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Abstract

In this paper, we propose to use the fingerprint valley instead of ridge for the binarization-thinning process to extract fingerprint minutiae.
We first use several preprocessing steps on the binary image in order to eliminate the spurious lakes and dots, and to reduce the spurious
islands, bridges, and spurs in the skeleton image. By removing all the bug pixels introduced at the thinning stage, our algorithm can
detect a maximum number of minutiae from the fingerprint skeleton using the Rutovitz Crossing Number. This allows the true minutiae
preserved and false minutiae removed in later postprocessing stages. Finally, using the intrinsic duality property of fingerprint image we
develop several postprocessing techniques to efficiently remove spurious minutiae. Especially, we define an H-point structure to remove
several types of spurious minutiae including bridge, triangle, ladder, and wrinkle all together. Experimental results clearly demonstrate
the effectiveness of the new algorithms.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The recent advances of information technologies and the
increasing requirements for security have led to a rapid
development of automatic personal identification systems
based on biometrics. Biometrics [1,2] refers to accurately
identifying an individual based on his or her distinctive phys-
iological (e.g., fingerprints, face, retina, iris) or behavioral
(e.g., gait, signature) characteristics. It is inherently more
reliable and more capable in distinguishing between an au-
thorized person and a fraudulent imposter than traditional
token-based or knowledge-based methods. Among all the
biometrics, fingerprint recognition is one of the most reli-
able and promising personal identification technologies.

Fingerprints are graphical flow-like ridges and valleys
present on the surface of human fingers [1]. They are widely
used for personal identification [3] in many commercial,
civilian, and financial applications. Various approaches to
automatic minutiae extraction have been proposed in the
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literature. Most of the techniques [4–7] extract the minutiae
from the skeleton of the fingerprint image. The skeleton is
computed by thinning the binary image, which is obtained
by adaptive thresholding of the input gray scale fingerprint
image.

There are two types of minutiae, ridge endings and ridge
bifurcations that constitute a fingerprint pattern. Ridges are
generally used for minutiae extraction, since most previous
researches assume that the ridges and valleys in the finger-
print have a similar width and are equally spaced. In fact,
this may not always be true for various fingerprints collected
by different sensors. For example, the fingerprint images we
collected using an optical sensor show that the average ridge
width (typically six pixels) is thicker than the average val-
ley width (typically three to four pixels), as illustrated in
Fig. 1. Since a thinner binary image is easier for skeleton
computation, we propose to use the valley instead of the
ridge for minutiae extraction. We use valley endings and
valley bifurcations as fingerprint minutiae.

After the valley skeleton is extracted from the binary
image, ideally, the width of the skeleton should be strictly
one pixel. However, this is not always true, especially at the
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Fig. 1. Fingerprint images acquired using an optical fingerprint sensor (black areas: ridges; white areas: valleys).

intersection points, thus producing spurious minutiae points.
We develop a new algorithm to remove such pixels to im-
prove minutiae extraction.

Due to different properties of fingerprint sensors and dif-
ferent conditions under which a fingerprint is scanned, the
quality of a fingerprint image can vary greatly. For a finger-
print image of low quality, a large number of false minutiae
may be extracted. Postprocessing algorithms are generally
needed to reduce the high false alarm rate.

Most of current postprocessing algorithms [8,9] eliminate
the false minutiae by evaluating the statistical characteristics
within an M × M matrix moving along the image pixel by
pixel. Xiao and Raafat [10] develop a new postprocessing
algorithm using both the statistical and structural informa-
tion to eliminate the false minutiae. However, the method
relies heavily on pixel connectivity computation, which is
very time-consuming. A neural network-based minutiae fil-
tering technique, which operates directly on the gray scale
images is proposed by Maio and Maltoni [11]. The method
relies greatly on the type and quality of training data.

Farina et al. [4] propose to clean bridge based on ridge
positions instead of directional maps used by conventional
methods. They argue that evaluation of the directional maps
is very time-consuming. In [19], Hung presents a structural
approach to connect the ridge breaks using both ridge and
valley spaces. Xiao and Raafat [10] remove bridge, trian-
gle, and ladder by calculating the number of “connected”
minutiae and their structural relations. Stosz and Alyea [12]
propose to eliminate wrinkle by analyzing the spatial rela-
tionship of the consecutive minutiae on the wrinkle. All these
approaches rely extensively on pixel connectivity analysis
one way or the other.

In this paper, we take full advantage of the duality prop-
erty of fingerprint image to remove spurious minutiae.
Especially, we develop an efficient bridge structure elimi-
nation method to remove several types of spurious minutiae
including bridge, triangle, ladder, and wrinkle all at once.

The remainder of this paper is organized as follows.
Section 2 presents the preprocessing steps and the skeleton-
based minutiae extraction method. A detailed description
of the proposed postprocessing algorithms is given in
Section 3. Experimental results and discussions are reported
in Section 4. Section 5 concludes this paper.

2. Preprocessing and minutiae extraction

A critical step in an automatic fingerprint identification
system (AFIS) is reliably extracting minutiae from the in-
put fingerprint images. The skeleton-based method generally
consists of the following main steps:

(1) use an adaptive thresholding algorithm [20] to compute
the binary image from the input gray scale fingerprint
image;

(2) use a thinning algorithm [21,22] to compute the finger-
print skeleton from the binary image;

(3) use Rutovitz Crossing Number to extract minutiae from
the skeleton of fingerprint image;

(4) postprocessing the minutiae set according to some
heuristic rules.

2.1. Preprocessing

By observation of the skeleton images and their corre-
sponding binary images, it can be seen that the misconnec-
tions and the isolated regions (hole, dot, and island) in the
binary images introduce a number of spurious minutiae in
the skeleton images. Fig. 2 shows an example.

In this work, we propose several preprocessing techniques
before thinning of the binary image:

(1) use a morphological operator to separate some linked
parallel valleys, to eliminate some spurious bridges and
spurs in the skeleton image;
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Fig. 2. An example to show the misconnections and isolated regions in (a) the binary image that introduce false minutiae in (b) the corresponding
skeleton image.

Fig. 3. Examples to show the effect of the preprocessing steps (upper row: original skeleton images; lower row: skeleton images after preprocessing).

(2) fill in the small holes with an area (number of pixels)
below a threshold Ta1, to eliminate the spurious lakes
in the skeleton image;

(3) remove the dots (isolated pixels) and the islands (short
lines) with an area below a threshold Ta2, to eliminate
the spurious lakes, dots, and some islands in the skeleton
image.

The thresholds should be selected appropriately. If Ta1
and Ta2 are too small, the above spurious minutiae in the
skeleton will not be eliminated completely. If they are too
large, the skeleton will be distorted. In our experiments, we
empirically set Ta1 =11 and Ta2 =9. Fig. 3 shows the effects
of the preprocessing steps.

2.2. Minutiae extraction

The concept of Crossing Number (CN) is widely used for
extracting the minutiae [4–7]. Rutovitz’s definition [13] of

crossing number for a pixel P is

CN = 1
2

8∑

i=1
|Pi − Pi+1| ,

where Pi is the binary pixel value in the neighborhood of P
with Pi = (0 or 1) and P1 = P9.

The skeleton image of fingerprint is scanned and all the
minutiae are detected using the properties of CN, as illus-
trated in Fig. 4.

Ideally, the width of the skeleton should be strictly one
pixel. However, this is not always true. Fig. 5 shows some
examples, where the skeleton has a two-pixel width at some
bug pixel locations.

We define a bug pixel as the one with more than two 4-
connected neighbors (marked by bold italic 1 and 0). These
bug pixels exist in the fork regions where bifurcations should
be detected, but they have CN = 2 instead of CN > 2. The
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Fig. 4. Illustration of Crossing Number properties (“1”: black pixels in the skeleton image).

Fig. 5. Examples of bug pixels and their validation (bold-italic 0: deleted
bug pixels; bold-italic 1: preserved bug pixels that are changed to normal
pixels).

existence of bug pixels may (i) destroy the integrity of spu-
rious bridges and spurs, (ii) exchange the type of minutiae
points, and (iii) miss detecting true bifurcations, as illus-
trated in Fig. 6. Therefore, before minutiae extraction, we
develop a validation algorithm to eliminate the bug pixels
while preserving the skeleton connectivity at the fork re-
gions. By scanning the skeleton of fingerprint image row by
row from top–left to bottom–right, we delete the first bug
pixel encountered and then check the next bug pixel again
for the number of 4-connected neighbors. If the number of
4-connected neighbors after the deletion of the previous bug
pixel is still larger than two, it will also be deleted; other-
wise it will be preserved and treated as a normal pixel. Some
examples are shown in Fig. 5. After this validation process,
all the pixels in the skeleton satisfy the CN properties. Thus
we can extract all the minutiae including true minutiae and
false minutiae. The false minutiae can be eliminated in the
postprocessing stage.

3. Postprocessing algorithms

After preprocessing on the binary and skeleton images,
we extract all the minutiae from the fingerprint skeleton us-
ing the Rutovitz Crossing Number. However, due to various
noises in the fingerprint image, the extraction algorithm pro-
duces a large number of spurious minutiae such as break,
spur, bridge, merge, triangle, ladder, lake, island, and wrin-
kle, as shown in Fig. 7. Therefore, reliably differentiating
spurious minutiae from genuine minutiae in the postpro-
cessing stage is crucial for accurate fingerprint recognition.
The more spurious minutiae are eliminated, the better the
matching performance will be. In addition, matching time
will be significantly reduced because of the reduced minu-
tiae number. This is very important since the execution time
is a critical parameter in an AFIS.

For the various types of false minutiae illustrated in Fig. 7,
we use preprocessing algorithms described in Section 2 to
eliminate dots, lakes, and a number of islands and spurs. For
the rest of the false minutiae types, we observe that there
is at least one bridge structure in such spurious minutiae as
bridge, triangle, ladder and wrinkle. For the various types
of breaks, there are also corresponding bridge structures in
the duality image. We define a bridge structure and its cor-
responding dual break in the duality image collectively as
an H-point. If we can successfully remove the H-points in
the image, we can eliminate most of the spurious minutiae.

To further explain the H-point definition, we need to first
understand the duality definition. In a fingerprint image, for
each ridge ending, there is generally a corresponding valley
bifurcation and vice versa [2], with the only exception at
the singularity points (cores and deltas) [14]. This is called
the termination/bifurcation duality, as illustrated in Fig. 8(a).
Around a bridge structure, such a duality takes on the form
of a bridge in the ridge (or valley) skeleton image and its
corresponding dual break in the valley (or ridge) skeleton
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Fig. 6. Without validating the bug pixels, we may have: (a) four bifurcations (“x”) are missed; (b) two bifurcations are misdetected as two endings (“o”);
(c) two bifurcations are missed including one true bifurcation.

Fig. 7. Examples of false minutiae (black dots).

image, as shown in Fig. 8(b). We define such a structure with
two bifurcations and two corresponding endpoints (endings)
as an H-point. In this work, we design a simple procedure
utilizing the duality property to eliminate the H-point.

Since any particular processing step will affect the per-
formance of later steps, we have to be very careful of
the processing order. We design several algorithms to re-
move spurious minutiae in the following order, as shown
in Fig. 9.

In the first stage, we remove some short breaks based
on the conventional definition of a break. If the endpoints

of a break satisfy all the following conditions, they will be
removed:

(a) the distance between two endpoints is below a thres-
hold T1;

(b) the difference between the orientation angles of two end-
points (Ang1, Ang2) is within an interval of [�1, �2];

(c) the difference between the orientation angle of the line
connecting the two endpoints (Ang3) and either angle of
Ang1 or Ang2 is within an interval of [�3, �4].

In order to calculate the orientation angle of an endpoint,
we look for the 8-connected neighbors around the endpoint.
During the tracing procedure, our algorithm keeps going
forward even after encountering a bifurcation point so that
the orientation of endpoint 2 is estimated as the “dashed” line
instead of the “solid” line, as illustrated in Fig. 10. Thus the
endpoints’ orientations satisfy the above orientation angle
rules (b) and (c). Otherwise, endpoints 1 and 2 cannot be
removed. If that is the case, the bifurcation and endpoint 2
will be removed in the following spur elimination stage. As
a result, the true bifurcation will be detected as an endpoint
which results in the type-exchanged error. Therefore, this
strategy mainly helps to decrease the type-exchanged error
due to the poor valley connectivity.

In the second stage, we first label the connected pixels in
the skeleton image. If the distance (d) between a bifurcation
point and an endpoint is below the threshold T2 and their
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Fig. 8. Illustration of ridge and valley duality. The solid gray squares represent the valley skeleton, and the solid gray diamonds represent the ridge
skeleton. (a) The termination/bifurcation duality; (b) H-point examples: a valley bridge corresponds to a ridge break in the dual skeleton image and vice
versa (“o”: endings; “x”: bifurcations).

Extracted Minutiae Set

Short Breaks Removal 

Spurs Removal

H-points Removal 

Close Minutiae Removal 

Border Minutiae Removal 

True Minutiae Set 

Fig. 9. Elimination process of false minutiae.

labels are the same, we again label the connected pixels
within a small window (2d+1×2d+1) centered around the
endpoint or the bifurcation point. If their labels are still the
same, we remove both of them; otherwise they are preserved.
Fig. 11 demonstrates the procedure.

In the third stage, the H -points are detected and elimi-
nated. If a bridge in the ridge (or valley) skeleton image and

Fig. 10. Keep tracing when a bifurcation point is met (“o”: endings; “x”:
bifurcation).

a break in the valley (or ridge) skeleton image satisfy the
following conditions, they form an H-point (see Fig. 12):

(1) the intersecting point lies between the two endpoints
and the two bifurcation points;

(2) the distance between the bridge midpoint M2 and the
break midpoint M1 is within a threshold T3;

(3) the intersecting angle � between the bridge and the
break is within an interval of [�5, �6].

Finally, we eliminate those minutiae that are too close to
each other and all the minutiae within a certain distance
threshold T4 from the image border. After postprocessing,
a large percentage of the spurious minutiae are eliminated,
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Fig. 11. Examples showing the elimination of spurs. After relabeling the
connected pixels within the square, the bifurcation and the endpoint inside
square 1 still have the same labels, whereas those within square 2 have
different labels (“o”: endings; “x”: bifurcations).

Fig. 12. An H -point example (“o”: endings; “x”: bifurcations).

the remaining minutiae are treated as true minutiae which
are used for later fingerprint matching.

4. Experiments and discussions

To evaluate the performance of the proposed algorithms,
we perform a series of experiments on a portion of a live-scan
fingerprint database captured with an optical sensor (StarTek
FM100). It contains a total of 6780 fingerprint images from

Table 1
Live-scan fingerprint database

Subjects (%) Students 90.3
Others 9.7

Gender (%) Female 38
Male 62

Age (%) Under 25 80
25–50 20

Time interval One month between two capture stages

Environment Normal office conditions (indoor)

113 subjects. Each person was asked to provide fingerprint
images for all the 10 fingers. In the first stage, three finger-
print images per finger were acquired. Three more fingerprint
images per finger were obtained a month later. The subjects
mainly consist of undergraduate and postgraduate students
and their friends. The profile of the database is shown in
Table 1. The captured fingerprint images vary in quality. In
the experiments, we select one fingerprint image of medium
quality from the six impressions of each finger. These fin-
gerprint images (256×256) are then cropped into 170×180
in size in order to remove the very noisy border area.

The valley skeleton and ridge skeleton are first obtained
from the valley image and its dual ridge image, respectively.
The valley skeleton agrees rather well with the original val-
ley image, while the ridge skeleton introduces a large num-
ber of spurious lakes and bridges. Consequently, the ridge
skeleton will produce more spurious minutiae. Fig. 13 shows
a typical example.

The accuracy rates of applying the minutiae extraction
algorithm on ridge skeleton and valley skeleton before and
after preprocessing are reported in Tables 2 and 3, respec-
tively. In the tables, the accuracy rates of ending and bifur-
cation are computed by Et/Ee and Bt/Be, respectively. The
total rate is calculated using the following formula:

Total rate = Et + Bt

Ee + Be

, (1)

where Et and Bt are the number of true endings and true
bifurcations in the extracted endings (Ee) and bifurcations
(Be), respectively.

From the results, we can see that after preprocessing the
accuracy rate of bifurcation is improved significantly, es-
pecially for the ridge bifurcation. It demonstrates that the
preprocessing algorithm does eliminate a large number of
spurious lakes, bridges, and spurs, which introduce false
bifurcations. However, the accuracy rate of endings is only
increased slightly since the preprocessing algorithm only
eliminates some spurious islands that introduce false end-
ings. In fact, the spurious dots also introduce false endings
and are eliminated efficiently in the preprocessing stage.
However, there are only a small number of dots in the
skeleton image. The improvement of the accuracy rate of
ridge bifurcation is greater than that of valley bifurcation.
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Fig. 13. (a) Valley skeleton; (b) ridge skeleton (the skeleton is overlaid on the original gray scale fingerprint image).

Table 2
Accuracy rates for ridge minutiae

Before preprocessing (%) After preprocessing (%)

Ending 10.6 10.7
Bifurcation 19.3 50.8
Total rate 13.4 16.8

Table 3
Accuracy rates for valley minutiae

Before preprocessing (%) After preprocessing (%)

Ending 12.2 12.6
Bifurcation 16.2 26.3
Total rate 13.2 16.2

Table 4
Number of minutiae before and after validating bug pixels

After preprocessing After validating bug pixels

Endings Bifurcations Endings Bifurcations

67 47 67 47
87 27 87 27
55 123 55 125
62 110 62 118
77 55 75 57

106 20 93 27

This shows that the ridge skeleton introduces more spuri-
ous minutiae. In addition, the computation speed for valley
thinning is much faster than ridge thinning.

Table 4 shows some typical results of validating the bug
pixels. From the results, we can see that the bug pixels exist
in the fork region where bifurcations should be extracted.
Some fingerprint skeletons may have more bug pixels and
some may have none.

We have compared the performance of our minutiae
extraction algorithm with the other methods proposed by
Maio [15], Cheng [16], and Kim [17]. Before showing the

Table 5
Average error rates after postprocessing

Methods False(%) Dropped(%) Type-exchanged(%) Total error(%)

Proposed 15.3 6.9 5.3 27.5
Maio [15] 11.8 6.5 13.1 31.4
Cheng [16] 9.6 15.9 10.4 35.9
Kim [17] 25.8 13.8 6.3 45.9

experimental results, we first describe the following terms
used for performance evaluation:

True minutiae (MT ): Minutiae marked by a human
expert.
Extracted minutiae (ME): Minutiae remained after post-
processing.
False (non-existent) minutiae (MF ): Minutiae extracted
by the algorithm that do not coincide with MT .
Dropped (missing) minutiae (MD): Minutiae marked by
a human expert that are not extracted by the algorithm.
Type-exchanged minutiae (MT E): Minutiae extracted by
the algorithm that coincide with MT except the minutiae
type.

Table 5 reports the results in terms of average error rates
of false (MF /ME), dropped (MD/MT ), and type-exchanged
(MT E/ME) minutiae. The total error rate is the sum of them.
From the results, we can see that our algorithm is better than
the other methods in terms of type-exchanged and total error
rates. Compared with the best result by Cheng’s method
[16], our algorithm produces a slightly higher error rate of
false minutiae. For the dropped error rate of our algorithm,
it is comparable to the best result by Maio’s method [15]. In
addition, since the total error rate in the preprocessing stage
is about 83.8%, we can conclude that the average error rate
drops 56.3% after postprocessing.

To further quantitatively evaluate the performance of
our minutiae extraction algorithm we adopt the “goodness
index” (GI) measurement [7], which compares the extracted
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Table 6
GI values for a dataset of 10 fingerprint images

Fingerprint P D I T GI

01 11 1 1 12 0.75
02 18 4 1 19 0.68
03 21 3 3 28 0.54
04 13 2 2 17 0.53
05 15 3 3 18 0.50
06 19 3 4 24 0.50
07 15 7 1 16 0.44
08 12 5 1 14 0.43
09 12 2 3 17 0.41
10 8 3 3 11 0.18

Empirically determined parameter values: T1, T2, T3, T4, �1, �2, �3, �4,
�5, �6 are 9, 6, 2.5, 7 pixels, 145◦, 225◦, −25◦, 25◦, 65◦, and 115◦.

Fig. 14. Minutiae extraction example results: (a) minutiae marked by a human expert; (b) automatically extracted minutiae;

minutiae with the true minutiae obtained from the same fin-
gerprint by a human expert (ground truth). The goodness
index is defined as follows:

GI = P − D − I

T
, (2)

where P is the total number of paired minutiae, D is the num-
ber of deleted spurious minutiae (false and type-exchanged),
I is the number of inserted missing minutiae (dropped)
and T is the number of true minutiae. An extracted minutia
m1 is said to be paired with the true minutia m2 marked
by the human expert if m1 lies within an 8x8 tolerance box
centered around m2. The maximum value of GI is 1, which
means that all the extracted minutiae are paired with true
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Fig. 14. (c) postprocessing results at different processing stages (diamond (♦): eliminated spurs; plus (+): eliminated H -points; solid down triangle (�):
eliminated close minutiae; square (�): eliminated border minutiae; circle (◦): survived endings; X-mark (x): survived bifurcations).
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Fig. 15. The ROC curves of the original matching system integrating the
proposed method, Kim’s method, and without adopting postprocessing.

minutiae and no spurious minutiae and missing minutiae are
detected (P = T , D = I = 0). A high value of GI indicates
the high quality of the extracted minutiae. Table 6 presents
the GI values for a representative subset of 10 fingerprint
images. The maximum and minimum values of GI for this
dataset are 0.75 and 0.18, respectively. The average value is
0.50. The results outperform those presented in Ref. [7] and
are comparable to those reported in Ref. [18].

Fig. 14 shows several typical results of our processing
algorithms. From the results, we can observe that

(1) the survived minutiae after the postprocessing agree
rather well with the minutiae marked by the human ex-
pert in regions where the valley structures are clear;

(2) false minutiae and dropped minutiae typically occur in
the noisy regions near the border or creases;

(3) type-exchanged minutiae occur in the areas where the
valley connectivity is poor.

Finally, we test our algorithms on a standard database
FVC2002 DB1, which contains a set of 880 fingerprint
images (388 × 374) from 110 individuals. The overall
matching performance is measured by the receiver oper-
ating characteristic (ROC) curve, which plots the genuine
acceptance rate (GAR) against the false acceptance rate
(FAR) at different operating points (matching score thresh-
olds). As illustrated in Fig. 15, the overall performance of
the matching system is greatly improved by integrating the
postprocessing algorithms. In addition, the proposed ap-
proach outperforms Kim’s method [17] over a wide range
of FAR values.

5. Conclusions

In this paper, we develop several efficient preprocess-
ing techniques to enhance the skeleton image for minutiae

extraction from the valley instead of the ridge of the fin-
gerprint. Our minutiae extraction algorithm can detect all
the minutiae, including both true and false minutiae, using
the Rutovitz Crossing Number (CN) on the skeleton im-
ages after validating all the bug pixels introduced at the
thinning stage. This allows the true minutiae preserved and
false minutiae removed in later postprocessing stages. Tak-
ing full advantage of the duality property of the fingerprint
image, we design several postprocessing techniques to ef-
ficiently remove spurious minutiae. Especially, we develop
an efficient H-point elimination method to remove several
types of spurious minutiae including bridge, triangle, lad-
der, and wrinkle all at once. The high values of goodness
index (GI) have illustrated the encouraging performance of
our proposed method.
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