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Abstract—In previous optimization-based methods of 3D planar-faced object reconstruction from single 2D line drawings, the missing

depths of the vertices of a line drawing (and other parameters in some methods) are used as the variables of the objective functions. A

3D object with planar faces is derived by finding values for these variables that minimize the objective functions. These methods work well

for simple objects with a small numberN of variables. AsN grows, however, it is very difficult for them to find the expected objects. This is

because with the nonlinear objective functions in a space of large dimensionN, the search for optimal solutions can easily get trapped into

local minima. In this paper, we use the parameters of the planes that pass through the planar faces of an object as the variables of the

objective function. This leads to a set of linear constraints on the planes of the object, resulting in a much lower dimensional null space

where optimization is easier to achieve. We prove that the dimension of this null space is exactly equal to the minimum number of vertex

depths that define the 3D object. Since a practical line drawing is usually not an exact projection of a 3D object, we expand the null space

to a larger space based on the singular value decomposition of the projection matrix of the line drawing. In this space, robust

3D reconstruction can be achieved. Compared with the two most related methods, our method not only can reconstruct more complex

3D objects from 2D line drawings but also is computationally more efficient.

Index Terms—3D object reconstruction, degree of reconstruction freedom, line drawing, null space, singular value decomposition.

Ç

1 INTRODUCTION

IN this paper, a line drawing is defined as a 2D projection of
the edges and vertices of a 3D object in a generic view, with

or without hidden edges and vertices. It is the simplest and
most direct way of illustrating a 3D object. The human vision
system has the ability to interpret 2D line drawings as
3D objects without difficulty. Emulating this ability is an
important research topic for machine vision. Its applications
include flexible sketching input for conceptual designers who
tend to prefer pencil and paper over mouse and keyboard in
current CAD systems, conversion of existing industrial
wireframe models to solid models, interactive generation of
3D objects from images, and user-friendly query input
interface for 3D object retrieval from large 3D object databases
and the Web.

Interpretation of line drawings has spanned more than
three decades. The earliest work is about line labeling and
testing the correctness/realizability of a line drawing [1], [2],
[3], [4], [5], [6], [7]. It does not give explicit 3D reconstruction
from a line drawing. More recently, symbolic computation
with the Grassmann-Cayley algebra is used to analyze the
realizability of a polyhedral scene [8]. Three-dimensional
reconstruction from multiple views of a wireframe model
tries to recover a 3D CAD model from its three orthographic

projections [2]. More information can be found from these
orthographic views for the reconstruction task than from a
single generic view. The work on face identification from
single line drawings [9], [10], [11], [12], [13], [14], [15], [16], [17]
discusses how to find from a line drawing the circuits that
represent the faces of the object. When the face circuits of the
object is known before reconstructing its 3D geometry, the
complexity of the reconstruction can be reduced significantly.

The ultimate target of line drawing interpretation is to
reconstruct 3D objects from 2D line drawings. To this end, the
reconstruction is usually formulated as an optimization
problem, and many methods have been proposed [9], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31]. These methods are most related to the work in this paper
and will be reviewed in more detail in the next section. In
these optimization-based methods, the variables of the
objective functions are the missing depths of the vertices in
a line drawing (plus other parameters in some methods). A
3D planar object (that is, an object with planar faces only) is
recovered by deriving the values for these variables that
minimize the objective function. In general, these methods
work well for simple objects with a small number N of the
variables. AsN grows, however, it is very difficult for them to
find the expected objects. This is because with the nonlinear
objective function in a high-dimensional spaceRN , the search
for optimal solutions can easily get trapped into local
minima. Fig. 1b shows an example that the method in [21]
cannot handle.

In this paper, we tackle the reconstruction problem in
another way. Instead of the depths of the vertices, we use only
the parameters of the planes that pass through the planar
faces of an object as the variables of the objective function.
This method leads to a set of linear constraints, resulting in a
much lower dimensional null space where optimization is
easier to achieve. We prove a theorem that shows that the
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minimum number of variables defining a 3D object that
corresponds to an ideal line drawing is equal to the dimension
of the null space with respect to this line drawing. We also
develop an algorithm to find this minimum number (or its
upper bound) from a practical line drawing. Due to vertex
position errors in a practical line drawing, an expected
3D object may not be contained in the null space, so we
expand it to a larger space based on this minimum number (or
its upper bound) and the singular value decomposition (SVD)
of the projection matrix of the line drawing. This new space is
still much smaller thanRN , in which robust 3D reconstruction
can be achieved. The objects reconstructed by our algorithm
include polyhedra, nonmanifold solids, and nonsolid objects,
with or without hidden edges and vertices given and with or
without through holes.

The rest of this paper is organized as follows: We review
the most related work in Section 2. Some assumptions are
given in Section 3. Section 4 briefly discusses the previous
formulations of the reconstruction problem, and then,
Section 5 presents our formulation. Section 6 proves that the
minimum number of variables defining a 3D object is equal to
the dimension of the null space with respect to the line
drawing. An algorithm for finding the upper bound of this
minimum number is developed in Section 7. How to obtain
the search space for the 3D reconstruction based on SVD is
described in Section 8. A set of experimental results are
provided in Section 9. Finally, Section 10 concludes this paper.

2 RELATED WORK ON 3D RECONSTRUCTION

So far, there has been little work on 3D reconstruction from
single line drawings representing objects with curved faces.
In this paper, we focus on 3D planar object reconstruction
from single line drawings. To interpret 2D line drawings as
3D objects, an effective approach is to formulate the
3D reconstruction as an optimization problem with an
objective function. In this research, it should be noted that
there are always vertex position errors in a practical line
drawing, which is either extracted from an image or drawn by
a person. It is often impossible to find a 3D object whose
projection is exactly the line drawing. This is because small
deviations of some vertices from their precisely projected
2D positions may cause the 3D vertices on the same planar

face to be noncoplanar. Another typical example comes from
a truncated pyramid, as shown in Fig. 2, where the extensions
of the three edges v2v1, v5v4, and v6v3 in the ideal line
drawing (Fig. 2a) should meet at a point v. However, if v3 is
deviated a little to v03 (Fig. 2b), the three lines v2v1, v5v4, and
v6v

0
3 will not meet at one point, resulting in no 3D truncated

pyramids corresponding to this practical line drawing. This
problem is termed superstrictness.

Assuming that the line drawings of polyhedra have been
extracted from images and labeled correctly, the methods in
[25], [26], and [27] all use shading information on the surfaces
of the polyhedra to define the objective functions and
constraints. The limitations of line labeling are that multiple
consistent labeling solutions for one line drawing are possible
[27], and most of the line drawings given in this paper cannot
be labeled because the line labeling algorithms are generally
suitable for polyhedra without hidden edges. These three
methods also attempt to circumvent the superstrictness
problem. In [25], Sugihara proposed a scheme to detect and
remove redundant equations that cause the superstrictness.
The drawback of Sugihara’s method is that substantially large
deviations may be introduced at the recovered vertices
associated with the deleted equations, as pointed out by the
authors in [7], [26], and [27]. In [26], Shimshoni and Ponce
used a different method to deal with the superstrictness
problem. They modeled vertex position errors with new
variables without deleting any redundant equations. The
main disadvantage of this method is that the number of
variables in the optimization is too large even for a simple line
drawing. For example, there are 51 variables for the truncated
pyramid in Fig. 2a or 2b. In optimization, the likelihood of
getting trapped into local minima increases as the number of
variables increases. Both methods in [25] and [26] need to find
a good initial shape that is close to the optimal one, but
obtaining such a shape is itself a difficult reconstruction
problem for a complex line drawing. In [27], Shimodaira
treated each face of a polyhedron as a distinct object, and the
gaps betweens faces are minimized during the optimization.
The main limitations of this method are that it is applicable
only to very simple polyhedra and we need to know in
advance the horizontality and verticality of particular faces
and the convex-concave properties of all the edges.

In the three methods mentioned above, the projected
vertex positions of the reconstructed polyhedron are usually
changed from their original 2D positions. Other methods [9],
[18], [19], [20], [21], [22], [23], [24], including the one proposed
in this paper, do the 3D reconstruction from line drawings
only (without the use of shading information) and do not
change the original 2D vertex positions. As a result, the faces
are not required to be exactly planar.

316 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

Fig. 1. (a) A line drawing. (b) A failed object reconstructed by the method

in [21]. (c) A successfully reconstructed object. (d) Face circuits of the

line drawing in (a).

Fig. 2. (a) An ideal line drawing of a truncated pyramid. (b) A practical

line drawing representing the same truncated pyramid.



Marill [18] presented his method based on a simple
criterion: minimizing the standard deviation of the angles
in the reconstructed object, which is called the MSDA
principle. Motivated by MSDA, Brown and Wang [19]
proposed to minimize the standard deviation of the segment
magnitudes (MSDSM), and Shoji et al. [20] presented the
criterion of minimizing the entropy of angle distribution
(MEAD). MSDA, MSDSM, and MEAD can only recover
simple objects from line drawings. Leclerc and Fischler’s
method considers not only MSDA but also the planarity
constraint on the faces of the object [9]. This method performs
better than MSDA, MSDSM, and MEAD. Later, Lipson and
Shpitalni [21] extended Leclerc and Fischler’s method by
adding more constraints such as line parallelism, line
verticality, isometry, corner orthogonality, skewed facial
orthogonality, and skewed facial symmetry. This method can
reconstruct more complex objects than Leclerc and Fischler’s.
Piquer et al. focused on recovering mirror symmetry objects
using a symmetry constraint [22]. Based on the work in [18],
[9], and [21], Turner et al. recovered simple planar 3D objects
from scenes [28]. Shesh and Chen applied Lipson and
Shpitalni’s algorithm to their sketching system in [23]. Cao
et al. focused on the 3D reconstruction of trihedral polyhedra
from line drawings without hidden lines [24].

Among these previous methods [9], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], Lipson and Shpitalni’s [21]
can handle the widest range of planar objects. Our method in
this paper is most related to Leclerc and Fischler’s [9] and
Lipson and Shpitalni’s [21] methods because 1) the three
methods all use MSDA and planarity to formulate the
reconstruction problem, 2) they neither need to label a line
drawing nor use shading information, and 3) the original
2Dvertexpositionsarenotchangedintherecovered3Dobject.

3 ASSUMPTIONS

In this paper, a line drawing is assumed to be an orthogonal
projection of a 3D planar object in a generic view, with or
without hidden lines and vertices. A line drawing in a generic
view means that no two vertices appear at the same position
and no two lines overlap in the 2D projection plane. If a line
drawing is drawn with a mouse or tablet PC pen on the screen,
the hidden lines and vertices can also be given, which allows
the reconstruction of complete and more complex objects.
When a recovered 3D object looks reasonable to human
observers, the reconstruction is considered successful. Fig. 1c
is a successful result obtained from the line drawing in Fig. 1a,
but Fig. 1b is not.

Given a line drawing, its face topology is assumed to be
known before the reconstruction of its 3D geometry. Here,
the face topology denotes the set of circuits that represent
all the faces of the 3D object. The line drawing in Fig. 1a has
15 faces, as shown in Fig. 1d. Finding the face topology from
a line drawing is not a trivial problem due to the fact that
the number of circuits is exponential in the number of edges
in a general line drawing [16]. Fortunately, our previous
work [15], [16] can be used for this purpose.

4 FORMULATIONS IN THE MOST RELATED

METHODS

In this section, we briefly review the formulations of the
reconstruction problem in the most related methods. These

methods inflate a flat 2D line drawing by searching for
suitable depths (z-coordinates) for all the vertices of the line
drawing. These z-coordinates are obtained by minimizing an
objective function that consists of some constraints such as
MSDA, face planarity, and line parallelism. These constraints
try to emulate the human perception of a 2D line drawing as a
3D object. The objective functions to be optimized take the
following form:

�ðz1; z2; . . . ; zNv
Þ ¼

XNc

i¼1

wi�iðz1; z2; . . . ; zNv
Þ; ð1Þ

where Nv denotes the number of the vertices of a line
drawing, z1; z2; . . . ; zNv

are the Nv z-coordinates to be deter-
mined, �i, 1 � i � Nc, are the Nc constraints used, and wi,
1 � i � Nc, are weighting factors that give different weights
to the constraints.

After z1; z2; . . . ; zNv
are obtained by minimizing �, a

3D object is completely defined if the face topology is known
and the line drawing is an orthogonal projection of the
3D object. The assumption of orthogonal projection makes the
x and y-coordinates of the vertices of the 3D object available
from the line drawing.

From our experiments, we consider that MSDA and face
planarity are the two most important constraints for
3D object reconstruction from line drawings. Let �1 be the
standard deviation of the angles in the reconstructed object:

�1ðz1; z2; . . . ; zNv
Þ ¼ SDð�1; �2; . . . ; �kÞ; ð2Þ

where �1; �2; . . . ; �k are all the angles formed by every two
adjoining lines in the 3D object, and SD denotes the
standard deviation. Minimizing �1 is the MSDA.

Let constraint �2 be the total distance of the vertices from
their corresponding planes that pass through the faces of
the 3D object. Minimizing �2 forces face planarity. Given the
3D coordinates of all the vertices, the parameters represent-
ing these planes can be obtained by a least square best fit
plane algorithm [21]. Other constraints can be found from
[19], [20], [21], [22], and [24].

From the definitions of �1 and �2, we can see that
�ðz1; z2; . . . ; zNv

Þ is nonlinear. Minimizing it is carried out in
the space RNv . Our experiments show that this optimization
can easily get trapped into local minima when Nv is large
with these formulations.

5 OUR FORMULATION

We first define a new term and then present a new
formulation of the reconstruction problem.

Definition 1. Let a line drawing be a projection of a 3D object.
The minimum number of depths (z-coordinates) that can
uniquely define this 3D object is called the degree of
reconstruction freedom (DRF) for the line drawing.

Now, let us analyze the DRF for a simple line drawing
shown in Fig. 3. In the previous depth-based optimization
methods, the dimension of the search space is six since there
are six vertices in the line drawing.1 However, the DRF for
this line drawing can be less than six with new geometric
constraints taken into account.
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1. In an implementation, we can arbitrarily specify the depth of one
vertex, making the dimension of the search space be five. For simplicity of
the description, we assume that the values of all the vertices can vary.



Here, we assume that the line drawing is a precise
orthogonal projection of a truncated pyramid. Thus, all the
3D vertices on the same face are coplanar. For example, all
the four vertices v3�6 are on the plane defined by
a4xþ b4yþ c4 � z ¼ 0, which passes through the face
f4 ¼ fv3;v4;v5;v6g. Next, we can show that the 3D object
is defined if z3, z4, z5, and z1 are given.

When z3, z4, and z5 are known, the 3D plane a4xþ b4yþ
c4 � z ¼ 0 is defined. Then, z6 can be calculated by
z6 ¼ a4x6 þ b4y6 þ c4. Since v1, v3, and v6 are known now,
v2 is determined because it is on the plane defined by v1, v3,
and v6. Thus, all the 3D vertices of the object are derived.

On the other hand, it is obvious that any three known
depths cannot define a unique 3D object whose projection is
this line drawing. Therefore, the DRF for this line drawing is
four, which is smaller than six, the number of vertices. This
example suggests that other formulations of the reconstruc-
tion problem in a lower space for optimization are possible.

In our formulation, instead of the depths of the vertices,
we use the faces of a line drawing to be the variables of the
objective function. More exactly, we use the parameters ai,
bi, and ci defining plane i by aixþ biyþ ci � z ¼ 0 to be the
variables of the objective function, where plane i passes
through face i. We call this formulation a plane-based
optimization formulation.

In what follows, for simplicity, if a plane is defined by
axþ byþ c� z ¼ 0, we may use the triple ða; b; cÞ to denote
the plane. If this plane passes through a face, we may also
use ða; b; cÞ to denote the face. Besides, a face may also be
represented by the vertices it passes through, such as f5 ¼
fv2;v5;v6g in Fig. 3.

Now, we show how to formulate the geometric constraints
with the line drawing givenin Fig. 3. In this line drawing, three
faces, f1, f2, and f3, pass through vertex v1 ¼ ½x1; y1; z1�T .
Thus, we have these linear constraints z1 ¼ a1x1 þ b1y1 þ c1,
z1 ¼ a2x1 þ b2y1 þ c2, and z1 ¼ a3x1 þ b3y1 þ c3, which can be
reduced to two equations by eliminating z1:a1x1 þ b1y1 þ c1�
a2x1 � b2y1 � c2 ¼ 0 and a2x1 þ b2y1 þ c2 � a3x1 � b3y1 �
c3 ¼ 0. For other vertices v2�6, we can obtain similar
constraints without the z-coordinates. Rewriting all these
linear equations in matrix form, we have

Pf ¼ 0; ð3Þ

where P is a 12� 15 matrix in this example, and f ¼
½a1; b1; c1; a2; b2; c2; a3; b3; c3; a4; b4; c4; a5; b5; c5�T consists of all
the parameters of the five faces of the truncated pyramid.

For a general line drawing with Nv vertices and Nf faces,
we can obtain the same matrix representation as in (3), with
f ¼ ½a1; b1; c1; a2; b2; c2; � � � ; aNf

; bNf
; cNf
�T , and P being a

matrix of size M � ð3NfÞ, where M depends on the
structure of the line drawing. If only one face passes

through a vertex, this vertex contributes nothing to P; if
n faces pass through it, it contributes n� 1 rows to P. We
call P and f the projection matrix and face parameter vector of
the line drawing, respectively.

Usually, there are an infinite number of solutions to (3).
However, the number of the independent solutions is limited.
All the solutions to (3) compose a null space, denoted by
NullðPÞ, with a dimensionDNullðPÞ ¼ 3Nf �RankðPÞ, where
Rankð�Þ denotes the rank of the matrix [32]. We will see later
thatDNullðPÞ � Nv for a complex line drawing. This suggests
that searching for the optimal f in NullðPÞ would be much
easier than the searching for the optimal z1; z2; . . . ; zNv

inRNv .
Given a line drawing, now, our target is to find the

optimal f � 2 NullðPÞ such that f � minimizes an objective
function �ðfÞ, which is modified from �ðz1; z2; . . . ; zNv

Þ
defined in (1). Let

�0ðz1; z2; . . . ; zNv
Þ ¼ �ðz1; z2; . . . ; zNv

Þ � w2�2ðz1; z2; . . . ; zNv
Þ;
ð4Þ

where �2ðz1; z2; . . . ; zNv
Þ is the constraint of face planarity.

Since all the depths can be calculated by zp ¼ aixp þ biyp þ
ci if vertex vp ¼ ½xp; yp; zp�T is on the plane ðai; bi; ciÞ, we can
convert the depth-based representation �0ðz1; z2; . . . ; zNv

Þ
into a plane-based representation by

�ðfÞ ¼ �0ðz1ðfÞ; z2ðfÞ; . . . ; zNv
ðfÞÞ: ð5Þ

The optimization problem is now to

minimize �ðfÞ; ð6Þ

subject to f 2 NullðPÞ: ð7Þ

In �0ðz1; z2; ::; zNv
Þ (also �ðfÞ), the constraint �2 is removed

because �2 ¼ 0 when f 2 NullðPÞ.
Given a line drawing, it is straightforward to obtain P

and NullðPÞ, from which it seems that the problem defined
in (6) and (7) can be solved easily. However, a practical line
drawing is usually not a precise projection of a 3D object,
causing the NullðPÞ obtained from this line drawing to be
smaller than the null space of the projection matrix of a
corresponding ideal line drawing. Thus, the search in this
smaller space may miss the expected solutions.

Let us analyze this problem in more detail. In what
follows, a line drawing that is exactly the projection of a
3D object is called an ideal line drawing. A practical line
drawing is not necessarily an ideal line drawing.

Suppose that LD0 is an ideal line drawing of a 3D object
and LD is a practical line drawing representing the same
object but with some vertices deviating a little from their
corresponding vertices in LD0. Let P0 and P be the two
projection matrices of LD0 and LD, respectively. The
dimension DNullðP0Þ of NullðP0Þ and the dimension DNullðPÞ
of NullðPÞ can be obtained by

DNullðPoÞ ¼ 3Nf �RankðPoÞ; ð8Þ

DNullðPÞ ¼ 3Nf �RankðPÞ ð9Þ

with Nf being the number of faces of LD0 (or LD).
We have found that the ranks of the projection matrices of

most practical line drawings are larger than those of their
corresponding ideal line drawings. Fig. 2 shows an example
with the ideal line drawing LD0 and the practical line
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Fig. 3. The line drawing of a truncated pyramid with six vertices v1�6 and

five faces f1�5.



drawing LD representing a truncated pyramid. Both P0 and
P are of size 12� 15, and we have RankðP0Þ ¼ 11 and
RankðPÞ ¼ 12. The constraint that the three lines v2v1, v5v4,
and v6v3 meet exactly at a point v in LD0 implies that the
12 vectors, each of which is a row in P0, are not independent.
When this constraint is not imposed as in LD, the 12 row
vectors in P become independent, making the rank of P
larger by one.

Another example is given in Fig. 4a. If the line drawing is
an ideal one, the rank of its projection matrix will be 14. The
constraint that all the six faces are planar in a 3D space
implies that some of the row vectors of the projection matrix
are dependent. However, if it is a practical line drawing,
usually, this constraint cannot be satisfied, causing the rank
to increase by one. In all the examples given in Section 9, the
ranks increase.

There are line drawings for which the ranks of their
projection matrices remain unchanged. Figs. 4b and 4c
show two examples. They are always ideal line drawings,
the projections of an infinite number of 3D objects, with the
ranks being 5 and 8, respectively.

We have not found that the rank of the projection matrix
of a line drawing representing an object in a generic view
may reduce, but we do find that if a line drawing is the
projection of an object in a special view, the rank may
reduce. For example, if the two line drawings in Figs. 4b
and 4c are degraded into the two shown in Figs. 4d and 4e,
the ranks will reduce to 2 and 0, respectively. Since we
consider line drawings that are the projections of 3D objects
in generic views, it is our belief that the ranks of the
projection matrices of these line drawings do not reduce.
Although we have not been able to prove this observation,
the reduction of the rank for a line drawing in a generic
view, if it is indeed possible, does not affect our approach to
3D reconstruction (see Section 8 for the explanation).

Now, the questions are “What is the dimension of
NullðP0Þ when we do not have an ideal line drawing LD0

but only a practical line drawing LD?” and “How can we
find a space, from which an expected 3D object with respect
to LD can be obtained?” We will answer these questions in
the next three sections.

6 RELATION BETWEEN THE DIMENSION OF THE

NULL SPACE AND THE DRF

In Section 5, we can find the DRF for the line drawing
shown in Fig. 3 no matter whether it is an ideal line drawing
of a 3D object or not. Let P0 be the projection matrix of an
ideal line drawing LD0. We will prove that the dimension of
NullðP0Þ is equal to the DRF for LD0, which implies that
even if we do not have this ideal line drawing LD0 (but a
practical line drawing LD), it is still possible to find the

dimension of NullðP0Þ from LD. This is the key to finding a
space for the search for the expected 3D objects. Before
giving the proof, we consider a lemma first.

Lemma 1. Let P0 be the projection matrix of an ideal line drawing
of a 3D object. Then, 1) some of the vertices of the 3D object
satisfy P0Q

�1z ¼ 0, where z is formed by the z-coordinates of
these vertices, and Q is formed by thex and y-coordinates of these
vertices; and 2) the dimensions of NullðP0Þ and NullðP0Q

�1Þ
are the same.

Proof.

1. Suppose that the 3D object has Nf faces. From
face i, we can find three noncollinear vertices
vij ¼ ½xij; yij; zij�T , j ¼ 1; 2; 3, which define the
plane ðai; bi; ciÞ passing through this face. Thus,
we have

zij ¼ aixij þ biyij þ ci; j ¼ 1; 2; 3 ð10Þ

or

zi1
zi2
zi3

2
4

3
5 ¼ xi1 yi1 1

xi2 yi2 1
xi3 yi3 1

2
4

3
5 ai

bi
ci

2
4

3
5 ¼ Qi

ai
bi
ci

2
4

3
5: ð11Þ

The vertices vi1, vi2, and vi3 are not collinear,
neither are their projections on the plane where
the line drawing is shown in a generic view. Thus,
it holds that detðQiÞ 6¼ 0.

From each of the Nf faces, we can obtain an
equation similar to (11). Combining all these
Nf equations, we have

z ¼
½z11; z12; z13; z21; z22; z23; � � � ; zNf1; zNf2; zNf3�T ¼ Qf ;

ð12Þ

where f¼½a1;b1;c1;a2;b2; c2; � � � ; aNf
; bNf

; cNf
�T , and

Q ¼
Q1 0 � � � 0
0 Q2 � � � 0
0 0 � � � QNf

2
4

3
5:

The fact that detðQiÞ 6¼ 0, 1 � i � Nf , implies that
detðQÞ 6¼ 0 and f ¼ Q�1z. Hence, from P0f ¼ 0 in
(3), we have

P0Q
�1z ¼ 0: ð13Þ

2. Since Q is invertible, it holds that RankðP0Þ ¼
RankðP0Q

�1Þ [32], which indicates that the
dimensions of NullðP0Þ and NullðP0Q

�1Þ are
both equal to 3Nf �RankðP0Þ. tu

It is worth noting that in general, the z in (12) and (13) does
not include all the z-coordinates of the vertices of the object.
However, if z is a solution of (13), all the other z-coordinates
not in z can be derived from their x and y-coordinates and z,
because all the 3D faces have been determined by z. It also
should be emphasized that some of the z-coordinates in z
may be chosen more than once. In this case, (13) can be
represented in another form:

P0Q
�1Mz0 ¼ 0; ð14Þ
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Fig. 4. Line drawings used to explain the changes of the ranks of their

projection matrices.



where z ¼Mz0, all the z-coordinates in z0 represent
different vertices, and the elements in M are either 1 or 0.
This can be clear after the explanation with a line drawing
given in Fig. 5. If v1, v2, and v3 are chosen to define face f1

and v4, v1, and v3 are chosen to define face f2, then
z ¼ ½z1; z2; z3; z4; z1; z3�T , z0 ¼ ½z1; z2; z3; z4�T , and

M ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 1 0

2
6666664

3
7777775
:

Theorem 1. Let P0 be the projection matrix of an ideal line drawing
of a 3D object. The dimension of NullðP0Þ equals the DRF for
this line drawing.

Proof. If z is a solution of (13), then z0 is also a solution of (14);
if z0 is a solution of (14), then z ¼Mz0 is also a solution of
(13). This equivalence between (13) and (14) indicates
that the dimensions of NullðP0Q

�1Þ and NullðP0Q
�1MÞ

must be the same. By Lemma 1, the dimensions of
NullðP0Q

�1MÞ and NullðP0Þ are also the same.
Let D be the dimension of NullðP0Þ (or Null

ðP0Q
�1MÞ). Then, there are D free variables in z0, and

the other variables in z0 can be derived from these free
variables [32]. From the discussion in the paragraph
following the proof of Lemma 1, we know that the
z-coordinates of all the vertices of the object can be
obtained from these D free variables. Therefore, by
definition, the DRF for the line drawing is equal to the
dimension D of NullðP0Þ. tu

7 FINDING THE DRF

Given a practical line drawing LD with its projection
matrix P, NullðPÞ is often shrunk as discussed in Section 5.
From Theorem 1, we further know that the dimension of the
shrunkNullðPÞ is less than the DRF for the line drawing. For
such a null space, it is probable that the expected 3D objects
will not be contained in this space. An example is given in
Fig. 2b, where no 3D truncated pyramids are available in that
NullðPÞ. However, if we can find the DRF for the line
drawing, we can expandNullðPÞ to a space with a dimension
not less than the DRF so that the expected 3D objects can be
obtained. In the following, we first define two terms, partial
line drawings and neighboring faces, and then develop an
algorithm to find an upper bound of the DRF.

Definition 2. Denote a line drawing by LD ¼ ðV; EÞ, where V
and E are the sets of the vertices and edges of LD, respectively.
A partial line drawing of LD is denoted by LDp ¼ ðVp; EpÞ,
with Vp 	 V, and Ep 	 E. A neighboring face of LDp is a face
that has only one edge or has two or more collinear edges in Ep.

By definition, a neighboring face of LDp has not been
defined completely by LDp, but its degree of freedom is
only one since it passes through one edge (or more than one
collinear edge) in LDp. Figs. 6b and 6c show two partial line
drawings LDp1 and LDp2 of the line drawing LD in Fig. 6a.
The face fv3;v4;v5;v6g is a neighboring face of LDp1, but
the face f ¼ fv3;v6;v7;v8;v9;v10;v11;v12g is not since it has
two noncollinear edges v10v11 and v11v12 in LDp1. However,
f is a neighboring face of LDp2 because all its edges in LDp2,
v6v7 and v10v11, are collinear.

The intersection of two planar faces in the 3D space is a
line or collinear lines. The projections of these collinear lines
are also collinear in the 2D line-drawing plane. However,
two lines that should be collinear may not be exactly
collinear in a practical line drawing. We have to allow some
degree of inaccuracy for the detection of collinearity. Let the
two vertices of edge vavb be va and vb and the two vertices
of edge vcvd be vc and vd, as shown in Fig. 7. Suppose that
va and vd are the two farthest vertices between the two
edges. Then, we have two vectors vavd

��! and vbvc
��!. The two

edges are considered as collinear if �1 < �1 and �2 < �2,
where �1 and �2 are two angle thresholds, �1 is the smaller
angle between vavb and vcvd, and �2 is the angle between
vavd
��! and vbvc

��!. In our experiments, �1 and �2 are chosen to
be 8 degrees and 5 degrees, respectively.

Algorithm 1. (Finding an upper bound ub of the DRF for a

line drawing LD ¼ ðV; EÞ. Let LDp ¼ ðVp; EpÞ be a partial

line drawing of LD.)
1. Initialization:

(a) F  all the faces of LD;

(b) Select randomly one face f0 2 F ; F  F n ff0g;
Vp  all the vertices of f0; Ep  all the edges of f0;

(c) ub 3;
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Fig. 5. A line drawing with two faces.

Fig. 6. (a) A line drawing LD. (b) A partial line drawing LDp1 of LD.

(c) Another partial line drawing LDp2 of LD.

Fig. 7. Detection of collinearity.



2. Select randomly one face f1 2 F that is a neighboring face

of LDp; F  F n ff1g; Vp  Vp [ fall the vertices of f1g;
Ep  Ep [ fall the edges of f1g; ub ubþ 1;

3. if F 6¼ ; then for every face f2 2 F do

(a) if f2 has two noncollinear edges in Ep then

(b) F  F n ff2g; Vp  Vp [ fall the vertices of f2g;
Ep  Ep [ fall the edges of f2g; goto Step 3;

4. if F 6¼ ; goto Step 2 else return ub.

The idea of this algorithm is to expand LDp gradually by
adding the vertices and edges of the selected faces into LDp

until LDp ¼ LD. With the first selected face f0, we set ub ¼ 3
in Step 1c because the three vertices defining f0 can vary
independently. In Step 2, f1 is a neighboring face of LDp,
meaning that it has been defined by LDp partially and its
remaining degree of freedom is one. In other words, with one
more vertex of f1 not in the current LDp, f1 can be defined
completely. Therefore, ub is increased by one. In Step 3,
whenever the vertices and edges of a new face are added to
LDp, the remaining faces in F are checked again to see
whether or not there exists such faces that have been defined
completely byLDp. If yes, the vertices and edges of these faces
are added to LDp. In this case, ub is not changed since these
faces have no freedom in the 3D space.

Our experiments show that the found ub is exactly the DRF
for a line drawing in many cases. In other cases, however, it is
an upper bound of the DRF. By definition, the DRF is the
minimum number of the z-coordinates that can define an
object whose projection is the line drawing. When the
algorithm stops, it finds the number ub of the z-coordinates
that can define the object. Thus, ub is not less than the DRF for
this line drawing. Through the following two examples, we
demonstrate how the algorithm may or may not find a value
of ub equal to the DRF.

The first example is given in Fig. 8. Suppose that the face in
Fig. 8b is selected initially. It is also the initialLDp withub ¼ 3.
In Step 2, if the face fv4;v5;v13;v14g is chosen as a
neighboring face of the current LDp, adding the vertices
and edges of this face toLDp results in a newLDp as shown in

Fig. 8c with ub increased by one. In Step 3, the algorithm
searches for faces that have been defined completely by the
current LDp. Suppose that the face fv5;v6;v7;v15;v16;v10;
v11;v13g is checked now. Since it has three noncollinear
vertices, v5, v6, and v13, in the currentLDp, this face has been
defined completely. We then add all its vertices and edges to
the LDp in Fig. 8c, forming a new LDp as indicated in Fig. 8d
without increasing ub. Next, Step 3 is repeated again until no
new faces can be found that have been defined completely.
For this example, by repeating Step 3, all the other faces not in
the LDp in Fig. 8d can be found completely defined.
Therefore, ub ¼ 4 finally. The value of ub ¼ 4 is the DRF for
this line drawing because it is impossible to use only three
vertices to determine the object.

Fig. 9 shows a line drawing, for which Algorithm 1 may
return a ub that is larger than the DRF for this line drawing.
If the first face selected by Algorithm 1 in Step 1b is
fv1;v2;v3;v4g, it is easy to verify that the algorithm will
return ub ¼ 5. In another case, if the selected faces by the
algorithm are in the order

fv6;v7;v9g ! fv6;v9;v5g ! fv5;v8;v9g ! fv7;v8;v9g
! fv2;v3;v7;v6g ! fv1;v2;v6;v5g
! fv3;v4;v8v7g ! fv1;v2;v3;v4g
! fv1;v4;v8;v5g;

then ub ¼ 6. In fact, the DRF for this line drawing is 5. This is
because the rectangular block itself has a DRF ¼ 4, which will
be increased by one after the pyramid is added to the block.

We hope to find a ub that is as close to the DRF as possible.
Due to the random selection of faces in the algorithm, it is
possible that the algorithm returns different ub’s in two
executions when handling the same line drawing. Since the
algorithm is fast enough, we can run it n times. Then, we
choose ub ¼ minfub1; ub2; . . . ; ubng. In this way, we have a
larger probability of obtaining the DRF for a line drawing. For
all the line drawings in our experiments, the smallest upper
bounds found by Algorithm 1 are all the DRFs for their
corresponding line drawings when we set n ¼ 10.

It should be mentioned that there exist line drawings
whose DRFs cannot be found by applying Algorithm 1 many
times. One example is a line drawing that is obtained by
adding one edge to the line drawing shown in Fig. 9,
connecting vertices v2 and v4. The DRF for this new line
drawing is still 5, but Algorithm 1 can only find an upper
bound ub ¼ 6.

In [1] and [3], Sugihara and Whiteley developed a formula
that can be used to compute the degree of freedom directly
from a line drawing if the line drawing represents a generically
reconstructible object. Whiteley showed that if the condition
for a line drawing to be generically reconstructible is satisfied,
the degree of freedom of the object is jV j þ 3jF j � jRj, where
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Fig. 8. (a) A line drawing. (b) The first selected face with ub ¼ 3. (c) LDp

with two faces and ub ¼ 4. (d) LDp with three faces and ub ¼ 4.

Fig. 9. A line drawing used to show that the found ub may not be the

DRF.



jV j, jF j, and jRj denote the numbers of vertices, faces, and
incidence pairs of the line drawing, respectively. However,
many common objects (such as a hexahedron) are not
regarded as generically reconstructible. For most of the line
drawings in this paper, this formula jV j þ 3jF j � jRj cannot
be used to obtain the degrees of freedom because they are
considered as nongenerically reconstructible by Sugihara
and Whiteley’s scheme.

To finish this section, we analyze the computational
complexity of Algorithm 1. Let a line drawing LD have
Nv vertices, Ne edges, and Nf faces. Assume that every face
has less than k edges. The main computation is carried out by
Steps 2 and 3. In Step 2, the algorithm tests whether a given
face is a neighboring face ofLDp by looking for an edge inLDp

that is also an edge in the face, which is bounded by OðkNeÞ.
Thus, the computation at this step isOðkNfNeÞ. In Step 3a, to
test if f2 has three noncollinear vertices in Vp, we first find all
the vertices in f2 that are also in Vp and then check if there are
three noncollinear vertices among them. The former and the
latter are bounded by OðkNvÞ and OðkÞ, respectively. There-
fore, Step 3a takes less than OðkNvÞ time. Step 3b needs less
thanOðNf þ kÞ time. Then, the computation of one execution
of Step 3 is bounded by OððkNv þNf þ kÞNfÞ ¼ OðkNfNvÞ.
Note that when Step 2 or 3 is passed once, one face is deleted
from F . Therefore, the complexity of the algorithm is
bounded by Oðl1kNfNe þ l2kNfNvÞ, where l1 and l2 are the
numbers of times Steps 2 and 3 are visited, respectively, with
l1 þ l2 ¼ Nf � 1. Here, l1 þ l2 equals Nf � 1 instead of Nf

because Step 1b already removes one face from F . Assume
thatNe 
 Nv, and k is a constant. Then, the complexity of the
algorithm is bounded by OðN2

fNvÞ.

8 FINDING A SPACE FOR OPTIMIZATION

It has been emphasized that a practical line drawing LD is
usually not a precise projection of a 3D object, and the
solutions to Pf ¼ 0 may not contain one corresponding to an
expected 3D object, where P is the projection matrix of LD,
and f is the face parameter vector. This is becauseNullðPÞhas
been shrunk compared with NullðP0Þ, that is, DNullðPÞ <
DNullðP0Þ, where P0 is the projection matrix of an ideal line
drawing LD0 representing the same object as LD does, and
DNullðPÞ and DNullðP0Þ denote the dimensions of NullðPÞ and
NullðP0Þ, respectively. Since the objects whose projections are
LD0 exist in NullðP0Þ with a dimension DNullðP0Þ, it is quite
reasonable to search for an expected object in a space with a
dimension equal to DNullðP0Þ or larger. Although we do not
have an ideal line drawing in general, fortunately, we have
proved thatDNullðP0Þ equals the DRF for LD0, and developed
Algorithm 1 to find an upper bound of the DRF from LD. By
running Algorithm 1 n (say, 10) times, the minimum upper
boundub is often equal toDNullðP0Þ. GivenLDonly, whether or
not it is an ideal line drawing, we believe that searching for an
expected object in a space spanned from NullðPÞ is the best
way for 3D reconstruction, and the dimension of the space
� ub is necessary.

As discussed in Section 5, it is possible that RankðPÞ ¼
RankðP0Þ for some line drawings (say, the two in Figs. 4b and
4c), resulting in DNullðPÞ ¼ DNullðP0Þ. When LD represents an
object in a generic view, we have not found that RankðPÞ <
RankðP0Þ leads to DNullðPÞ > DNullðP0Þ by (8) and (9). If it did
happen that DNullðPÞ > ub � DNullðP0Þ, we would not expand
NullðPÞ but search for a 3D object in NullðPÞ directly. In

Sections 8.1 and 8.2, we first discuss how to find the optimal
spaces under the condition that DNullðPÞ � ub and then give
the algorithm for 3D reconstruction.

8.1 Spaces Obtained by SVD

Now, we want to find a space with a dimension � ub, which
is expanded from NullðPÞ. This space can be obtained with
the help of the SVD of P. By SVD, we obtain

P ¼ USVT ; ð15Þ

where U ¼ ½u01;u02; � � � ;u03Nf
� is a column-orthogonal matrix,

S ¼ diagð�1; �2; � � � ; �3Nf
Þ is a diagonal matrix with �1 �

�2 � � � � � �3Nf
� 0, V ¼ ½u1;u2; � � � ;u3Nf

� is an orthogonal
matrix, and Nf is the number of faces of LD. Furthermore, it
follows from [32] that

P½u1;u2; � � � ;u3Nf
� ¼ ½�1u

0
1; �2u

0
2; � � � ; �03Nf

u03Nf
�; ð16Þ

�1 � �2 � � � � � �RankðPÞ > 0; ð17Þ
�RankðPÞþ1 ¼ �RankðPÞþ2 ¼ � � � ¼ �3Nf

¼ 0; ð18Þ
NullðPÞ ¼ spanfuRankðPÞþ1;uRankðPÞþ2; � � � ;u3Nf

g; ð19Þ
DNullðPÞ ¼ 3Nf �RankðPÞ; ð20Þ

where spanfuRankðPÞþ1;uRankðPÞþ2; � � � ;u3Nf
g denotes the

space spanned by the set of vectors:

fuRankðPÞþ1;uRankðPÞþ2; � � � ;u3Nf
g:

Let

SNullðPÞ ¼ fuRankðPÞþ1;uRankðPÞþ2; � � � ;u3Nf
g; ð21Þ

H1 ¼ spanffuRankðPÞg [ SNullðPÞg; ð22Þ
H2 ¼ spanffuRankðPÞ�1;uRankðPÞg [ SNullðPÞg; � � � ; ð23Þ
Hi ¼ spanffuRankðPÞ�iþ1;uRankðPÞ�iþ2; � � � ;

uRankðPÞg [ SNullðPÞg; � � � ; ð24Þ
HRankðPÞ ¼ spanffu1;u2; � � � ;uRankðPÞg [ SNullðPÞg: ð25Þ

Since fu1;u2; � � � ;u3Nf
g is a set of orthogonal vectors, we have

NullðPÞ � H1 � H2 � � � � � HRankðPÞ ¼ R3Nf ð26Þ

and the dimension of Hi

DHi
¼ DNullðPÞ þ i; 1 � i � RankðPÞ: ð27Þ

Now, if we want to expandNullðPÞ to a larger space with a
dimension equal to DNullðPÞ þ i, 1 � i � RankðPÞ, we can
choose the Hi defined in (24).

An infinite number of spaces of a fixed dimension can be
chosen to search for 3D objects from a given line drawing.
The question is “Which space is the best one?” We claim
that the space spanned as in (24) is the best when the
dimension of Hi is fixed.

Without loss of generality, suppose thatDNullðPÞ ¼ ub� 1,

and we want to expand NullðPÞ to a space Hk1;k2;...;kRankðPÞ of

dimension DNullðPÞ þ 1. An infinite number of such spaces

can be obtained by setting different values of ki, 1 � i �
RankðPÞ,

PRankðPÞ
i¼1 k2

i ¼ 1, ki 2 R, in

Hk1;k2;...;kRankðPÞ ¼ spanffk1u1 þ k2u2 þ � � � þ
kRankðPÞuRankðPÞg [ SNullðPÞg:

ð28Þ
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We claim that the H1 defined in (22) among these spaces is

the best in terms of similarity to NullðP0Þ.
For any f 2 NullðP0Þ, it holds that P0f ¼ 0. Since LD is

an approximation of LD0, we relax the requirement that

Pf ¼ 0 for f 2 Hk1;k2;...;kRankðPÞ . Although we do not require

Pf ¼ 0, f 2 Hk1;k2;...;kRankðPÞ , we do hope to find such a space

with Pf as close to zero as possible, because a large value of

kPfk implies that the planarity constraint imposed on the

faces of the 3D object is violated badly.

Definition 3. Let Ha and Hb be the two spaces defined in (28). If

sup
f2Ha;kfk�1

kPfk < sup
f2Hb;kfk�1

kPfk;

Ha is called more similar to NullðP0Þ than Hb.

Let the size of P be m� n. Then the geometrical

explanation of supf2Ha;kfk�1 kPfk ¼ Ka is that the linear

transformation P maps the points inside the unit hyper-

sphere in Ha to points bounded by the hypersphere with its

radius ¼ Ka inRn. The transformation P0 maps all the points

in NullðP0Þ to 0 in Rn (bounded by the hypersphere with its

radius ¼ 0). In the definition, Ha is called more similar to

NullðP0Þ since Ka is closer to 0 than Kb ¼ supf2Hb;kfk�1 kPfk.
Theorem 2. H1 is most similar to NullðP0Þ among all the spaces

defined in (28).

Proof. For any f 2 H1 and kfk � 1, we have f ¼ f1 þ f 2,

where f 1 2 NullðPÞ, and f2 ¼ �uRankðPÞ, � 2 R, j�j � 1.

Thus, Pf¼Pf2¼�PuRankðPÞ ¼��RankðPÞu0RankðPÞ. Since u0i,

1 � i � RankðPÞ, are a set of orthogonal unit vectors,

we have kPfk2¼�2�2
RankðPÞ, and further,

sup
f2H1;kfk�1

kPfk ¼ �RankðPÞ:

Now, for any space Hk1;k2;...;kRankðPÞ except H1, we havePRankðPÞ
i¼1 k2

i ¼ 1 and jkRankðPÞj 6¼ 1. Let f ¼
PRankðPÞ

i¼1 kiui.

Then, f 2 Hk1;k2;...;kRankðPÞ , f 62 H1, kfk ¼ 1, Pf ¼
PRankðPÞ

i¼1 ki

Pui ¼
PRankðPÞ

i¼1 ki�iu
0
i, and kPfk2 ¼

PRankðPÞ
i¼1 k2

i �
2
i . From

(17), we know that �1 � �2 � � � � � �RankðPÞ > 0. When

�1 � �2 � � � � � �RankðPÞ�1 > �RankðPÞ, it follows that

kPfk2 >
XRankðPÞ
i¼1

k2
i �

2
RankðPÞ ¼ �2

RankðPÞ

and, therefore,

sup
f2Hk1 ;k2 ;...;kRankðPÞ ;kfk�1

kPfk > sup
f2H1;kfk�1

kPfk:

When �1 � �2 � � � � � �j > �jþ1 ¼ �jþ2 ¼ � � � ¼ �RankðPÞ or

�1 ¼ �2 ¼ � � � ¼ �RankðPÞ, similarly, we can verify that

sup
f2Hk1 ;k2 ;...;kRankðPÞ ;kfk�1

kPfk � sup
f2H1;kfk�1

kPfk:

Thus, H1 is most similar to NullðP0Þ among all the

spaces defined in (28). tu

8.2 An Algorithm for 3D Reconstruction

Using Algorithm 1, we obtain an upper bound ub of the DRF

for a line drawing. If we expand NullðPÞ to Hi with

i ¼ ub�DNullðPÞ, then DHi
¼ DNullðP0Þ when ub ¼ the DRF

ð¼ DNullðP0ÞÞ. Since P is usually not the projection matrix of

an ideal line drawing, searching for f in Hi may be too

limited to obtain the expected 3D objects. Our experiments

show that if we search for a 3D object in Hi whose

dimension equals its DRF, the object is often inflated badly

(that is, some noncoplanar faces result in being coplanar

and/or some coplanar vertices deviate much from planar-

ity); however, if NullðPÞ is expanded to a larger space Hi

with i ¼ ub�DNullðPÞ þ 1 or i ¼ ub�DNullðPÞ þ 2, we can

obtain satisfactory results. Therefore, we choose i ¼
ub�DNullðPÞ þ 2 for all the experiments given in the next

section. Another reason to choose it instead of i ¼
ub�DNullðPÞ is given as follows: If the collinearity between

two lines in a face is detected wrongly, the upper bound ub

may be increased or decreased by one. When ub is increased,

it is still an upper bound. When it is decreased, which may

happen when two collinear lines in a face are detected as

noncollinear because they deviate much from collinearity, it

can be smaller than the DRF. In this case, choosing i ¼
ub�DNullðPÞ þ 2 can still provide a large space for the

reconstruction. Now, we give the algorithm for 3D object

reconstruction.
Algorithm 2. (3D object reconstruction from a line

drawing LD)

1. Compute the projection matrix P and the dimension
DNullðPÞ of NullðPÞ from LD;

2. Find the smallest upper bound ub of the DRF for LD
by running Algorithm 1 n times;

3. Find V satisfying P ¼ USVT by SVD;
4. Construct a space Hub�DNullðPÞþ2 spanned by the last

ubþ 2 column vectors of V;
5. Search for f� in Hub�DNullðPÞþ2 such that

f� ¼ arg min
f2Hub�DNullðPÞþ2

�ðfÞ; ð29Þ

6. Compute all the depths zp by zp ¼ aixp þ biyp þ ci if
vp ¼ ½xp; yp; zp�T is on the face ðai; bi; ciÞ;

7. For any vertex, if there are two or more different
depths obtained from the faces passing through it,
take the average of these depths to be its final depth.

In Step 2, n is set to 10 in all the experiments. Next, we
explain the implementation of Steps 4 and 5 in more detail.
Since the set of the last ubþ 2 column vectors of V is
fu3Nf�ub�1;u3Ff�ub; � � � ;u3Nf

g, we have

Hub�DNullðPÞþ2 ¼ spanfu3Nf�ub�1;u3Nf�ub; � � � ;u3Nf
g ð30Þ

or

Hub�DNullðPÞþ2 ¼
�

f ¼
X3Nf

i¼3Nf�ub�1

kiui

����
ki 2 R; 3Nf � ub� 1 � i � 3Nf

�
:

ð31Þ
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Searching for f� in (29) is then transformed to searching for
a set fk�3Nf�ub�1; k

�
3Nf�ub; � � � ; k

�
3Nf
g such that

fk�3Nf�ub�1; k
�
3Nf�ub; � � � ; k

�
3Nf
g ¼

arg min
ki2R

3Nf�ub�1�i�3Nf

�

� X3Nf

i¼3Nf�ub�1

kiui

�
:

ð32Þ

Many optimization algorithms can be used to find fk�3Nf�ub�1;
k�3Nf�ub; � � � ; k

�
3Nf
g, such as the hill-climbing algorithm in [9],

the quasi-Newton search algorithm [33], and genetic algo-
rithms [34]. Algorithm 2 works well using any of them. It is
not guaranteed that a global optimal solution can be found. In
fact, it is possible that there are an infinite number of expected
3D objects in Hub�DNullðPÞþ2. If the 3D object found is the one
expected, the algorithm is considered successful in dealing
with the line drawing.

From this algorithm, we see that the 2D coordinates of
the line drawing are not changed. As a result, the faces of
the reconstructed object are not required to be strictly
planar (see Step 7). Two remarkable points in our method
are that 1) the dimension of Hub�DNullðPÞþ2 is in general much
smaller than the number of vertices of the line drawing,
which is the dimension of the search space in the previous
most related methods and 2) even though the objective
function �ðfÞ uses only one constraint (MSDA), our method
can perform very well when handling complex line
drawings (see the next section).

9 EXPERIMENTAL RESULTS

In this section, we illustrate 3D object reconstruction from a
number of line drawings and compare the results using
Algorithm 2, Leclerc and Fischler’s algorithm [9], and
Lipson and Shpitalni’s algorithm [21]. The three algorithms
are abbreviated to POA (plane-based optimization algo-
rithm), LFA, and LSA, respectively. All the algorithms are
implemented in Visual C++, running on a 2.5 GHz Pentium
IV PC. The line drawings are inputted using either a mouse
or the pen of a tablet PC.

LFA and LSA are most related to POA as explained in
Section 2. In POA, we use only one constraint, MSDA, in the
objective function �ðfÞ, but the constraint face planarity is
also implied since the search space is created based on it. In
LFA, the two constraints, MSDA and face planarity, are used
in the objective function. In LSA, more constraints, including
MSDA and face planarity, are combined in the objective
function. Of all the previous methods, LSA can handle the
widest range of objects. To find the optimal solutions to the
three objective functions, we tried using the hill-climbing
optimization in [9], the quasi-Newton search algorithm [33],
and genetic algorithms [34]. The quasi-Newton search
algorithm appears to work best as a whole for optimization
in POA, LFA, and LSA, so it is used in the experiments
described here.

We tested all the line drawings given in the experimental
sections in [9] and [21]. POA can successfully reconstruct the
3D objects from all these line drawings, some of which are
shown in Fig. 10 (line drawings a-d), together with two new
line drawings e and f. In Fig. 10, a1-f1, a2-f2, and a3-f3 are
the reconstruction results obtained by LFA, LSA, and POA,
respectively. The sign “

p
” or “�” in Fig. 10 under each

reconstruction result indicates whether the result is an

expected one or not. LFA can produce the expected objects

from only two line drawings: e and f. LSA is better than LFA

and is successful in the reconstruction for line drawings a-e,

but it fails when dealing with line drawing f. On the

contrary, POA can handle all these line drawings.
It should be mentioned that a result may be affected by

the initial settings of the z-coordinates of the vertices in LFA
and LSA and by the initial settings of the face parameter
vector f in POA. When we say that an algorithm fails in the
reconstruction from a line drawing, we mean that it cannot
generate an expected result with random initializations in
many trials (10 in this case).

Fig. 11 shows another set of more complex line drawings
and the reconstruction results by the three algorithms. Both
LFA and LSA fail in the reconstruction from these line
drawings. We have found that with random initializations,
LFA never generated one expected 3D object from this set of
line drawings and neither did LSA from the line drawings j-l.
However, POA is successful in reconstructing the 3D objects
from all these line drawings. The examples given in Figs. 10
and 11 clearly demonstrate that POA is more powerful than
LFA and LSA. In addition to these line drawings, we have
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Fig. 10. Reconstruction results from the line drawings a-f: a1-f1 by LFA,

a2-f2 by LSA, and a3-f3 by POA.



tried more than 50 other examples, among which neither LFA
nor LSA outperforms POA in the reconstruction.

In the experiments, the same sets of face circuits are used
as the input to the three algorithms. It is obvious that the
success of reconstruction relies on the correctly found face
circuits. In the line drawing shown in Fig. 11l, four artificial
lines are added to connect the bridge with the two towers.
They are necessary to provide spatial positions between the
bridge and the two towers.

When POA does the reconstruction from line drawing l in
Fig. 11, it sometimes produces distorted objects like the one
shown in Fig. 12, in which the bridge is not perpendicular to
the two towers. The objective function �ðfÞ in POA includes
only one constraint, MSDA. If we add the constraint line
parallelism into �ðfÞ, the problem can be solved. This
constraint requires that parallel lines in a line drawing should
be also parallel in the reconstructed 3D object.

Table 1 shows the upper bounds ub found by Algorithm 1
from line drawings a-l and the numbersNv of vertices of these
line drawings. As seen from Algorithm 2, Algorithm 1 is run
10 times for one line drawing, and then, the smallest ub is
chosen. We have examined these upper bounds and found
that all of them are the DRFs for their corresponding line
drawings. The dimension of the search space Hub�DNullðPÞþ2 in
POA isubþ 2, whereas the dimension of the search spaceRNv

isNv in LFA and LSA. It is obvious that Hub�DNullðPÞþ2 is much
smaller than RNv . From Hub�DNullðPÞþ2, POA can find the
expected objects effectively.

As mentioned before, the faces of a reconstructed object are
not required to be strictly planar. To demonstrate the
deviation of vertices from planarity, Table 2 shows the
average distances of the vertices to their best fit planes for the
objects a3-l3 in Figs. 10 and 11. The data are obtained by
1) normalizing a reconstructed object into a cube of
size 100� 100� 100, 2) finding the best fit planes in the sense
of the least square error based on the 3D vertices, and
3) computing the average distance of the vertices to their
corresponding best fit planes.

Since Hub�DNullðPÞþ2 is a much smaller space compared
with RNv , it is expected that POA converges faster than LFA
and LSA. Fig. 13 shows the numbers of iterations the three
algorithms take before convergence in reconstruction. One
iteration denotes one evaluation of the objective function.
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Fig. 11. Reconstruction results from the line drawings g-l: g1-l1 by LFA,

g2-l2 by LSA, and g3-l3 by POA.

Fig. 12. A distorted reconstruction result by POA from the line drawing l

shown in Fig. 11.

TABLE 1
The Upper Bounds ub and the Numbers Nv of Vertices

for the Line Drawings a-l

TABLE 2
The Average Distances of the Vertices to

Their Best Fit Planes for Objects a3-l3



The convergence criteria in the three algorithms are the
same: stopping when the difference between the values of
the objective function in two consecutive iterations is
smaller than 0.001. Fig. 13 clearly indicates that POA
converges much faster than both LFA and LSA. Here, the
convergence of an algorithm does not imply that it has
generated an expected object. When dealing with line
drawing h in Fig. 11, POA needs only about 1 second,
whereas LFA and LSA take 9 and 51 seconds, respectively.

We can apply POA to the 3D reconstruction of an object
in an image by sketching a line drawing along the edges of
the faces of the object. Fig. 14 shows such an example. In
Fig. 14a, some hidden lines are also drawn. When the
hidden lines are removed, we obtain a 3D object with the
visible faces only (Fig. 14d).

10 CONCLUSIONS

We have proposed a novel method for 3D object reconstruc-
tion from single 2D line drawings in this paper. As opposed to
the depth-based formulation of the problem in previous
methods, our formulation is plane based, from which a set of
linear constraints can be obtained in the form of Pf ¼ 0, with
a solution in the null spaceNullðPÞ for an ideal line drawing.
The dimension of NullðPÞ is much smaller than the
dimension of the spaceRNv where the optimization is carried
out in most of the previous methods. Since a practical line
drawing often causes the problem that NullðPÞ may not
contain the expected solutions, we expandNullðPÞ to a larger
spaceHub�NullðPÞþ2 by SVD. The dimension ofHub�NullðPÞþ2 is
still much smaller than that ofRNv for general line drawings,
and the expected 3D objects are more easily obtained from
Hub�NullðPÞþ2. Although only one criterion, MSDA, is used in
our objective function (besides the planarity that is implicit
in the search space), a number of experimental results show
that our method outperforms the previous ones both in
3D reconstruction and in computational efficiency.

Future work includes using POA as the technique for the
query input interface of 3D object retrieval and 3D recon-
struction from line drawings representing objects with
curved faces.
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