen [8] used graph-cuts
to provide a global solution for segment matching, whereas a
region-growing strategy was used by Wei and Quan [9].
Bleyer and Gelautz [10] formulated the correspondence
problem in combination with the pixel and segment levels.
The correspondence problem is modeled in the segment level
and the occlusion is detected in the pixel level using the
uniqueness constraint. In all these algorithms, a color
segmentation process initially separates the reference image
into several regions with uniform (or similar) colors and each
region is assumed to correspond to a plane in the scene. With
this polyhedral approximation of the scene, matching is
performed using a segment as a unit. The discontinuity is
constrained to be at the boundaries of a segment. The
untextured area is matched as a large unit, so more
information than as individual pixels can be gathered and
improved performance can be obtained when processing
images from a natural scene. Although impressive results are
reported, only the segmentation information in the left (or
reference) image is used and the occlusion result is still not
accurate. Moreover, the violation of the discontinuity
assumption still causes obvious artifacts in the result.

The second challenge in stereo correspondence is
occlusion handling. Due to the structure of the scene, some
parts of an object within it may be visible in only one of the
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cameras. These points are called half-occlusion points [13],
and their projection onto the image is known as occluded
points or occlusion, since their corresponding points in other
images are not visible. The main difficulty for the occlusion
problem is that occluded points cannot be detected directly,
and we can only use the correspondence of visible (opposite
of occluded) points with other assumptions to detect them.
Methods using ordering and uniqueness constraints are two
traditional ones for occlusion handling. The ordering
constraint inhibits the ordering change of corresponding
points in different images. It is often used in a dynamic
programming framework [13] because it can reduce the
solution space and allow for a more efficient algorithm. But,
it is often violated when thin, front objects exist in the scene.
The uniqueness constraint, however, only prevents a point in
one image from being matched with more than one point in
the other image and ordering change is allowed. Zitnic and
Kanade [14] used the uniqueness as the inhibition in their
cooperative framework, while Ishikawa and Geiger [3]
imposed it in a max-flow framework. Kolmogorov and
Zabih [6] used the pixel assignment formulation for the
correspondence problem and tried to find an optically
unique configuration using graph-cuts. Sun et al. [15] used a
variant version of uniqueness constraint, the visibility
constraint, to detect occlusions in an iterative belief
propagation framework. The visibility constraint can avoid
some problems raised from the sampling problem pointed
out by Ogale and Aloimonos [16] when horizontally slanted
planes exist in the scene. Promising improvements on
occlusion results are reported in the above papers. For other
occlusion handling techniques, readers can refer to surveys
by Egnal and Wildes [13] and by Brown et al. [17].

The method proposed in this paper is an improvement to
our previous work in [18]. Our motivation is to use
segmentation information to improve the occlusion results.
Under the observation that the discontinuity in one image
corresponds to the occlusion border in the other [13], we use
the border of the segment in one image to “cut-out” the
potential occlusion area in the other image. Here, we take the
advantage of the assumption used in segment-based
approaches, which assumes that discontinuity only happens
at the boundaries of a segment separated by a color
segmentation algorithm. We call this technique the disconti-
nuity assumption. Both images are first segmented and the
segment of one image is warped to the other by an assumed
disparity. We then introduce the concept of a patch. The
warped segment is divided into several small patches by the
segment boundaries in the other image. We preserve the
uniqueness in a segment level and constrain the boundaries
of occlusions to be the boundaries of patches. A symmetric
global framework using graph cuts is constructed to find the
disparity and occlusions embodied by the patch segmenta-
tion. The new correspondence approach gives a proper
constraint for occlusions, which leads to better results near
occlusions and inherits the advantage of segment-based
approaches on slanted planes, as well as untextured areas and
areas near discontinuity. To alleviate the effect of violating the
discontinuity assumption, we propose two new methods,
called soft-constraints and resegmenting, along with the basic
algorithm in this paper. We also show some performance
improvements that have been found in our experiments.

The rest of the paper is organized in the following way:
Section 2 presents the concept of a patch for occlusion

handling. The energy minimization framework with �-
expansion and graph-cuts we use is provided in Section 3.
Section 4 shows further improvements on the basic
algorithm. Implementation details are given in Section 5.
We provide experimental results and analysis in Section 6
and some comparisons of our algorithm and some others in
Section 7. Finally, we conclude with Section 8.

2 OCCLUSION HANDLING FOR SEGMENTS

2.1 Occlusion and Discontinuity

We start to describe our idea by analyzing a simple
situation shown in Fig. 1.

The two parallel planes form a typical scene with occlusion
and discontinuity. The areas a and a0 are visible in just one of
the cameras, respectively. Their projections to the corre-
sponding cameras where they are visible are called occlusion
areas enclosed by dashed lines. One phenomenon we want to
point out is that the projection of the left border of a on the
right camera is a border separating the images of two planes
with different disparities, i.e., it is a discontinuity border. A
similar situation happens for a0. Using the discontinuity
assumption, we can find this discontinuity border in the right
image by color segmentation. However, in the left image, we
may not segment out the corresponding occlusion area. Our
idea is to use the segmentation results of the right image to
help in segmenting the occlusion area in the left image and
vice versa. The relationship between discontinuity and
occlusion borders was also mentioned in some early occlu-
sion handling approaches [13], but color segmentation
information was not used.

2.2 Definition of Patch

Since part of a segment in one image may be invisible in the
other image, the segment should be further separated into
smaller units, which is defined as a patch. The points in a
segment can have no more than one disparity and the
visibilities of points are constrained to be the same within a
patch.

The concept of a patch is further illustrated by an example
here. Two input images are first separated into several
nonoverlapping segments by color segmentation. We con-
sider an arbitrary segment in the left image, denoted as r.
Supposing its disparity is d, we can warp every point in r into
the right image. The warped points, however, may overlay on
several different segments in the right image, e.g., two
segments s0 and t0 in Fig. 2. We can then define two patches q1

and q2 in r according to whether the points within it are
warped to s0 or t0. The shared border between q1 and q2 (i.e., e)
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Fig. 1. A simple situation with two parallel planes in the scene. The

images captured by cameras are shown on the left and the right to the

cameras, respectively. Occluded areas are enclosed by dashed lines.



corresponds to part of the shared border between s0 and t0 ðe0Þ.
Since e0 is a potential discontinuity edge, e is a potential
occlusion border, i.e., q1 may be visible when q2 is occluded, or
on the contrary.

Note that the concept of patch is defined with an assumed
disparity (d for r in the above example), so it is not simply a
smaller segment, but a region-version of the assignment in
Kolmogorov and Zabih’s model [6]. In their job, an assign-
ment is defined under an assumed disparity for a single pixel.

2.3 Uniqueness within a Segment

Uniqueness was used to detect occlusions in several publica-

tions [14], [6], [3]. It claims that each point in the image, either

the left or the right one, has no more than one correspondence

in the other image. This is equivalent to saying that each point

in the images can have no more than one disparity.

If images are segmented and represented by segments, we

hope the uniqueness assumption is held in the segment level.

As mentioned in the previous section, however, the visibility

of points within a segment may be different. The patch thus

defined, however, can solve this problem, i.e., assuming each

patch as a unit is either fully visible or invisible.

2.4 Formulation of the Correspondence Problem in
a Patch Level

Suppose the input images are denoted as IL and IR,

respectively. The color segmentation will segment each image

into a set of nonoverlapping segments, denoted as SL ¼
fsðiÞjsðiÞ � IL; 8i 6¼ j; sðiÞ \ sðjÞ ¼ � and

S
i sðiÞ ¼ ILg and

similar SR. The set of all segments is denoted as

S ¼ SL [ SR. The goal of stereo correspondence is to decide

the disparity of each segment and the visibility of the different

parts in each segment. In other words, to decide the

componential patchesof each segmentwhenever it is partially

occluded. We denote the disparity of a segment s as ds 2 D,

where D is the set of all possible disparities. Being fully

occluded is a special disparity in D denoted as ’. Like other

segment-based approaches [7], [8], each of the elements in D

(except ’) is a set of disparity plane parameter hc1; c2; c3i, i.e.,

the disparity of a pixel ðx; yÞ is

d ¼ c1xþ c2yþ c3:

The ith patch of a segment s under disparity ds is denoted as

pdss ðiÞ, i ¼ 1 . . .Nds
s , where Nds

s is the number of patches of s

under disparity ds.
1 An occlusion variable odss ðiÞ for each patch

is used to indicate whether this patch is occluded in the other

image. If odss ðiÞ equals 1, the ith patch is occluded, otherwise

it is visible.2 Thus, the whole correspondence problem can be

formulated as computing an optimal configuration f , which

includes the disparity of each segment and visibility of each

of the patches, i.e.,

f ¼ fDL;OL;DR;ORg;

where DL ¼ fdsjs 2 SLg, OL ¼ fodss ðiÞjs 2 SL; i ¼ 1 . . .Nds
s g

and DR and OR are similarly defined.

All the parts of quadruple f are not independent because

the disparity of the left and right image must be consistent

with each other. For example, if a point p in the left image

has a disparity of ds, its corresponding point p0 in the right

image needs to share the same disparity. This consistency

requirement induces the uniqueness constraints, so we call

each consistent quadruple f a unique configuration.

3 ENERGY MINIMIZATION FRAMEWORK

3.1 Energy Function

The optimal configuration is computed under an energy
minimization framework, i.e.,

fopt ¼ arg min
f

EðfÞ;

where EðfÞ is the energy function. In order to prohibit a

nonunique configuration, we design an energy function,

which takes finite energy only if its argument is a unique

configuration. The energy function is in the form of:

EðfÞ ¼ EdataðfÞ þ EsmoothðfÞ þEocclðfÞ f is unique;
1 otherwise:

�

EdataðfÞ is the energy of matching errors for all visible points.
It is the sum of the matching errors for all visible patches:

EdataðfÞ ¼
X

s2S;ds 6¼’

XNds
s

i¼1

ð1� odss ðiÞÞ�patchðpdss ðiÞÞ;

where �patchðpdss ðiÞÞ is the matching errors of pdss ðiÞ.
EsmoothðfÞ imposes the smoothness constraint. If two

neighboring patches have different disparities, we impose a
nonzero penalty. Since selection of this energy function
affects whether the energy can be efficiently minimized by
graph-cuts, we will give its definition later.
EocclðfÞ is introduced to penalize occluded points, in case

of the trivial configuration with all segments occluded that
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Fig. 2. This figure shows the definition of a patch. The segment r in the
left image is warped to the right image by its disparity d, overlapping
segment s0 and t0. r is thus segmented into q1 and q2, which are defined
to be two patches. The shared border e0 between s0 and t0, which is a
potential discontinuity border, is thus warped to the shared border e
between q1 and q2, which is a potential occlusion border. q01 and q02 are
also symmetrically defined as two patches. See the text for more details.

1. For occluded segments, i.e., ds ¼ ’, we define the whole segment as
one patch and, thus, N’

s ¼ 1.
2. For convenience of expression and implementation, we also define an

occlusion variable for a fully occluded segment ðds ¼ ’Þ, but the value of
the occlusion variable is meaningless.



will minimize the whole energy function. Its value is
proportional to the number of occluded points and is
defined as:

EocclðfÞ ¼ Co
X
s2S

XNds
s

i¼1

T ðds ¼ ’ _ odss ðiÞ ¼ 1ÞAðpdss ðiÞÞ;

where T ð�Þ is a function which takes value 1 if its argument
holds, and 0 otherwise, and AðpÞ is the number of points
(area) of the patch p.

3.2 Minimizing with the �-Expansion Algorithm

The state space of f is huge, so direct minimization ofEðfÞ is
intractable. Therefore, we use the �-expansion framework
proposed by Boykov et al. [4] to obtain the approximated
minimization. This is an iterative algorithm. In each iteration,
a subspace near the solution of the last iteration is defined by
�-expansion. The graph-cuts technique [19] can be used to
give an exact optimal solution over this subspace and the total
energy is guaranteed not to increase after each iteration. The
final solution upon convergence is an approximation of the
global optimization. Fig. 3 shows a detailed description of the
�-expansion framework [4].

Each � expansion step for our problem is defined as
follows: An � is a disparity chosen from D. Segments (i.e.,
the variables) are classified as active ones and inactive ones.
A segment s is called an active segment if its disparity before
an expansion, denoted as �ds, is neither � nor ’ (fully
occluded). Other segments are called inactive segments. In
each �-expansion step, the disparity of each active segment
can: 1) change to �, 2) keep unchanged as �ds, or 3) become
fully occluded (i.e., become ’). Only visibility of the patches
of the inactive segment can change.3

3.3 �-Expansion Minimized by Graph-Cuts

The optimal configuration within an � expansion is com-
puted using graph-cuts, but we need not directly design the
graph for cutting. In Kolmogorov and Zabih’s work [19], a
general method of creating a graph for minimizing a binary
function is proposed. All that is required is to rewrite the
energy function to be minimized into a binary function
constrained by �-expansion. The form of the energy function
and the binary variables need to be well-considered so that
the binary function obeys a required regularity condition [19].4

For active and inactive segments, we design binary
variables as follows:

1. For an inactive segment s, we use the occlusion
variable for each patch defined under disparity �,
denoted as o�s ðiÞ, which has the same meaning as the
occlusion variable defined above.

2. For an active segment s, the situation is more
complicated. Three kinds of variables are defined:

a. A holding variable, denoted as ls, is used for each
segment. If in the optimal configuration, ls takes
value 0, we change the disparity of s into � and
otherwise keep it unchanged.

b. A set of occlusion variables o�s ðiÞði ¼ 1; . . . ; N�
s Þ,

corresponding to each patch of s under
disparity �, are used. If o�s ðiÞ equals one, the
ith patch of s under disparity � is occluded
and otherwise visible.

c. A set of visibility variables v
�ds
s ðiÞði ¼ 1; ; N

�dsÞ,
corresponding to each patch under the dis-
parity of s before �-expansion, are used. If
v

�ds
s ðiÞ equals one, the ith patch of s is visible

and otherwise occluded.

We denote the set of all holding variables asL, the set of all

occlusion variables as O, all visibility variables as V , and

F ¼ fL;O; V g as a triplet including the above three sets. We

call an F to be legal, only if, for each active segment s, both of

the following conditions hold:

1. if ls ¼ 1, 8i; o�s ðiÞ ¼ 1, and

2. if ls ¼ 0, 8i; v�ds
s ðiÞ ¼ 0.

In the first situation, the disparity of s holds (not equal to �),

thus the occlusion variables for patches under disparity �

need to take the value 1. In the second situation, the

disparity of s changes to � and, thus, the visibility variables

for patches under disparity �ds need to take the value 0.

Within the �-expansion space, each legal F corresponds

to a unique disparity configuration, denoted as f 0ðF Þ. Thus,

an �-expansion step becomes the minimization of a binary

function:

f̂ ¼ arg min
f 0

Eðf 0Þ

¼ f 0 arg min
F

E f 0ðF Þð Þ
� �

¼ f 0 arg min
F

EbðF Þ
� �

;

where f 0 ranges within the �-expansion, and EbðF Þ is

defined as:

EbðF Þ ¼ Eðf 0ðF ÞÞ for legal F
1 otherwise:

�

We can separate EbðF Þ into four parts:

EbðF Þ ¼ Eb
legalðF Þ þEb

dataðF Þ þ Eb
smoothðF Þ þ Eb

occlðF Þ:

Eb
legalðF Þ takes the value of zero if F is legal and the value

of infinity otherwise. We can directly write its definition as:
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3. If all the patches of a segment become occluded, the segment becomes
fully occluded. Likewise, if one of the patches of a segment which was fully
occluded before expansion becomes visible, this segment’s disparity
becomes �.

4. This condition can also be represented as the submodular condition in
combinatorial optimization area, as noted in [19].

Fig. 3. The framework of the �-expansion algorithm [4] used in our

problem.



Eb
legalðF Þ ¼

X
s2S

X
i

T �01ðls; o�s ðiÞÞ þ
X
active s

X
i

T �01ðvsðiÞ; lsÞ; ð1Þ

where T �01ðX;Y Þ is a 01-banning function, which takes the

values of infinity if X ¼ 0 and Y ¼ 1 and the zero value for

other inputs.
The data energy can be trivially achieved fromEdataðfÞ as:

Eb
dataðF Þ ¼

X
s2S

X
i

ð1� o�s ðiÞÞ�patchðp�s ðiÞ; �Þ

þ
X
active s

X
i

vsðiÞ�patchðp�s ðiÞ; �dsÞ:

The occlusion energy is defined as:

Eb
occlðF Þ ¼

X
inactive s

einactðF; sÞ þ
X
active s

eactðF; sÞ;

einactðF; sÞ ¼
X
i

o�s ðiÞAðp�s Þ;

eactðF; sÞ ¼
X
i

T01ðvsðiÞ; lsÞAðp
�ds
s Þ

þ
X
i

T01ðls; osðiÞÞAðp�s Þ;

ð2Þ

where T01ðX;Y Þ returns 1 if X ¼ 0 and Y ¼ 1, and 0

otherwise.

EsmoothðF Þ is chosen to be a function similar to what is

used in [6], which punishes neighboring patches sharing the

same disparity but with different visibility:

Eb
smoothðF Þ ¼ Cs

X
p�

X
p02N p

Lðp; p0ÞT ðop 6¼ op0Þ

þ Cs
X
p

�ds
s

X
p02N p

Lðp; p0ÞT ðvp 6¼ vp0Þ;
ð3Þ

where N p is the set of neighboring patches with the same

disparities with p (they may belong to a neighboring

segment), and Lðp; p0Þ is the length of the shared border

between p and p0. It is not difficult to prove that this energy

function on binary variables leads to the smoothness energy

function EsmoothðfÞ as follows:

EsmoothðfÞ ¼ Lðp; p0Þ
0 dp ¼ dp0
Cs dp ¼ ’ _ dp0 ¼ ’
2Cs otherwise:

8<
:

We can see that all terms of EbðF Þ are at most of two

variables, i.e., it is in the following form:

EbðF Þ ¼
X
i

EiðxiÞ þ
X
i<j

Ei;jðxi; xjÞ

and, for each of the pairs of energy terms5 Ei;jðxi; xjÞ,

Ei;jð0; 0Þ ¼ Ei;jð1; 1Þ ¼ 0;

Ei;jð0; 1Þ � 0; Ei;jð1; 0Þ � 0;

so the following regularity condition required in [19] holds:

Ei;jð0; 0Þ þEi;jð1; 1Þ � Ei;jð0; 1Þ þEi;jð1; 0Þ:

We can then use graph-cuts to minimize EbðF Þ.

4 FURTHER IMPROVEMENTS

4.1 Soft Constraints

To generally satisfy the discontinuity assumption, an over-

segmenting result is preferred. But, the small size of regions

may affect the accuracy of untextured areas. To trade off this

contradiction, we segment the reference image in two levels:

the coarse and fine levels. Patches of fine levels are used as the

matching units and the smoothness coefficients are con-

trolled by the relation of the fine and coarse segmentation. If

two segments in the fine level are originated to the same

segment in the coarse level, we impose stronger smoothness

constraints on patches between these two segments so that

they have a bias of choosing the same disparity and vice versa.

Suppose the coarse and fine segmentation results of the

left image are ScL and SfL, respectively. We give each of the

segments an index and denote the indices of each pixel x of

the segment in two levels as lcðxÞ and lfðxÞ, respectively. We

give an empirical formula for the smoothness coefficient,

i.e., Cs in (3), between two neighboring patches p1 and p2

(with the same disparity) at a fine level as:

Csðp1; p2Þ ¼ C0
s 1þ � js

�
1j þ js�2j
js1j þ js2j

� �
; p1 � s1; p2 � s2;

where C0
s is a smoothness constant, s1 and s2 are segments

in fine level to which the two patches belong (note that s1

and s2 may be the same segment), � is a scalar constant

balancing the intension of the soft constraint (in our

experiment, it is set to 1.4), s�1 is the portion of pixels in s1

which shares the same segment in coarse level with s2, i.e.,

s�1 ¼ fx1 2 s1 9x2 2 s2; l
cðx1Þ ¼ lcðx2Þj g:

s�2 is similarly defined.

4.2 Resegment Strategy

One common problem of all segment-based approaches is

the violation of the discontinuity assumption. This assump-

tion assumes that discontinuity always generates a visual

border in the captured images. However, if two objects with

different ranges contain similar colors, the discontinuity in

the image may not be visually distinguishable, i.e., some

segment may contain more than one disparity correspond-

ing to the different ranges of the objects. We call this kind of

segment a mixed segment. This problem is not easy to solve,

whereas we provide here a method to remedy some of the

situations when the discontinuity border, which cannot be

seen in one image, is visible in the other image. This

situation can be found when the occluded object is thin or is

only occluded from one viewpoint near its bounds so that,

from another viewpoint, it is not occluded anymore.

Our idea is based on this observation: Many of the mixed

segments contain two kinds of pixels, the nearer and the

farther ones, and after the�-expansion iterations are over, one

of the disparities is assigned to the mixed segment. Some of

the points that are of different disparities from the one

assigned to the segment will be set to occlusion. So, if we

extract the occluded parts from the entire mixed segment and

make it a new segment, we expect that a new matching
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5. They are T �01 in (1), T01 in (2), and T ðop 6¼ op0 Þ and T ðvp 6¼ vp0 Þ in (3).



process can make the correct disparity assigned to the new

segment.

We first illustrate the situation in which the points with

different disparities will be considered to be occluded. Fig. 4

shows a portion of a scene in which a discontinuity is evident

in the left image and a corresponding occlusion occurs in the

right one. The segment LA is a nearer segment and CR is a

farther one. If the colors of LA and DE are so similar that we

cannot distinguish the projection of A in the left image, L0E0

becomes a mixed segment. In the right image, if CD contains

different colors from LA, C00 can be identified as a segment

border by color segmentation. Then, L0A0 and A0B0 can be

separated into two patches of the segment L0B0 correspond-

ing to the disparity of the nearer plane. Suppose the area of

L0A0 (in the 2D image) is so much larger than A0B0 that its

disparity is correctly assigned in the optimized configuration,

and the disparity of E0R0 is also correctly assigned. We now

analyze the visibility ofA0B0 by analyzing the energies under

two situations:

1. If A0B0 is occluded, the energy is

E1 ¼ EocclðA0B0Þ þ CsLðA0Þ þ CsLðB0Þ þ Erest; ð4Þ

where LðA0Þ and LðB0Þ are the lengths of the borders,

and Erest is the energy of other parts.
2. IfA0B0 is not occluded, its disparity is assigned to be the

same asL0A0, and it is matched with the segmentC0D0.
The energy is thus:

E2 ¼ EdataðA0B0; C00B00Þ þ 2CsLðB0Þ þErest: ð5Þ

Therefore, we can see that, when the matching of A0B0 to

C00B00 contains a matching error so large that the following

condition holds:

EdataðA0B0; C00B00Þ > EocclðA0B0Þ þ CsðLðA0Þ � LðB0ÞÞ;

E1 in (4) has lower energy. Then,A0B0will be considered to be

occluded. Our goal is to identify this kind of occlusion area

and separate A0B0 into a new segment. In the second

�-expansion iteration, the new segment A0B0 is no longer

constrained to have the same disparity as L0A0 and may be

matched correctly.
In the example we just analyzed, if A0B0 is considered to

be occluded, the corresponding patch C00B00 is also consid-

ered to be occlued. So, we call the occlusion patch A0B0 a fake

occlusion because it is not really occluded by some nearer

object in the scene. Opposite to the fake occlusion, we call

those occlusion areas real occlusion when they are really

occluded by some nearer parts. An example of such a

situation is shown in Fig. 5. If we warp the points of patch

B0C0 to the right image by the disparity of the segment L0A0,

they will fall in the segment A00R00, which is unoccluded. The

reason is that the surface BC is occluded by the nearer

surface AR from the right camera’s viewpoint. From the

analysis above, by checking the visibility of warped points,

we can identify the fake occlusion points and separate them

into a new segment (we call resegment operation). After this, a

similar algorithm is performed on the new segment sets and

gives the final result.

5 IMPLEMENTATION

5.1 Algorithm Flow

The flowchart of the whole correspondence algorithm is

shown in Fig. 6. The input is two images captured by the left

and right cameras, respectively (Fig. 7a and Fig. 7b). Our

algorithm first segments the left image at a coarse level using a

mean-shift segmentation algorithm [20] (Fig. 7c). A trimmed

Sum-of-Absolute-Difference (SAD) algorithm with Birchfield

and Tomasi’s dissimilarity algorithm [21] plus the cross-

checking algorithm is used to find disparities of reliable

points [8] (Fig. 7d). A robust plane fitting, like M-estimate

[22], is performed on reliable points to find possible disparity

planes D similar to [8]. Input images are then segmented

using the same algorithm at a fine level (Fig. 7e and Fig. 7f).

The symmetric patch-based algorithm is used to compute an
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Fig. 4. The matching of a mixed segment. The upper part is the structure
of the nearer and the farther objects. The lower part is the images
captured by the left and right camera, respectively. For distinguishing,
the projection of the points in the left and right image is prefixed by
primes and double primes, respectively (e.g., A0 is the project of A in the
left image, and A00 is the project in the right one, etc.). Please see the
main text for more details.

Fig. 5. Real occlusion. Unlike Fig. 4, the occlusion patch B0C0 will be

warped to an area within B00R00 which is an visible segment, because the

corresponding surface AR in the scene is in front of the surface BC and

occludes the latter from the viewpoint of right camera.



optimal solution under the soft constraints. Then, a reseg-

menting algorithm is performed to cut some mixed segments

into smaller segments, and the �-expansion minimization is

reran. The final results with and without occlusions can be

obtained (Fig. 7g and Fig. 7h).

5.2 Parameter Selection

We find that two parameters in our algorithm are some-

how sensitive to input images. They are the smoothness

constant Cs and occlusion constant Co. We propose a

method to automatically select the values so that our

algorithm can be adaptive to the input images.
Our selection strategy is designed with the following

analysis: The correctly matched patch pairs contain the least

SAD error in a noise-free situation. So, they can be selected by

minimizing the data error energy. Noise may cause a wrong

patch to have smaller matching energy than the correct one,

but the wrong patch is often inconsistent with it neighbors.

Smoothness energy is used to punish the inconsistency and

reject the incorrect match. So, when there is greater noise, a

stronger smoothness energy is needed and vice versa.

The noise level is estimated using the disparity map of

reliable points in the label selection step. After cross-

checking to the local matching of both images, we find some

relatively reliable disparities. For each such reliable point,

we compute a matching error � and take the average of all

matching errors �� as the average noise level. Cs and Co are

set by values proportional to ��.

6 EXPERIMENTAL RESULTS

6.1 Occlusion Results

To evaluate the performance of detecting occlusion and the

effectiveness of modeling the occlusion of our algorithm, we

first compare the occlusion result with several recent

approaches that handle occlusions or use segmentation

information:

1. “GCþ occl” algorithm by Kolmogorov and Zabih [6]:
a pixel-based approach using a uniqueness and a
symmetric graph-cuts framework to handle occlusion,

2. “Layer” algorithm by Lin and Tomasi [23]: a combina-
tion of pixel-based and segment-based approaches,

1074 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007

Fig. 6. The flowchart of the whole patch-based stereo correspondence algorithm.

Fig. 7. Intermediate results of our algorithm for the “Venus” image pair. (a) and (b) are left and right input images, respectively. (c) is the

segmentation results of the left image at a coarse level for labeling selection and (d) is the labeling selection results. (e) and (f) are segmentation

results of both images at a fine level. (g) and (h) are disparity maps with and without occlusions.



3. “SegþGC” algorithm by Hong and Chen [8]: a
segment-based asymmetric graph-cut approach that
does not explicitly detect occlusion, and

4. a recently published “Sym-BP” approach by Sun et al.
[15]: a pixel-based approach using visibility con-
straints for occlusion detection and imposing seg-
mentation in a soft way.

Four image pairs of the benchmark site by Scharstein and

Szeliski [1], [24], named “Tsukuba,” “Sawtooth,” “Venus,”

and “Map,” respectively, are used. Same parameters are

selected for all pairs. We use the source code by Kolmogorov

to compute results of “GC+occl.” The result of “Layer” is from

the authors’ Web site [25]. The results are shown and

compared in Fig. 8. Table 1 gives error statistics for the four

respective pairs. They are quantitatively evaluated by three

criteria, which are the percentages of: false positive, false

negative, and bad points near occlusion. A bad point is a point

whose absolute disparity error is greater than one [1]. We

make a near occlusion mask by dilating the occlusion area to

10 pixels and excluding the occlusion area.

From Table 1, we can see that, our result is slightly better

than the Sym.-BP algorithm and obviously better than the

others in the first three image pairs. The result of “Map” is

worse than Sym.-BP, but is still better than the others. Most

errors on map lie on the boundary of the nearer plane

because of the violation of the discontinuity constraint. In

the scene of “Map” images, the border of the nearer image

has similar colors to the farther one, which leads to a

number of mixed segments. From Fig. 8, we can see that the

border of our detected occlusion is much cleaner than those

of others and is more similar to the ground truth. The

reason is that the border is cutting by the segment in the

right image. This experiment shows the power of our patch-

based approaches on occlusion handling.

6.2 Disparity Results

We use the benchmark for dense two-frame stereo algorithms

[1] to compare our overall performance with other algo-

rithms. There are two versions of a stereo evaluation list. In

the first version [24], the four image pairs used in the

occlusion experiments are used. Three criteria are used for

each image pair. They include the percentages of bad points

at: nonocclusion (marked by “all”), untextured (“untex.”),

and the discontinuity (“disc.”) area.6 The list including our
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Fig. 8. Ground truth of occlusions and the results of several algorithms.

6. An exception for “Map” is that almost all of the area of this image pair
is textured, so no “untex.” evaluation is used for “Map.”



algorithm is shown in Table 2. Our result is obtained by

setting the same parameters for all image pairs. The algorithm

is ordered by the average rank over the ranks of all criteria.

In version 2 [26], “Tsukuba” and “Venus” are kept and

two new image pairs, named “Teddy” and “Cones,”

respectively, are appended. New images are more challen-

ging because they contain more complicated structures and

nonplanar surfaces. Error rates at untextured areas are no

longer counted in the final rank. The error rate of all areas,

including pixels at the occlusion area, is used instead, and is

marked as “all.” This new criteria contains the accuracy of

the guessing to disparities at the occlusion area. The error

rate at nonocclusion area is marked as “nonocc.” The error

at the discontinuity is still used and marked as “disc.,” but

the mask includes the area near occlusion. We set the same

parameters for all the image pairs, whereas this parameter

is different from the ones used in version 1. Disparity maps

of our algorithm are shown in Fig. 9, including the results

with and without resegmenting. Quantitative evaluations

and rankings are shown in Table 3.
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TABLE 1
Errors of Occlusions of Different Algorithms

TABLE 2
Evaluation Results on the Middlebury Stereo Test-Bed: Version 1

Fig. 9. Results of the middlebury data sets with automatically chosen
parameters. The first row is the left image and the second row is the
ground truth. The third and fourth rows are the results of our algorithm
without resegment and after resegmenting, respectively. The bottom
row is the signed disparity error map of our final results.



From the result, we can see that our patch-based

formulation inherits the advantage of segment-based ap-

proaches on discontinuity and untextured areas. When the

scene can be estimated by several planar surfaces, like the

image pairs in version 1, our algorithm provides outstanding

results. Except the “Map” pair, our algorithm obtains all top

criteria for the other image pairs. The untextured error is

especially small. Even in version 2, our algorithm ranks at fifth

position over 20 algorithms altogether (some results with low

ranks are omitted in Table 3).

Like the result reported in our earlier work [18] and other

segment-based algorithms [8], [9], the result of “Map” is still

worse than others. The reason is that the colors of different

disparities near discontinuity are similar. Our new result is

better because of using the resegment framework, although

the problem still needs more effort. There are also some

artifacts in the results for “Teddy” and “Cones.” The reason is

that some of the heavily slanted disparity planes are not fitted

and the cone’s surfaces are not well-estimated by planes.

6.3 Some Other Results

In order to further investigate the performance of the

proposed algorithm, we employed it on some other data

sets, and the results are shown in Fig. 10.

Some structures more complicated than planes appear in

these new data sets, e.g., the sphere shape of the ball. Color

differences in a corresponding area can also be found. Our

algorithm gives sound results. But, some artifacts can be

found at the boundary of the ball and the disparity of the

park-meter can also be further improved.

7 COMPARISON WITH OTHER ALGORITHMS

In this section, we compare our algorithm and other
correspondence approaches.

7.1 Disparity Space

We first consider the differences in disparity space. In most

pixel-based algorithms, the search is directly performed on

1D disparity space. A piecewise smoothness assumption

(explicitly or implicitly imposed) gives a bias of the same

disparities for neighboring pixels. This affects the perfor-

mance of those algorithms when greatly slanted planes exist

in the scene. So, Ogale and Aloimonos [16] used a 2D linear

parameter space for horizontally slanted planes, and most of

the segment-based algorithms used a 3D disparity plane

space which can model generally slanted planes. In Table 2,

we find that the pixel-based algorithm can easily achieve

sound results in “Tsukuba” and “Map,” which only contain

fronto7 or near-fronto planes. Segment-based approaches

perform better in “Sawtooth” and “Venus,” which contain

horizontally (in “Venus”) and vertically (in both of them)

slanted planes. But the 3D linear space is much larger than

1D disparity space, so a label selection algorithm is often used

to select all possible linear parameters before matching.
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TABLE 3
Evaluation Results on Middlebury Stereo Test-Bed: Version 2

Fig. 10. Some other results (called “ball” and “parkmeter,” respectively)

by our algorithm. Occlusion is shown in black.
7. A fronto plane is a plane orthogonal to the optical axis of the reference

image.



Besides, using the segment as the matching unit can

significantly reduce the scale of the state space. This is why

segment-based approaches use larger 3D linear disparity

plane parameter space than pixel-based approaches.

7.2 Use of Segmentation Information

Another comparison is between the different levels of

segmentation information used. In most previous pixel-based

algorithms, texture information is used to control the

smoothness intention of neighboring points, e.g., in [6], the

intensity difference between neighboring pixels is used to

adjust the smoothness coefficient. This method can lead to

some limited improvement on accuracy. The segment-based

algorithms use the color segmentation results as a hard

constraint for disparities. The points in a segment are

considered as a single matching unit, and the number of

matching units is greatly reduced. But, the discontinuity

assumption is generally not correct and may sometimes cause

errors. Sun et al. [15] used the segmentation information in a

softstyle.Thefittedplanesgiveabias topixel-basedmatching,

and the results on “Sawtooth” and “Venus” are much better

than other pixel-based algorithms. Their approach does not

suffer from segmentation error directly, but the plane fitting is

in a local style and the fronto bias still exists. Our approach

belongs to the segment-based category, but we use more

segmentation information for occlusion handling. The soft

constraints and resegmenting method also alleviate the effect of

violation on the discontinuity assumption.

8 CONCLUSION

We proposed a novel patch-based matching model and a

correspondence algorithm using graph-cuts with occlusion

handling. Unlike traditional segment-based approaches,

both images are segmented and segmented regions are

further split into a smaller unit, the patch. The occlusion

and visible boundary are aligned with the edge of segments in

the other image. Performance near occlusion is saliently

improved over other segment-based approaches. The ad-

vantage of using segmentation information remains, which

makes better results, especially in untextured areas and

discontinuity for natural scenes with slanted planes. Two

methods are proposed to increase the performance when the

discontinuity assumption is violated. The experimental

results demonstrate that our approach corresponds to the

state-of-the-art.
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