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Abstract—Dual-space linear discriminant analysis (DSLDA) is
a popular method for discriminant analysis. The basic idea of the
DSLDA method is to divide the whole data space into two comple-
mentary subspaces, i.e., the range space of the within-class scatter
matrix and its complementary space, and then solve the discrimi-
nant vectors in each subspace. Hence, the DSLDA method can take
full advantage of the discriminant information of the training sam-
ples. However, from the computational point of view, the original
DSLDA method may not be suitable for online training problems
because of its heavy computational cost. To this end, we modify the
original DSLDA method and then propose a data order indepen-
dent incremental algorithm to accurately update the discriminant
vectors of the DSLDA method when new samples are inserted into
the training data set. We conduct experiments on the AR face data-
base to confirm the better performance of the proposed algorithms
in terms of the recognition accuracy and computational efficiency.

Index Terms—Dual-space linear discriminant analysis
(DSLDA), feature extraction, incremental linear discriminant
analysis.

I. INTRODUCTION

L INEAR discriminant analysis (LDA) [1] is a well-known
feature extraction method in statistical pattern recog-

nition. It computes an optimal feature space based on the
Fisher’s criterion, in which the projections of the training data
will have the maximum ratio of the between-class distance
to the within-class distance. In many applications, however,
LDA often suffers from the so-called undersampled problems
[2], where the dimensionality of the input space is larger than
the number of available training data points such that the
within-class scatter matrix becomes singular. To deal with
the undersampled problem, many LDA methods, such as the
principal component analysis plus LDA (PCA+LDA) method
[3]–[5], the null space method [6], [7], and the direct LDA
(DLDA) method [8], had been developed in recent years.
However, a common drawback of the above methods is that
they solve the discriminant vectors by focusing on a single
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data subspace rather than the full data space. Therefore, these
methods may lose some useful discriminant information [9],
[10] to some extent.

The LDA method based on generalized singular value
decomposition (LDA/GSVD) [2] is another LDA method
recently proposed to overcome the undersampled problem of
LDA. Different from the previous LDA methods, LDA/GSVD
solves the discriminant vectors in the full data space. It avoids
the singularity problem of the scatter matrices by using the
Moore–Penrose generalized inverse to replace the inverse of the
scatter matrices defined in the Fisher’s criterion. Nevertheless,
it should be noted that the optimal discriminant vectors of
LDA/GSVD lie in the range space of the total-class scatter ma-
trix [11]. If the rank of the range space of the total-class scatter
matrix is equal to the sum of the ranks of both the within-class
scatter matrix and the between-class scatter matrix, the solu-
tions of the LDA/GSVD method will be equivalent to those of
the null space method [7]. In this case, the LDA/GSVD method
may suffer from the same drawback of losing some useful
discriminant information as the null space method. In [12]
and [13], Wang and Tang used a random sampling approach
to combine the two subspaces. However, the method needs to
train a large number of weak classifiers.

To overcome the undersampled problem and at the same
time extract more useful discriminant infromation, a new LDA
method, called dual-space LDA (DSLDA), was recently pro-
posed by Wang and Tang [9]. The basic idea of this method is to
divide the whole data space into two complementary subspaces,
i.e., the range space of the within-class scatter matrix and its
complementary subspace, and then solve the discriminant
vectors in each subspace. As a result, the DSLDA method can
obtain more discriminant vectors than the other methods, and
hence can extract more useful discriminant information.

Although the LDA method had been extensively studied
during the last decades, only a few papers addressed the com-
putational issues on how to reduce the computational cost of
solving the discriminant vectors. One of the computational
issues is the fast updating of the discriminant vectors when
new training samples are inserted into the training data set.
This issue is important for some online learning problems,
such as object tracking [14] or face recognition [19]. To design
the fast LDA algorithm, Mao and Jain proposed an iterative
approach for solving LDA based on a two-layer neural net-
work [15]. Chatterjee and Roychowdhury proposed another
neural-network-based algorithm to iteratively solve the LDA
discriminant vectors. In 2004, Lin et al. [14] proposed an
incremental LDA algorithm for object tracking. This algorithm
works under the circumstance that only one class of the training
data set contains more than one sample. Ye et al. [17] proposed
another incremental LDA algorithm via QR decomposition
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(LDA/QR), which solves the discriminant vectors by involving
the subspace spanned by the class means to find the optimal
discriminant vectors. Pang et al. [18] proposed another incre-
mental algorithm for classification of data streams. However,
they only addressed the method of updating the scatter matrices.
In the above algorithms, a common drawback is that all these
algorithms fail to address the undersampled problem of LDA.

To incrementally solve the optimal discriminant vectors of
LDA with the undersampled problem, Zheng et al. [7] proposed
a new LDA algorithm based on the Gram–Schmidt orthogoan-
lization. The problem of this algorithm is that it only considers
the discriminant vectors in the null space of the within-class
scatter matrix. Recently, Zhao et al. [19] proposed another al-
gorithm based on the fast singular value decomposition (SVD)
technique [20] to incrementally update the discriminant vectors
of the LDA/GSVD method when new samples are inserted into
the training data set. However, it should be noted that the com-
putational reduction of the fast SVD algorithm is due to the use
of the approximation trick. In other words, if we want to obtain
more accurate SVD updating results, the reduction of the com-
putation will be very limited.

In this paper, we use the data order independent (DOI)
incremental algorithm for accurately updating the discriminant
vectors of DSLDA when new samples are inserted into the
training data set. To this end, we modify the original DSLDA
method proposed by Wang and Tang [9] in order to reduce the
computational complexity. On the other hand, to incrementally
update the discriminant vectors of our modified DSLDA method
when new samples are inserted, we first use the Gram–Schmidt
orthogonalization technique to incrementally update the or-
thonormal basis of the range space of the within-class scatter
matrix.1 Then, we propose an efficient algorithm to incremen-
tally update the between-class and within-class scatter matrices
when new samples are inserted. Finally, we propose an effective
algorithm to incrementally solve the discriminant vectors in
each subspace based on the prior computational results.

The remainder of this paper is organized as follows: In
Section II, we briefly review the DSLDA method proposed
by Wang and Tang [9]. In Section III, we propose a modi-
fied DSLDA method and the incremental DSLDA algorithm.
In Section IV, we address the classification problem of the
DSLDA method. Section V is devoted to the experiments.
Finally, we conclude the paper in Section VI.

II. BRIEF REVIEW OF THE ORIGINAL DSLDA METHOD

Let be a -di-
mensional real sample set with elements, where is the
number of the classes, is the number of the samples of the

1In [7], we have proposed to use the Gram–Schmidt orthogonalization tech-
nique to incrementally update the discriminant vectors of the null space LDA
method. However, we require the constraint that the training samples are inde-
pendent. In this paper, we free this constraint.

th class, and is the th sample of the th class. The classical
LDA method aims to find an optimal transformation matrix
that maximizes the Fisher’s criterion

(1)

where denotes the trace operator, and

(2)

(3)

are between-class and within-class scatter matrices, where
is the mean of the th class,

is the global mean of the data
set, and and are defined as

(4)

(5)

The columns of the optimal transformation matrix can be
obtained by solving the eigenvectors of [21]. However,
as for the case of the undersampled problem, the within-class
scatter matrix becomes singular and the LDA method will
fail. To overcome the singularity problem of , Wang and
Tang [9] proposed the DSLDA method to solve the optimal dis-
criminant vectors, which can be formulated into solving the fol-
lowing optimization problems:

(6)

(7)

The columns of can be solved by involving the range space
of whereas the columns of can be solved in the com-
plementary space of the range space of .

Based on the DSLDA method, the classification for a given
test sample can be obtained via the optimization problem
(8), shown at the bottom of the page [9], where is average
noise spectrum of the eigenvalues in the complementary space
of the range space of .

III. MODIFIED DSLDA METHOD AND THE INCREMENTAL

ALGORITHM

In this section, we design a DOI incremental algorithm for
DSLDA. We first modify the original DSLDA method so as to
reduce its computational complexity. In the rest of this paper,

(8)
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we make the following conventions: denotes the range
space of , and denotes the orthogonal complemen-
tary space of .

A. Modified DSLDA Method

From (6) and (7), we observe that the most time-consuming
part of the original DSLDA method is to solve the transforma-
tion matrix from the subspace . Therefore, to re-
duce the computational complexity of DSLDA, we should first
reduce the computational complexity of solving the discrimi-
nant vectors from . To this end, we adopt the method of
Ye et al. [17] using the subspace spanned by the class means of
the training samples after projecting onto the subspace
to find the optimal discriminant vectors rather than the whole
subspace , which can greatly reduce the computational
complexity.

Let be a matrix whose columns form an orthonormal basis
of , then the projection of the class mean onto the sub-
space can be expressed as ( ). Sim-
ilarly, let be a matrix whose columns form an orthonormal
basis of ; then the projection of the class mean onto
the subspace can be expressed as (

). In this case, we can formulate the modified DSLDA
method as the following optimization problem:

(9)

(10)

where , ,
, and .

In what follows, we shall propose a DOI incremental algo-
rithm for the DSLDA method, which can accurately update the
discriminant vectors of DSLDA after new samples are inserted
into the training data set. To begin with, we introduce Theorem
1 below, which is useful for deriving our incremental algorithm.
The proof is given in Appendix A.

Theorem 1: Suppose that ( ) form an
orthonormal basis of the subspace spanned by (

), then we have

Theorem 1 provides a method to find an orthonormal basis of
the subspace . In the rest of this section, we will pro-
pose three algorithms for the solution of our modified DSLDA
method. The first one solves the discriminant vectors of DSLDA
in a batch form, and the other two focus on designing DOI incre-
mental algorithms to accurately update the discriminant vectors
when new samples are inserted into the training data set.

B. Batch Algorithm for DSLDA

Define a matrix , where
. Suppose that

( ) are the corresponding orthonormal vectors of the
columns of using the Gram–Schmidt orthogonalization pro-
cedures. Let ; then from theorem 1 we know
that can be spanned by the columns of .

1) Solving Transformation Matrix : According to
the definition of in (9), solving the transformation ma-
trix boils down to solving the matrix such that

, where is the solution of the following
optimization problem:

(11)

where and
. Let

(12)

Then we have

and

(13)

The columns of are the eigenvectors associated with the
largest eigenvalues of the eigensystem

(14)

Suppose that are the eigenvectors corresponding
to the largest eigenvalues of eigensystem (14), and let

and (15)

Then, we obtain that .
2) Solving Transformation Matrix : Suppose that

is an orthogonal matrix whose columns form an
orthonormal basis of the -dimensional data space. Then we
have

(16)

Since columns of span the subspace , we obtain that
the columns of span the subspace . Hence, from the
definition of in (10), we obtain that solving the transfor-
mation matrix boils down to solving the matrix such
that , where is the solution of the fol-
lowing optimization problem:

(17)

Let

(18)

and suppose that are the eigenvectors corre-
sponding to the largest eigenvalues of . Let

(19)

Combining (16) and (19), we have

(20)

Let . Then we have .
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The pseudocode of the batch algorithm for the modified
DSLDA method is listed in Algorithm 1.

Algorithm 1: Batch Algorithm for Our DSLDA Method

Input: Data matrix and class labels .
Begin:
1) Calculate the class mean , the global mean ,

the number of the th class samples, and the total
number of the samples.

2) Set ,
, and

, where
.

3) Get the orthogonal matrix by orthonormalizing the
columns of using Gram–Schmidt orthogonalization
procedures.

4) Compute .
5) Compute , and

.
6) Solve the principal eigenvectors

of .
7) Compute , ,

.
8) Compute .
9) Solve the principal eigenvectors

of .
10) Compute , ,

.
Output: The updated matrices , , , , , ,

, the size of the th class samples, the global mean
of the training samples, and the transform matrices

and .

C. Fast Algorithm for Updating DSLDA

We have proposed the batch algorithm for a modified DSLDA
method in Section III-B. In this section, we will focus on de-
signing the DOI incremental algorithm to update the discrimi-
nant vectors of DSLDA when new samples are inserted into the
training data set. For simplicity of deriving our algorithm, we
use the following convention: for any variable , its updated
version after inserting new samples is denoted by . Let be
an inserted instance coming from the th class. Without loss of
generality, we assume that . Divide and as the fol-
lowing two parts:

(21)

(22)

Then, from (12), we obtain that

(23)

(24)

In what follows, we update the scatter matrices according to the
different cases of the inserted instance : 1) belongs to an
existing class ; 2) belongs to a new class .

1) The Inserted Instance Belongs to an Existing Class
: If belongs to an existing class , then the updated matrices
and can be expressed as

and (25)

where represents a unit vector with the th item equals
to 1. Then we obtain that the updated orthonormal matrix can
be written as

(26)

where
.

From (25) and (26), we obtain that

(27)

Combining (2), (3), (12), and (27), we have

(28)

(29)

where

(30)

(31)

Moreover, we have the following expressions with respect to the
matrices and

(32)

(33)

The detailed derivations are given in Appendix B.
Let and . Then from

(32) and (33), we obtain

(34)

(35)
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After calculating the matrices , , , and , we
can update the matrices and as follows:

and

Moreover, the matrix can be updated as

(36)

Finally, the columns of the transformation matrix can be
obtained by solving the eigenvectors of whereas the
columns of can be obtained by solving the eigenvectors
of .

The pseudocode of the fast algorithm for updating existing
class is listed in Algorithm 2.

Algorithm 2: DOI Incremental Algorithm for Updating
Existing Class

Input: The matrices , , , , , , , the size
of the th class samples, the global mean of the

training samples, and the inserted sample of th class.
Begin:
1) Set , ( ) and ,

, , and
.

2) ,

3)
,

.
4)

.
5) Compute , , , and using (30),

(31), (34), (35), and then update and :
, .

6) Solve the principal eigenvectors
of .

7) Compute , ,
.

8) Compute .
9) Solve the principal eigenvectors

of .
10) Compute , ,

.
Output: The updated matrices , , , , , ,

, the size of the th class samples, the global mean
of the training samples, and the transform matrices

and .

2) The Inserted Instance Belongs to a New Class : If
the inserted instance belongs to a new class, then the updated
matrices and can be expressed as

and (37)

Hence, we obtain that the updated matrix equal to

(38)

From (37) and (38), we have

(39)

Combining (2), (3), (12), and (39), we obtain

(40)

(41)

where denotes the zero vector, and are re-
spectively given by

(42)

(43)

where denotes the zero matrix.
Moreover, we have the following expressions with respect to

the matrices and

(44)

(45)

where denotes the zero matrix. The derivations are
given in Appendix C.

Let and . Then from
(44) and (45), we have

(46)

(47)

The matrices and can be updated according to the fol-
lowing expressions:

(48)

(49)

and the updated matrix can be calculated as

(50)

The columns of the transformation matrix can be obtained
by solving the eigenvectors of whereas the columns of

can be obtained by solving the eigenvectors of .



ZHENG AND TANG: FAST ALGORITHM FOR UPDATING THE DISCRIMINANT VECTORS OF DSLDA 423

TABLE I
COMPUTATIONAL COMPLEXITY OF EACH LINE IN ALGORITHM 1

TABLE II
COMPUTATIONAL COMPLEXITY OF EACH LINE IN ALGORITHMS 2 AND 3

The pseudocode of the fast algorithm for updating new class
is listed in Algorithm 3.

Algorithm 3: DOI Incremental Algorithm for Updating New
Class

Input: The matrices , , , , , , , the size
of the th class samples, the global mean of the

training samples, and the inserted sample of th class.
Begin:
1) Set , ( ) and

, , , and
.

2) ,
, .

3) .
4) .
5) Compute , , and using

(42), (43), (46), and then update and

: ,

.

6) Solve the principal eigenvectors of
.

7) Compute , ,
.

8) .
9) Solve the principal eigenvectors of .

10) Compute , ,
.

Output: The updated matrices , , , , , ,
, the size of the th class samples, the global mean
of the training samples, and the transform matrices

and .

D. Computational Analysis of the DSLDA Algorithm

In Algorithms 1, 2, and 3, we list the pseudocodes of solving
the discriminant vectors of the modified DSLDA, where Algo-
rithm 1 describes the batch approach of solving DSLDA, Algo-
rithm 2 describes the DOI incremental algorithm for updating
DSLDA when a new sample of the th class is inserted into the
training data set, and Algorithm 3 describes the DOI incremental
algorithm for updating DSLDA when a new sample from a new
class is inserted into the training data set. Table I lists the com-
putational complexity of each line of the batch algorithm (Al-

gorithm 1) whereas Table II lists the complexity of each line of
the incremental algorithms (Algorithms 2 and 3).

From Table I, we can see that the computational complexity
of relearning the discriminant vectors of DSLDA with
training samples using the batch algorithm is

. However, from Table II, we can see that
updating the discriminant vectors of DSLDA using the incre-
mental algorithms when a new training sample is inserted into
the training data set with elements only needs the computa-
tional complexity of .

Based on Algorithms 2 and 3 as well as Table II, we can ana-
lyze the computational complexity of updating the discriminant
vectors when more than one sample is inserted into the training
data set. More specifically, if more than one sample is inserted
into the training data set with elements, the last five lines, i.e.,
lines 6–10 of both Algorithms 2 and 3 only need to be computed
once. Suppose that there are samples being inserted into the
the training data set. For simplicity, we assume that there are

new classes of samples among the inserted samples. In
this case, the first five lines, i.e., 1–5, in Algorithm 2 should be
repeated times while the first five lines in Algorithm 3
should be repeated times with the insertion of the samples.
According to Table II, we can obtain that the complexity of up-
dating the new discriminant vectors based on Algorithms 2 and
3 is .
By contrast, using the batch algorithm to recompute the discrim-
inant vectors on the training data set with samples, we need
the computational complexity of

IV. PATTERN CLASSIFICATION BASED ON DSLDA

In this section, we will address the classification problem
using our DSLDA method. Suppose that is a test sample.
Then the projections of onto and are

and . Let and
( ; ) be the projections of

onto and , respectively. Denote the distance between
and by and the distance between

and by , where

(51)

(52)

It should be noted that and may not
share the same metric measurement. To solve this problem, we
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adopt the scheme of Yang et al. [10] by defining the following
hybrid distance to measure the similarity between

and , where is defined as

(53)

where is a weight parameter used to emphasize the
contribution of one of the two “discriminant subspaces” and
deemphasize the other one in the classification task.

Suppose that is the class label of the test sample . Then
can be obtained by the following expression:

(54)

V. EXPERIMENTS

In this section, we will conduct experiments on the AR face
database [22] to test the performance of our DSLDA algorithms
in terms of the computational efficiency and the recognition
accuracy. For comparison, we also conduct the same experi-
ments using the PCA+LDA method, the DLDA method, the null
space method, the IDR/QR method, the two-dimensional LDA
(2DLDA) [23], and the original DSLDA method proposed by
Wang and Tang [9], respectively. The nearest neighbor classi-
fier is used for the classification task in the experiments.

The AR face database consists of over 3000 facial images of
126 subjects. Each subject contains 26 facial images recorded
in two different sessions separated by two weeks, where each
session consists of 13 images. The original image size is
768 576 pixels, and each pixel is represented by 24 bits of
RGB color values. Fig. 1 shows the 26 images of one subject,
where the first 13 images are taken in the first session, and
the remaining 13 images are taken in the second session. We
randomly select 70 subjects (50 males and 20 females) among
the 126 subjects for the experiment. For each subject, only
the nonoccluded images, i.e., the images numbered 1–7 and
14–20 (see Fig. 1), are used for our experiments. To reduce the
computational cost, all the images are centered and cropped
into the size of 468 476 pixels, and then down-sampled into
the size of 100 100 pixels.

A. Computational Efficiency Test

In this experiment, we will test the computational efficiency
of the proposed DSLDA algorithms in terms of the CPU time
of updating the discriminant vectors when new samples are in-
serted into the training data set. Among the 980 samples of
the AR face database, we randomly select 900 samples as the
training data set, and use the remaining 80 samples as the testing
data set. We first use the batch DSLDA algorithm (i.e., Algo-
rithm 1) to compute the discriminant vectors on the training data
set. Then we design our experiments according to the following
steps:

Fig. 1. Examples of the 26 images of one subject in AR face database, where
only the nonoccusion images, i.e., images numbered 1–7 and 14–20, are used
in our experiment.

Fig. 2. Plot of the CPU time of the batch DSLDA algorithm and the fast
DSLDA algorithm varying with the number of the inserted samples on the AR
face database.

1) Select one sample from the testing data set.
2) Use the fast DSLDA algorithm (i.e., Algorithm 2 or 3) to

calculate the CPU time of updating the discriminant vec-
tors when the selected samples are inserted into the training
data set. At the same time, use the batch algorithm (i.e, Al-
gorithm 1) to calculate the CPU time of computing the dis-
criminant vectors when the selected samples are inserted
into the training data set.

3) Select another sample from the remaining samples of the
testing data set.

4) Repeat steps 2 and 3 until all the samples of the testing data
set are used as the inserted samples.

Fig. 2 shows the results of the experiments, from which we
can see that the CPU time of both the fast updating algorithm
and the batch algorithm increases with the increase of the
number of the inserted samples. However, the fast algorithm
(i.e., Algorithm 2 or 3) are more efficient in obtaining the new
discriminant vectors, especially when the size of the inserted
samples is much less than the size of the training samples.
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TABLE III
FACE RECOGNITION ACCURACY ON THE AR DATABASE OF VARIOUS METHODS

Fig. 3. Recognition rate of our DSLDA method with different choice of the
parameter � in AR the database.

B. Recognition Accuracy Test

In this experiment, we use the two-fold cross-validation
strategy to test the recognition performance of our DSLDA
method. First, we divide the selected AR face data set into two
subsets: one subset consists of the images per subject numbered
1–4 and 14–16, and the other subset consists of the remaining
images per subject. Then we choose one subset as the training
data set and the other one as the testing data set. Finally, we
train our DSLDA method and other discriminant analysis
methods on the selected training data set and use the testing
data set to evaluate the recognition accuracy. After finishing
the recognition process of the various methods, we swap the
training data set and the testing data set and then reconduct the
experiments. The recognition rates of the two trials are averaged
as the final average recognition rate (%). The experimental
results are shown in Fig. 3 and Table III, where Fig. 3 shows
the recognition rate of the proposed DSLDA method with the
different choice of parameter , and Table III shows the best
recognition rate of each testing method.

From Fig. 3, we can see that the best recognition rate of the
proposed DSLDA method can be achieved when the parameter

lies in [0.25, 0.45]. This also means that both “discriminant
subspaces” of the DSLDA method contain useful discriminant
information. Moreover, from Table III, we can see that the pro-
posed DSLDA method achieves the best recognition rate among
the various methods.

VI. CONCLUSION

We have proposed a modified DSLDA method and a DOI in-
cremental algorithm for updating the DSLDA projection vec-
tors when new samples are inserted into the training data set.
Our modified DSLDA method aims to simultaneously extract
the discriminant information from both the range space and the

null space of the within-class scatter matrix. Therefore, com-
pared with other incremental LDA algorithms, our incremental
DSLDA algorithm can extract more discriminant information,
and hence can achieve better recognition performance. Our ex-
periments on the AR face database have shown the computa-
tional efficiency of our incremental algorithm compared with
the batch algorithm. The experimental results also show the su-
periority of the our DSLDA method over other discriminant
analysis methods in terms of the recognition accuracy.

APPENDIX A

From , we obtain

(55)

Note that ,
we get

(56)

From (55) and (56), we get

(57)
On the other hand, from the fact that

, we know that can be linearly combined by
( ). Therefore, we have

(58)
Combining (57) and (58), we obtain

(59)
Moreover, from (3) and (5), we obtain

(60)

Combining (59) and (60), we have

(61)

Since ( ) is an orthonormal basis of
( ), we have

(62)
From (61) and (62), we obtain
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APPENDIX B

From and , we
have

and (63)

Thus, we obtain

(64)

(65)

From (64), we obtain

Because the inserted sample belongs to the th class, we have

(66)

Similarly, from (65), we get

Because belongs to the th class, we have

(67)

Therefore, from (66) and (67), we have

APPENDIX C

If is from a new class, then from (64), we get

(68)

Similarly, from (65), we obtain

(69)

Therefore, from (68) and (69), we have
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