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Abstract—For the problem of image registration, the top few
reliable correspondences are often relatively easy to obtain, while
the overall matching accuracy may fall drastically as the desired
correspondence number increases. In this paper, we present an
efficient feature matching algorithm to employ sparse reliable
correspondence priors for piloting the feature matching process.
First, the feature geometric relationship within individual image
is encoded as a spatial graph, and the pairwise feature simi-
larity is expressed as a bipartite similarity graph between two
feature sets; then the geometric neighborhood of the pairwise
assignment is represented by a categorical product graph, along
which the reliable correspondences are propagated; and finally a
closed-form solution for feature matching is deduced by ensuring
the feature geometric coherency as well as pairwise feature agree-
ments. Furthermore, our algorithm is naturally applicable for
incorporating manual correspondence priors for semi-supervised
feature matching. Extensive experiments on both toy examples
and real-world applications demonstrate the superiority of our
algorithm over the state-of-the-art feature matching techniques.

Index Terms—Feature matching, weak prior, image registration,
object correspondence, propagation.

I. INTRODUCTION

F EATURE matching of two objects is a fundamental
problem for computer vision research, and a variety of

computer vision tasks heavily rely on the feature matching
results, such as object tracking [14] and recognition [18], [17],
image warping [6] and stitching [10], and 3-D reconstruction
[5], [19], [4]. The feature matching accuracy may be affected
by various factors including feature descriptors, similarity
measurements, and matching approaches.

Substantive works have been devoted to seeking the cor-
respondences between features extracted from two images.
Among them, recently Grauman et al. [13] considers the image
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features as unordered elements in sets of different cardinalities
and proposes a pyramid matching algorithm for pursuing
inexact correspondences. Local feature plays an important role
in this task, and the popular feature detectors, such as SIFT
[17], salient region detector [15], as well as scale and affine
invariant interest point detector [20], tend to output interest
points or regions in a structured way. Also, it is observed
that the salient points and SIFT features extracted from the
images with similar structures often share similar local spatial
distributions. Thus, the feature location also conveys important
information for feature matching. The works in [9], [23] and
[21] present approaches for utilizing structure information.
They formulate the feature matching problem with integer
quadratic programming (IQP) or Semidefinite Programming
(SDP) techniques and, hence, severely suffer from the high
computational cost. Leordeanu et al. [16] proposes a spectral
analysis method for promoting feature matching accuracy with
the geometric structure information and designs an iterative
procedure to eliminate the conflictions among the derived
correspondences. [12] adds affine constraints to the spectral
matching formulation and proposes a normalization procedure
to improve the matching accuracy. Recently, [24], [25] use
“window-like” neighborhood searching and design propagation
algorithms for stereo image matching.

One common issue encountered by all above feature
matching algorithms is that the top few matches with the
highest similarities are often very accurate, but the matching
accuracy falls rapidly when the desired match number in-
creases, especially for data with noises. A demonstration of
the deterioration of matching quality as the number of matches
increases is shown in Fig. 1. Another issue arising in real-world
applications is that the unsupervised feature matching algo-
rithms often cannot provide sufficiently accurate results for
the subsequent applications such as image stitching and object
recognition. A natural question is how to incorporate extra clues
for promoting feature matching performance. In this work, we
present a solution for feature matching with the reliable corre-
spondence priors, from the top few reliable correspondences
obtained by either conventional feature matching algorithms or
manual labeling.

First, the relative geometric relation of the feature pairs within
an image is encoded as a spatial graph, and the matching assign-
ments are considered as the vertices of the product graph con-
structed from two spatial graphs of the images to be matched.
Then, based on the these spatial relations, the assignment neigh-
borhoods are defined on the product graph and the point-to-
point matchings are then propagated from those reliable corre-
spondences to the remaining ones. Finally, we deduce an effi-
cient closed-form solution for the feature matching problem by
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Fig. 1. Deterioration of matching quality as the number of matches increases.
(a)–(d) Matching results of the traditional algorithm proposed in [17]. We
vary the parameters so that the number of matches from (a) to (d) increases.
(e) iMatching performance of the automatic RCP algorithm. Note the number
of matches in (e) and (d) are the same but the matches derived by our algorithm
are more geometrically consistent and the number of mismatches is smaller.

ensuring both spatial consistency and feature similarity agree-
ments.

The works in [9], [16], and [21] try to employ the feature lo-
cation information for matching, while our work in this paper
differs from them in that we make full use of the information
provided by those reliable correspondences. Moreover, benefit-
ting from the propagation property, our framework is easy to
incorporate human interactions for the guidance of correspon-
dence searching. An illustration of the whole framework for cor-
respondence propagation from reliable correspondence priors is
displayed in Fig. 2.

Here, we would like to highlight some aspects of our pro-
posed Reliable Correspondence Propagation (RCP) algorithm.

1) RCP makes full use of the prior information of the sparse
reliable correspondences, and is naturally applicable for in-
corporating the interactive manual labeling to further pro-
mote feature matching accuracy in a semi-supervised way.

2) The algorithmic objective provides a unified formula-
tion that employs both the categorical product graph
constructed from two spatial graphs for characterizing
spatial coherency and the bipartite similarity graph for
representing feature similarity agreements.

3) A closed-form solution is deduced with comparably low
computational cost, and, hence, our algorithm is applicable
to real-world image registration problems.

II. PROBLEM FORMULATION AND SOLUTION

A. Notations and Graph Construction

The two sets of features, e.g., extracted from SIFT
[18], within two images to be matched are denoted as

and
with , where is the feature vector and is
the feature point location in the image .

Let be an undirected spatial graph with
vertex set and edge set for the th image. The ver-
tices represent the feature points extracted from the input
images and the edges in reflect the geometric neighboring
relations among the features, and can be defined in terms of

-nearest-neighbor or an -ball distance criteria in the feature
position space. We call spatial graph because it essentially
encodes the relative spatial positions of all the feature pairs
within the input image . In addition, an adjacency/weight ma-
trix is defined for the graph . One way to compute the
weight matrix is directly based on the edge information, namely

if and are connected
else.

There are also other ways for computing the similarity matrix,
such as the heat kernel [7], i.e., , where

is a parameter to define the heat kernel.
To encode the pairwise feature similarity between two sets of

features, we introduce the similarity graph, denoted as a triplet
. The similarity graph is a bipartite

graph, and the weight matrix of are computed from the
cosine distances of the feature pairs measured in the feature
vector space.

B. Regularization on Categorical Product Graph

The feature matching process can be considered as seeking a
binary function over the product set of and

where denotes the set product and the function value 1 means
matching and 0 for mismatching. To transduce the matching as-
signment from the reliable correspondence priors to the other
feature pairs, we first give a neighborhood definition for the
matching assignments.

Definition: Suppose and
are the vertices of graph and re-

spectively. Two assignments and
are neighbors iff both pairs and

are neighbors in and respectively, namely

and (1)

where means and are neighbors on the corresponding
graph.

Suppose binary weights are utilized. According to the defi-
nition (1), the assignment graph is the categorical product
graph of and , i.e., , and the adjacency of
the assignments can be expressed as
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Fig. 2. Flowchart of correspondence propagation from reliable correspondence priors for feature matching.

Fig. 3. Demonstration of categorical graph product: graph � , graph � , and
their categorical graph product � �� .

(2)

An example of the categorical product graph is demonstrated in
Fig. 3.

Defined on the space of Cartesian product set, the assignment
can be regarded as a binary matrix of by , i.e.,

(3)

where the elements corresponds to the assignment of
to . To facilitate the solution, we arrange the columns of
consequently to construct a vector , i.e.,

(4)

where is the vectorization operator.

Now the assignment is converted into a function on the
dimensional vector space and, thus, the adjacency matrix of
the assignments is an by matrix, i.e.,

(5)

where is the Kronecker product operator and the corre-
sponding graph is the categorical product graph of and

. Note that the adjacency matrix of the categorical product
graph can also be defined as if we rearrange
the sequence of assignments while here we adopt the first
definition so that the assignment arrangement is coherent with
that of . When the and are not binary, the adjacency
matrix calculated from (5) can still capture the relative
geometric relations of the assignments.

To introduce a spatial consistency for the assignments, we
make the assumption that the neighboring vertices on the cate-
gorical product graph share similar assignment values. That is,
the feature pair tends to be matched if its neighbor feature pair,
i.e., the neighboring vertex in the categorical product graph, has
the assignment value of 1 (stands for matching). This is quite
natural in the representation of structural feature sets, since in
real-world applications, the feature points that constitute cer-
tain kind of structures are often extracted together, and, thus,
the features are often matched set by set. Emphasizing this as-
sumption can also transduce the reliable correspondence priors
derived from manual labeling or automatic approaches to their
neighboring assignments and then the assignments are propa-
gated along the categorical product graph until a final balance
is drawn.

In our framework, the spatial consistency assumption is ful-
filled by a graph Laplacian penalty item in the objective. Ac-
cording to the spectral graph theory [8], [22], penalizing the
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Graph Laplacian leads to a solution with the locality preserving
property. The Graph Laplacian can be expressed as

where is the th element of is the
Laplacian matrix of the categorical product graph and is a
diagonal matrix with . If and are adjacent
in the graph, i.e., the is large, the minimizing of the objective
will lead to a small distance between and , and then the
reliable prior correspondence can be propagated along with this
spatial consistency property.

C. Consistency in Feature Domain and Soft Constraints

Besides the geometric consistency, we also emphasize the co-
herence in the feature domain. The pairwise feature agreement
is encoded by the by adjacency matrix of the simi-
larity graph . The coherence of the feature similarity is then
converted into the maximization of item

(6)

where is the matrix Hadamard product, returns the sum
of all the elements in matrix is the vectorization of the
matrix , and the operator is the inner product of two vectors.

Finally, for those one-to-one correspondence configurations,
a soft penalty is introduced, i.e.,

(7)

where is an by coefficient matrix with 1 in the th row
and 0 for others; is an by coefficient matrix with 1
in the th column and 0 for other elements. The first term tends
to matching each feature in the first image to a feature with the
largest similarity in the second one, and the second term tends
to matching each feature in the second image with a feature with
the highest similarity in the first one.

Vectorizing the coefficient matrices and and arranging
the derived column vectors, we construct the constraint coeffi-
cient matrices and

Then the item (7) can be expressed as

(8)

where is an by matrix,
is an by matrix, is an dimensional column

vector of 1 and is an by identity matrix.
Note that for the one-to-one correspondence, we can also im-

pose hard constraints, i.e.,

or (9)

but these conditions may not be satisfied, since the feature ex-
tracted in one image may not have a correspondence in the other
image due to the noise, occlusion or the inequality of the feature
set cardinality. Thus, we adopt a soft penalty in the objective and
the affine constraints are consequently removed from the formu-
lation.

D. Inhomogeneous Pair Labeling

Since the one-to-one matching is optimized on the product
graph of the two input graphs, the number of variables can be
extremely large and it grows rapidly with the increase of the
input vertex number. The number of features extracted depends
on various factors such as the feature extractors, the complexity
of surroundings, the scales searched for maximum and the size
of images. Generally, the assignment variables are highly re-
dundant. Substantive assignment variables are dispensable due
to the low similarity, or, large feature distances between the in-
volved feature pairs. We call these assignments inhomogeneous
pairs. Rather than simply removing them, in our framework the
mismatch information of those inhomogeneous pairs is also em-
ployed. Specifically, they are assigned as 0’s, which indicate that
the corresponding feature pairs will not be matched, i.e.,

(10)

where is the set of inhomogeneous pairs. Then the mismatch
information of those inhomogeneous pairs is also utilized to
guide the solution and transduced to the remaining ones.

E. Reliable Correspondence Propagation

In the following the known correspondences including some
reliable correspondences and certain number of inhomogeneous
pairs are called labeled assignments or labeled feature pairs. We
arrange the matching variables so that the labeled assignments
are placed ahead, i.e.,

(11)

where represents the assignments of the labeled feature
pairs, corresponds to the assignment values of the re-
maining unlabeled feature pairs to be estimated. is the
rearranged assignment vector.

Correspondingly, the constraint coefficient matrices
and the vectorized adjacency matrix of the similarity graph
are also rearranged, so that

and

(12)

where , and are the coefficients and vectorized adja-
cency sub-matrix of the similarity graph for the labeled assign-
ments, respectively; , and are the coefficients and
vectorized adjacency sub-matrix for the unlabeled assignments;
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and , and are the rearranged coefficients and vector-
ized similarity graph adjacency matrix.

Due to the variable rearrangement, the vertex order in the cat-
egorical product graph is also modified. The rearranged adja-
cency matrix and the corresponding Laplacian matrix
are

(13)

Integrating all factors and we get the final optimization for-
mulation for our feature matching framework:

(14)

where is the th element of is the number of un-
labeled feature pairs, and are coefficients controlling the bal-
ance among feature similarity, spatial coherency and one-to-one
penalty.

Algorithm 1 Elicit Correspondences. [Input: M]

1) Output the correspondence
.

2) Remove from all potential assignments in conflict
with .

3) If column or row dimension of becomes 0 or if the
output correspondence number reaches , stop; otherwise,
go back to step 1.

We relax the binary integer optimization problem to real
values by discarding the constraints in (14) and the formulation
is converted to an unconstrained quadratic optimization. Taking
the derivative w.r.t. and substituting the (11), we obtain
a closed-form relation between the labeled and unlabeled
assignments:

(15)

where

(16)

and

(17)

F. Rearrangement and Discretizing

To get the original assignment , we first take the inverse
process of the element arrangement described above and con-
vert to , then reshape the derived assignment vector into
the by matrix . Since the assignment variables have
been relaxed, we tried two discretization strategies: thresholding
and eliciting. Setting a threshold for discretization is natural
and it can determine the correspondence number automatically.
This strategy is also suitable for the cases in which the cor-
respondences are not required to be one-to-one. On the other
hand, in case a fixed number of one-to-one correspondences are
needed, we design an iterative correspondence eliciting proce-
dure, which is displayed in Algorithm 1. Finally, the whole al-
gorithmic process is listed in Algorithm 2.

To conclude, we deem the matches as vertices in the categor-
ical product graph of the two input spatial graphs, and the edges
then represent the geometrical relations of the matches. Sim-
ilar to the semi-supervised learning algorithms, our algorithm
propagates the correspondence information from the labeled to
the unlabeled matching variables. The labeled matching vari-
ables are provided by two parts, i.e., reliable correspondences
for matches and inhomogeneous labeling for mismatches. The
connection between the labeled and those unlabeled is derived
as a closed form solution in Section II-E.

III. ALGORITHMIC ANALYSIS

A. Selection of Reliable Correspondences

The accuracy of those reliable correspondences are critical
for final performance. One way to obtain these reliable corre-
spondences in the automatic matching configuration is simply
to pick up a few pairs with the highest similarity scores or to
set a certain threshold between the maximum correspondence
and the second largest correspondence as in [17]. Fig. 4 demon-
strates the matching between two human head image pair, and
the algorithm in [17] with a small threshold is used for the ro-
bust feature selection. One problem is that the correspondences
derived in this way may be clustered together and their guidance
for the correspondence searching is, thus, limited. The work
[11] proposes an Adaptive Non-Maximal Suppression (ANMS)
strategy to elicit a fixed number of interest features and at the
same time keep the the selected interest points spatially well
distributed. Also, [26] proposes a reliable matching algorithm
based on solving a low-complexity graph problem. All these al-
gorithms can be used for the reliable correspondence selection.
In this paper, we adopt the Correspondence Elicit Procedure de-
scribed in Algorithm 1 and the first correspondences produced
are regarded to be reliable in the automatic matching configura-
tion. The selection of parameter and the algorithmic sensitivity
with respect to is discussed in the following sections.

The transductive property of our algorithm makes it easy
to incorporate human interactions for the correspondence
searching and a semi-supervised matching framework is nat-
urally derived. In this work, two configurations of human
interactions are used.

Exact Pairwise Correspondence Labeling: In this configu-
ration, the users are asked to give exact correspondence labeling
for the guidance of matching, and the assignments labeled by
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Fig. 4. Demonstration of facial image matching. (a) SIFT feature matching
proposed in [17] with threshold � � ����. (b) Better matching result by the
proposed RCP algorithm, in which a small threshold � � ��� in [17] is used to
elicit the robust correspondences for propagation. In both images, 60 matches
are produced.

human are used as reliable correspondence priors in the feature
matching process.

Obscure Correspondence Guidance: To facilitate the user
labeling, we also provide an obscure matching scheme in which
the user only has to describe a rough correspondence of image
parts. The procedures used in the automatic matching config-
uration are then employed to extract reliable correspondences
within the indicated corresponding areas.

Algorithm 2 Reliable Correspondence Propagation

1) Graph Construction: Construct the spatial graphs
and from the feature locations and calculate the
adjacency matrix for the categorical product graph using

. Construct the bipartite similarity
graph according pairwise feature similarity.

2) Constraint Coefficient Matrix Initialization: Initialize
the constraint coefficient matrices and according
to the cardinality of input feature sets.

3) Assignment Labeling: Initialize the corresponding
assignments for those reliable pairs as 1 and set the
assignment variables as 0 for those inhomogeneous pairs
with low similarity values.

4) Correspondence Propagation: Rearrange the assignment
variables, the adjacency matrices, the constraint
coefficient matrices so that the labeled assignments are
placed in front of the unlabeled variables and calculate the
closed-form solution in (Section II-E).

5) Rearrangement: Take the inverse process of the
arrangement in step 4 and get the correspondences using
the strategies described in Section II-F.

B. Computational Complexity

The complexity of the inverse operation for an by ma-
trix is (the Coppersmith–Winograd algorithm), or

(the Gaussian elimination algorithm), which is greater
than the spectral algorithms [16]. However, the matrix

in our algorithm is sparse and exploiting this sparsity, the
computational cost can be greatly reduced. Also, efficient par-
allel algorithms exist for the Gaussian elimination procedure in
the computation of the sparse matrix inversion problem, and,
thus, the computation time can be further shortened. Another
factor affecting the computation cost is the candidate matching

variable number, which determines the dimension of the matrix
. In our experiments, 6000 assignments with the largest sim-

ilarity scores are fetched as matching candidates and the variable
number can be adjusted according to the requirement of the ap-
plications. Our algorithm is much faster than the QP and SDP
based algorithms and is applicable for the large scale real-world
applications.

IV. APPLICATIONS AND EXPERIMENTS

In this section, our algorithm is systematically evaluated in
two settings: unsupervised and semi-supervised. In the unsu-
pervised setting, those reliable correspondences are derived au-
tomatically, while in the semi-supervised setting, the reliable
correspondence priors are labeled manually. In all the experi-
ments, the SIFT [17] descriptor is used for feature extraction and
representation; the spatial graph is constructed using 10-nearest
neighbors and the weights for the spatial graphs are calculated
using heat kernels with param-
eters applied, where is the standard deviation of
the feature locations. For the similarity graph, 16 nearest neigh-
bors are used and the cosine distance is directly used as the graph
weight. The coefficient is empirically set as 0.4 and is set as
0.05. In the inhomogeneous pair labeling process, we keep 6000
pairs with the top similarities as candidate matchings and others
are labeled 0. The performance of our algorithm is systemati-
cally compared with the state-of-the-art feature matching algo-
rithms, such as the spectral correspondence technique (SC) [16]
and the matching algorithm used in [17] (SM), which compares
the distance of the closest neighbor to that of the second-closest
neighbor. We take the by pairwise similarity matrix as
the input for the Correspondence Eliciting Procedure (CE)
and the matching scores are also reported. The QP and SDP
based algorithms are inapplicable for comparison due to the
large number of features involved. For the adjacency matrix
in the spectral correspondence technique [16], we assign a score
that is linearly increasing with the cosine distance between the
feature and its candidate corresponding feature to the diagonal
element. Since the adjacency matrix of the categorical product
graph in our algorithm represents the geometrical relations of
assignments, the nondiagonal elements of is set using the
corresponding elements in .

A. Automatic Feature Matching on Oxford Image
Transformation Database

In this subsection, the unsupervised version of our algorithm
is evaluated on the Oxford real image transformation database
[1]. The Oxford database is a benchmark database for the fea-
ture descriptor evaluation. It contains eight subsets for six dif-
ferent geometric and photometric real image transformations,
including zoom, rotation, viewpoint change, image blur, JPEG
compression, and light variation. Two different scene types are
involved for the case of rotation, viewpoint change, and blur:
one contains homogeneous regions with distinctive edge bound-
aries and the other contains repeated textures of different forms,
which facilitates us to analyze the effect of changing the image
conditions and the scene type separately. Some images in Ox-
ford database are demonstrated in Fig. 5. The image width and
height are resized to 1/5 of the original ones and for each image,
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Fig. 5. Oxford real Image Transformation Database. The transformations include viewpoint variation [(a) Graffiti; (b) Wall sequence], image blur [(c) bikes and
(d) trees sequence], zoom and rotation [(e) bark and (f) boat sequence], illumination change [(g) Leuven] and JPEG compression [(h) UBC].

Fig. 6. Automatic feature matching score on the (a) Graffiti and (b) Wall sequence for viewpoint change. The camera varies from a fronto-parallel view to one
with significant foreshortening at approximately 60 degrees to the camera. The image sequence is ordered with an increasing viewpoint variation.

100–500 SIFT descriptors are extracted. Since the homogra-
phies between the reference image and other images in each par-
ticular subset are given, we can derive the ground truth matches
for the evaluation.

40–180 assignments are extracted as the reliable correspon-
dences using Algorithm 1 in the evaluation. The matching
score is calculated as the ratio between the number of correct
matches and the smaller value of detected feature numbers
from the image pair. For example, if 100 and 130 features
are extracted from the input images, respectively, we can at
most find possible one-to-one matches and then
the algorithms generate matches in the experiment.
If correct matches are found, the matching score is

% and the corresponding mismatch
score is %.

The detailed results are demonstrated in Figs. 6–10. It is
observed that our algorithm generally reaches a higher accuracy
compared with the state-of-the-art techniques and the algo-
rithmic performance is stable over all the subsets. Although,
in some situations, such as the JPEG compression the spectral
technique shows an excellent performance, it is not so stable
in most cases, and, thus, the matching score of the spectral

techniques is sensitive to the configuration of the input images.

Though the spectral based technique also employs geo-
metric information as well as feature similarity in the matching
process, our algorithm generally produces a better performance.
The main reason is that our algorithm essentially puts different
weights on the correspondences and the reliable correspon-
dences are emphasized, while this information is ignored in
other state-of-the-art feature matching algorithms.

The time consumed by different algorithms is also listed in
Table I, from which we can see that the proposed RCP algo-
rithm is comparably time-consuming especially when the fea-
ture number grows large, but the overall runtime of RCP is still
acceptable in applications. For a 100 to 100 matching problem,
our algorithm takes less than 30 s using the MATLAB software
in a 2.5-GHZ Pentium computer.

B. Influence of Reliable Correspondence Number

In the unsupervised configuration, the performance of our al-
gorithm relies on the accuracy of the reliable correspondences,
which also deteriorates as the correspondence number increases.
It is interesting and necessary to evaluate the performance of our

Authorized licensed use limited to: National University of Singapore. Downloaded on August 8, 2009 at 04:40 from IEEE Xplore.  Restrictions apply. 



WANG et al.: CORRESPONDENCE PROPAGATION WITH WEAK PRIORS 147

Fig. 7. Automatic feature matching score on the (a) bikes and (b) trees sequence for image blur. The blur sequence is acquired by varying the camera focus and
the sequence is ordered with an increasing image blur.

Fig. 9. Automatic feature matching score on the (a) bark and (b) boat sequence for zoom and rotation. The scale change (zoom) is acquired by varying the camera
zoom and the zoom changes by about a factor of four. The image sequences are ordered with an increasing zoom and rotation.

Fig. 8. Number of correct matches versus the number of automatically selected
reliable correspondences on the first two images of Graffiti database.

algorithm with respect to the number of automatically selected
reliable correspondences. Fig. 8 shows the correct matching
number versus the number of reliable correspondences automat-
ically derived. We can observe that the correct match number
increases along with the increase of the reliable correspondence
number within a reasonable range, and then the accuracy falls
when the reliable correspondence number becomes too large to
give an accurate guidance.

C. Matching Demonstration on Object Recognition Databases

In this subsection, we evaluate our algorithm on the Caltech
101 Object Recognition database [2] and ETH-80 database [3].
Four categories of images are used in this demonstration, i.e.,
the motorbikes and face images from Caltech 101 database as
well as the dog and horse images from the ETH-80 database.
Since for the objects of different types, the correspondences may
not be one-to-one, a threshold of is used in the dis-
cretization process, and, thus, the correspondence number is de-
termined automatically. For comparison, the matchings with the
largest cosine distances are also plotted as baseline, where
is the number of correspondences determined by our algorithm.
The matching results are demonstrated by Figs. 11–13, in which
the reliable correspondences drawn by hand are marked by red
stars, the obscure guidance indicated by human interaction is de-
scribed by rectangles of different colors and the automatically
derived reliable correspondences are plotted by small crosses.
The correspondence number of the two figures within the same
column is the same. Figs. 11 and 12 show the matching improve-
ment derived by using information provided by human interac-
tion. Fig. 13 demonstrates the improvement of matching quality
in an automatic configuration. The matches are indicated by the
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Fig. 10. Automatic feature matching score on (a) Leuven for illumination variation and (b) UBC for JPEG compression. The illumination variation sequence is
introduced by decreasing the camera aperture. The JPEG sequence is generated using a standard xv image browser with the image quality parameter varying from
40% to 2%.

Fig. 11. Semi-supervised RCP results by manual pairwise correspondence labeling (first row) versus baseline algorithm (second row).

Fig. 12. Semi-supervised RCP results of obscure correspondence guidance (first row) versus baseline algorithm (second row).

TABLE I
RUNTIME (SECOND) OF RCP, SC, CE, AND SM ALGORITHMS.
THE EXPERIMENTS ARE IMPLEMENTED USING THE MATLAB

SOFTWARE IN A 2.5-GHZ PENTIUM COMPUTER

yellow line and we can observe clearly for the baseline algo-
rithm that there exist lots of “cross lines” connecting from down-
side to upside or vice versa, which indicates incorrect matches,
while for the RCP algorithm the matches derived are compa-
rably more consistent. We can also observe from the result that

the matching accuracy is boosted with the guidance of the man-
ually labeled correspondences, and the unsupervised version of
our algorithm is still superior over the baseline algorithm.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an efficient feature matching
framework that transduces certain number of reliable corre-
spondences to the remaining ones by utilizing both geometric
coherency constraints and feature agreements. Furthermore,
the framework is naturally extended to incorporate human
interactions for promoting feature matching performance.
Experimental results showed that our algorithm, both semi-su-
pervised and unsupervised versions, achieves a higher matching
accuracy compared to the state-of-the-art techniques. We are
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Fig. 13. Matching results of unsupervised RCP (first row) versus baseline algorithm (second row).

planning to further investigate our algorithm with other fea-
ture descriptors and explore the combination with the ANMS
strategy and [26] for reliable correspondence selection.

REFERENCES

[1] [Online]. Available: http://www.robots.ox.ac.uk/vgg/research/affine
[2] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual

models from few training examples: An Incremental bayesian ap-
proach tested on 101 object categories,” presented at the IEEE
Computer Society Conf. Computer Vision and Pattern Recognition
(CVPR) Workshop on Generative-Model Based Vision, 2004.

[3] B. Leibe and B. Schiele, “Analyzing appearance and contour based
methods for object categorization,” presented at the IEEE Computer
Society Conf. Computer Vision and Pattern Recognition, 2003.

[4] Y. Ahn, T. Yoon, and T. Schenk, “Reconstruction of 3-D object space
from imagery by feature-based matching,” presented at the Geoscience
and Remote Sensing Symp., Jul. 2005.

[5] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgibbon, “Automatic
line matching and 3-D reconstruction of buildings from multiple
views,” in Proc. ISPRS Conf. Automatic Extraction of GIS Objects
From Digital Imagery, Sep. 1999, vol. 32, pp. 69–80, Part 3-2W5.

[6] T. Beier and S. Neely, “Feature-based image metamorphosis,” in Proc.
Special Interest Group on GRAPHics and Interactive Techniques,
1992, pp. 35–42.

[7] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality re-
duction and data representation,” Neural Comput., vol. 15, no. 6, 2003.

[8] M. Belkin, P. Niyogi, and V. Sindhwani, “On manifold regularization,”
presented at the 10th Int. Workshop on Artificial Intelligence and Sta-
tistics, 2005.

[9] A. C. Berg, T. L. Berg, and J. Malik, “Shape matching and object recog-
nition using low distortion correspondences,” presented at the IEEE
Computer Society Conf. Computer Vision and Pattern Recognition,
2005.

[10] M. Brown and D. G. Lowe, “Recognising panoramas,” in Proc. IEEE
Int. Conf. Computer Vision, 2003, pp. 1218–1227.

[11] M. Brown, R. Szeliski, and S. Winder, “Multi-image matching using
multi-scale oriented patches,” presented at the Proc. IEEE Computer
Society Conf. Computer Vision and Pattern Recognition, 2005.

[12] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” pre-
sented at the Neural Information Processing Systems, 2007.

[13] K. Grauman and T. Darrell, “The pyramid match kernel: Discrimina-
tive classification with sets of image features,” presented at the IEEE
Int. Conf. Computer Vision, 2005.

[14] K. Hariharakrishnan and D. Schonfeld, “Fast object tracking using
adaptive block matching,” IEEE Trans. Multimedia, vol. 7, no. 5, pp.
853–859, Oct. 2005.

[15] T. Kadir, A. Zisserman, and M. Brady, “An affine invariant salient
region detector,” presented at the European Conf. Computer Vision,
2004.

[16] M. Leordeanu and M. Hebert, “A spectral technique for correspon-
dence problems using pairwise constraints,” presented at the IEEE In-
ternational Conf. Computer Vision, 2005.

[17] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., 2003.

[18] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. IEEE International Conf. Computer Vision, Washington, DC,
1999, vol. 2, p. 1150.

[19] T. Luhmann and W. Tecklenburg, “3-d object reconstruction from
multiple-station panorama imagery,” presented at the ISPRS Working
Group V/1 Panoramic Photogrammetry Workshop, Feb. 2004.

[20] K. Mikolajczyk and C. Schmid, “Scale and affine invariant interest
point detectors,” Int. J. Comput. Vis., 2004.

[21] C. Schellewald and C. Schnörr, “Probabilistic subgraph matching
based on convex relaxation,” in Energy Minimization Methods in
Computer Vision and Pattern Recognition, 2005.

[22] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug.
2000.

[23] H. Bai and E. Hancock, “Graph matching using spectral embedding
and semidefinite programming,” presented at the Brit. Machine Vision
Conf., 2004.

[24] J. Kostliva, J. Cech, and R. Sara, “Feasibility boundary in dense and
semi-dense stereo matching,” Comput. Vis. Pattern Recognit., 2007.

[25] M. Lhuillier and L. Quan, “Match propagation for image-based mod-
eling and rendering,” IEEE Trans. Pattern Anal. Mach. Intell., 2002.

[26] M. Bujnak and R. Sara, “A robust graph-based method for the general
correspondence problem demonstrated on image stitching,” presented
at the IEEE Int. Conf. Computer Vision, 2007.

Huan Wang received the B.Eng. degree from
Zhejiang University and the M.Phil. degree from
The Chinese University of Hong Kong, both in the
major of information engineering. He is currently
pursuing the Ph.D degree at the Computer Science
Department, Yale University, New Haven, CT. His
research interests include artificial intelligence,
machine learning, and computer vision.

Shuicheng Yan (M’06) received the B.S. and Ph.D.
degrees from the Applied Mathematics Department,
School of Mathematical Sciences, Peking University,
China, in 1999 and 2004, respectively.

His research interests include computer vision and
machine learning. Currently, he is an Assistant Pro-
fessor with the Department of Electrical and Com-
puter Engineering, National University of Singapore.

Authorized licensed use limited to: National University of Singapore. Downloaded on August 8, 2009 at 04:40 from IEEE Xplore.  Restrictions apply. 



150 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2009

Jianzhuang Liu (M’02–SM’02) received the
B.E. degree from Nanjing University of Posts
and Telecommunications, China, in 1983, the
M.E. degree from Beijing University of Posts and
Telecommunications, China, in 1987, and the Ph.D.
degree from The Chinese University of Hong Kong
in 1997.

From 1987 to 1994, he was a faculty member in the
Department of Electronic Engineering, Xidian Uni-
versity, China. From August 1998 to August 2000,
he was a research fellow at the School of Mechan-

ical and Production Engineering, Nanyang Technological University, Singapore.
Then he was a postdoctoral fellow in The Chinese University of Hong Kong for
several years. He is now an Assistant Professor in the Department of Informa-
tion Engineering, The Chinese University of Hong Kong. His research interests
include computer vision, image processing, and machine learning.

Xiaoou Tang (S’93–M’96–SM’02–F’08) received
the B.S. degree from the University of Science and
Technology of China, Hefei, in 1990, the M.S. degree
from the University of Rochester, Rochester, NY, in
1991, and the Ph.D. degree from the Massachusetts
Institute of Technology, Cambridge, in 1996.

He is a Professor and the Director of Multimedia
Lab, Department of Information Engineering, Chi-
nese University of Hong Kong. He is also the group
manager of the Visual Computing Group at the Mi-
crosoft Research Asia. His research interests include

computer vision, pattern recognition, and video processing.
Dr. Tang is a local chair of the IEEE International Conference on Computer

Vision (ICCV) 2005, an area chair of ICCV’07, a program chair of ICCV’09,
and a general chair of the ICCV International Workshop on Analysis and Mod-
eling of Faces and Gestures 2005. He is a Guest Editor of the Special Issue on
Underwater Image and Video Processing of the IEEE JOURNAL OF OCEANIC

ENGINEERING and the Special Issue on Image- and Video-Based Biometrics of
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.
He is an Associate Editor of IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE.

Thomas S. Huang received the B.S. degree in elec-
trical engineering from the National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., and the M.S. and Sc.D.
degrees in electrical engineering from the Massachu-
setts Institute of Technology (MIT), Cambridge.

He was on the Faculty of the Department of Elec-
trical Engineering at MIT from 1963 to 1973 and on
the Faculty of the School of Electrical Engineering
and Director of its Laboratory for Information and
Signal Processing at Purdue University from 1973 to
1980. In 1980, he joined the University of Illinois at

Urbana-Champaign, Urbana, where he is now the William L. Everitt Distin-
guished Professor of Electlrical and Computer Engineering, Research Professor
at the Coordinated Science Laboratory, Head of the Image Formation and Pro-
cessing Group at the Beckman Institute for Advanced Science and Technology,
and Co-Chair of the Institutes major research theme Human Computer Intelli-
gent Interaction. His professional interests lie in the broad area of information
technology, especially the transmission and processing of multidimensional sig-
nals. He has published 20 books and over 500 papers in network theory, digital
filtering, image processing, and computer vision.

Dr. Huang is a Member of the National Academy of Engineering, a Foreign
Member of the Chinese Academies of Engineering and Sciences, and a Fellowof
the International Association of Pattern Recognition and the Optical Society of
American. He received a Guggenheim Fellowship, an A.V. Humboldt Founda-
tion Senior U.S. Scientist Award, and a Fellowship from the Japan Association
for the Promotion of Science. He received the IEEE Signal Processing Societys
Technical Achievement Award in 1987 and the Society Award in 1991. He was
awarded the IEEE Third Millennium Medal in 2000. Also in 2000, he received
the Honda Lifetime Achievement Award for contributions to motion analysis.
In 2001, he received the IEEE Jack S. Kilby Medal. In 2002, he received the
King-Sun Fu Prize, International Association of Pattern Recognition, and the
Pan Wen-Yuan Outstanding Research Award. In 2005, he received the Okawa
Prize. In 2006, he was named by IS&T and SPIE as the Electronic Imaging
Scientist of the year. He is a Founding Editor of the International Journal Com-
puter Vision, Graphics, and Image Processing and Editor of the Springer Series
in Information Sciences, published by Springer Verlag.

Authorized licensed use limited to: National University of Singapore. Downloaded on August 8, 2009 at 04:40 from IEEE Xplore.  Restrictions apply. 


