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Abstract—In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random

Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch

drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has

useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with

normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into

overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set

which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By

transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly

reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in

principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way.

Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site

(http://mmlab.ie.cuhk.edu.hk/facesketch.html).

Index Terms—Face recognition, face sketch synthesis, face sketch recognition, multiscale Markov random field.
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1 INTRODUCTION

AN important application of face recognition is to assist
law enforcement. Automatic retrieval of photos of

suspects from the police mug shot database can help the
police narrow down potential suspects quickly. However,
in most cases, the photo image of a suspect is not available.
The best substitute is often a sketch drawing based on the
recollection of an eyewitness. Therefore, automatically
searching through a photo database using a sketch
drawing becomes important. It can not only help police
locate a group of potential suspects, but also help the
witness and the artist modify the sketch drawing of the
suspect interactively based on similar photos retrieved [1],
[2], [3], [4], [5], [6], [7]. However, due to the great
difference between sketches and photos and the unknown
psychological mechanism of sketch generation, face sketch
recognition is much harder than normal face recognition
based on photo images. It is difficult to match photos and
sketches in two different modalities. One way to solve this
problem is to first transform face photos into sketch
drawings and then match a query sketch with the
synthesized sketches in the same modality, or first trans-
form a query sketch into a photo image and then match the
synthesized photo with real photos in the gallery. Face
sketch/photo synthesis not only helps face sketch recogni-
tion, but also has many other useful applications for digital

entertainment [8], [9]. In this paper, we will study these
two interesting and related problems: face sketch/photo
synthesis and face sketch recognition.

Artists have a fascinating ability to capture the most
distinctive characteristics of human faces and depict them
on sketches. Although sketches are very different from
photos in style and appearance, we often can easily
recognize a person from his sketch. How to synthesize face
sketches from photos by a computer is an interesting
problem. The psychological mechanism of sketch genera-
tion is difficult to be expressed precisely by rules or
grammar. The difference between sketches and photos
mainly exists in two aspects: texture and shape. An example
is shown in Fig. 1. The patches drawn by pencil on paper
have different texture compared to human skin captured on
a photo. In order to convey the 3D shading information,
some shadow texture is often added to sketches by artists.
For shape, a sketch exaggerates some distinctive facial
features just like a caricature, and thus involves shape
deformation. For example, if a face has a big nose in a
photo, the nose drawn in the sketch will be even bigger.

1.1 Related Work

In psychology study, researchers have long been using
various face drawings, especially line drawings of faces,
to investigate face recognition by the human visual
system [10], [11], [12], [13], [14]. Human beings can
recognize caricatures quite well, which is a special kind
of line drawings of faces, with particular details of a face
accentuated, compared with the ability to recognize face
photos. Presumably, the details which get accentuated in
caricaturing are those which are characteristics of that
individual. Someone even question whether caricatures
are in any way better representations than natural images,
since caricatures may contain not only the essential
minimum of information but also some kind of “super-
fidelity” due to the accentuated structures [10]. Bruce
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et al. [11] have also shown that computer-drawn
“cartoons” with edges, pigmentation, and shading of the
original image can be well recognized by human beings.

Some computer-based sketch synthesis systems have
been proposed in recent years. Most of them have the line
drawing output without much sketch texture which is
useful to convey 3D shading information. In [8], [9], face
shape was extracted from a photo and exaggerated by some
rules to make the result more similar to a sketch in shape.
They were not based on learning. Freeman et al. [15]
proposed an example-based system which translated a line
drawing into different styles. Chen et al. [16] proposed an
example-based face cartoon generation system. It was also
limited to the line drawings and required the perfect match
between photos and line drawings in shape. These systems
relied on the extraction of face shape using face alignment
algorithms such as Active Appearance Model (AAM) [17].
These line drawings are less expressive than the sketches
with shading texture. In this paper, we work on sketches
with shading texture. It requires modeling both face shape
and texture.

There was only limited research work on face sketch
recognition because this problem is more difficult than
photo-based face recognition and no large face sketch
database is available for experimental study. Methods
directly using traditional photo-based face recognition
techniques such as the eigenface method [1] and the elastic
graph matching method [2] were tested on two very small
sketch data sets with only 7 and 13 sketches, respectively.

In our previous work [3], [4], a face sketch synthesis and
recognition system using eigentransformation was pro-
posed. It was not limited to line drawing and could
synthesize sketches with more texture. The transformation
was directly applied to the whole face image. In [4], it was
shown that a synthesized sketch by eigentransformation
would be a good approximation to a sketch drawn by an artist
only if two conditions are satisfied: 1) A face photo can be well
reconstructed by PCA from training samples and 2) the
photo-sketch transformation procedure can be approximated
as linear. In some cases, especially when the hair region is
included, these conditions are hard to be satisfied. Human
hair varies greatly over different people and cannot be well
reconstructed by PCA from training samples. PCA and
Bayesian classifiers were used to match the sketches drawn
by the artist with the pseudosketches synthesized from
photos. Liu et al. [5] proposed a nonlinear face sketch
synthesis and recognition method. It followed the similar
framework as in [3], [4]. However, it did eigentransformation

on local patches instead of the global face images. It used a
kernel-based nonlinear LDA classifier for recognition. The
drawback of this approach is that the local patches are
synthesized independently at a fixed scale and face structures
in large scale, especially the face shape, cannot be well
learned. Zhong et al. [6] and Gao et al. [7] proposed an
approach using an embedded hidden Markov model and a
selective ensemble strategy to synthesize sketches from
photos. The transformation was also applied to the whole
face images and the hair region was excluded.

1.2 Our Approach

In this paper, we develop a new approach to synthesize
local face structures at different scales using a Markov
Random Fields model. It requires a training set containing
photo-sketch pairs. We assume that faces to be studied are
in a frontal pose, with normal lighting and neutral
expression, and have no occlusions. Instead of directly
learning the global face structure, which might be too
complicated to estimate, we target at local patches, which
are much simpler in structure. The face region is divided
into overlapping patches. During sketch synthesis, for a
photo patch from the face to be synthesized, we find a
similar photo patch from the training set and use its
corresponding sketch patch in the training set to estimate
the sketch patch to be synthesized. The underlying
assumption is that, if two photo patches are similar, their
sketch patches should also be similar. In addition, we have
a smoothness requirement that neighboring patches on a
synthesized sketch should match well. The size of patches
decides the scales of the face structures which can be
learned. We use a multiscale Markov Random Fields model
to learn face structures at different scales. Thus, local
patches in different regions and scales are learned jointly
instead of independently as in [5]. This approach can also
be used to synthesize face photos given sketches. Our
sketch/photo algorithm is relevant to [18], which used
MRF to estimate scenes, such as motion and range map,
from images.

During the face sketch recognition stage, there are two
options to reduce the modality difference between photos
and sketches: 1) All of the face photos in the gallery are first
transformed to sketches using the sketch synthesis algo-
rithm and a query sketch is matched with the synthesized
sketches, and 2) a query sketch is transformed to a photo
and the synthesized photo is matched with real photos in
the gallery. We will evaluate both options in Section 3. After
the photos and sketches are transformed into the same
modality, in principle, most of the proposed face photo
recognition approaches can be applied to face sketch
recognition in a straightforward way. In this paper, we
will evaluate the performance of several appearance-based
face recognition approaches.

2 FACE SKETCH SYNTHESIS USING THE

MULTISCALE MARKOV RANDOM FIELDS MODEL

In this section, we describe our sketch synthesis approach
based on local patches. This approach can be easily
extended to face photo synthesis by simply exchanging
the roles of photos and sketches. The steps of our sketch
synthesis algorithm can be outlined as follows. The input is
a face photo and the output is a synthesized sketch:

1956 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 11, NOVEMBER 2009

Fig. 1. Examples of a face photo and a sketch.



1. Perform geometry alignment and transform color
space in the preprocessing step.

2. Patch matching: For each patch yj on the input

photo, find K photo patches f~yljg
K
l¼1 from the

training set best matching yj in appearance, and

use their corresponding sketch patches f~xljg
K
l¼1 as

candidates for the estimation of the synthesized

sketch patch xj corresponding to yj.
3. Build a multiscale Markov network and conduct

belief propagation to estimate the sketch patches
fx̂jg of the input photo.

4. Synthesize the sketch image by stitching the esti-
mated sketch patches fx̂jg.

Each of the above steps will be explained in the following
sections.

2.1 Preprocessing

In the preprocessing step, all the photos and sketches are
translated, rotated, and scaled such that the two eye centers
of all the face images are at fixed position. This simple
geometric normalization step aligns the same face compo-
nents in different images roughly to the same region. Face
photos can be gray or color images. When photos are in
color, we fist convert the RGB color space to the Luv color
space, since euclidean distance in Luv space better correlates
to the perceived change in color.

2.2 Patch Matching

The face region is divided into patches and the neighboring
patches overlap, as shown in Fig. 2. For each patch on the
input photo image, we try to estimate its sketch patch. A
smoothness constraint requires that two neighboring
synthesized sketch patches have similar intensities or colors
at the pixels inside their overlapping region. How to
measure the compatibility between two neighboring
synthesized sketch patches is formulated in Section 2.3.

In order to estimate the sketch patch xj of the input

photo patch yj;K candidate sketch patches f~xljg
K
l¼1 are

collected from the training set. We assume that if a patch ~ylj
found on a training photo is similar to the patch yj on the

input photo in appearance, the sketch patch ~xlj correspond-

ing to ~ylj is considered as one of the good candidates for xj.

The procedure for searching candidate sketch patches is

described in Fig. 3. For each local patch yj on the input

photo, we find its corresponding position on a training

photo. Since face images are not exactly aligned in shape,

the same face components on different images may not

locate exactly at the same position. We cannot directly

sample the patch on the training photo at the same position

as on the input photo. Instead, we set a searching range

around this position indicated by the black dash window in

Fig. 3. Searching inside this range, we find the patch best

matching yj as the sampled patch from this training photo.

Here, we use the euclidean distance between intensities or

colors of two photo patches as the matching measure. Let I

be a photo in the training set and R be a patch inside the

searching range, then the distance is

DR ¼
X

i2R
yjðiÞ � IRðiÞ
� �2

¼
X

i

y2
j ðiÞ þ

X

i

I2
RðiÞ � 2

X

i

yjðiÞIRðiÞ;
ð1Þ

where yjðiÞ and IRðiÞ are the intensities or color vectors at
pixel i on the input photo patch and the patch R,
respectively, on the training photo. After searching through
the entire training set, for each input photo patch yj, we
have a patch sampled from each training photo. Suppose
there are M photo-sketch pairs in the training set. We select
K photo patches best matching yj in appearance from the
M training photos. Each patch on a training photo has a
corresponding patch on its training sketch. We use the
K sketch patches corresponding to the K selected photo
patches from the training set as candidates for the possible
states of xj. An example is shown in Fig. 4.

Patch matching is the most time-consuming part of our
algorithm. This part can be speeded up using integral
computation [19] and 2D fast Fourier transform. In order to
find the patch on a training photo I best matching the input
photo patch yj, the distance in (1) has to be computed for all
possible patches R. For each input photo,

P
i y

2
j ðiÞ only need

to be computed once.
P

i I
2
RðiÞ can be computed efficiently

using the trick of integral computation which first computes
an integral image once and then is able to compute statistics
over any rectangle regions over the image very fast. More
importantly, this term can be computed offline and saved
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Fig. 2. (a) The face region is divided into patches. (b) The neighboring

patches overlap.

Fig. 3. Procedure for searching candidate sketch patches for a patch on

the input photo. For a patch on the input photo, the dash black window is

the searching range on the training photos.



for each training photo. The correlation term
P

i yjðiÞIRðiÞ
costs the most computation since it has to be computed for
each pair of input photo and training photo online.
Fortunately, it is well known that correlation can be
speeded up using fast Fourier transform.

If we simply choose a single training sketch patch whose

photo patch best matches the input photo patch yj in

appearance as an estimate of sketch patch xj, the synthe-

sized sketch image is not smooth with mosaic effect. Also,

because sketch patches are estimated independently, when

estimating a sketch patch, information from the remaining

face region is not considered. This is quite different from the

process of an artist drawing a sketch. An artist often

considers the whole face structure when drawing a small

patch. In our approach, to estimate a sketch patch, we keep

K candidates as its possible values, and also require that

neighboring synthesized sketch patches match well. Thus,

all the sketch patches need to be jointly modeled. The

synthesized sketch image should closely match the input

photo in appearance and be smooth in the meanwhile. To

reach this goal, a Markov network is used to model the

process of sketch synthesis. It will be explained in

Sections 2.3 and 2.5.

2.3 Markov Network at a Single Scale

The graphical model representation of the Markov network

is shown in Fig. 5. The whole face region is divided into

N patches. Each node on the network is a sketch patch or a

photo patch. Let yj and xj be the input photo patch and the

sketch patch to be estimated at face patch j. The

dependency between yj and xj, written as �ðxj; yjÞ,
provides the local evidence for xj. The variable xj is

connected to other sketch nodes in its neighborhood by the

compatibility function �ðxj; xj0 Þ. The joint probability of the

input photo and its sketch can be written as

pðx1; . . . ; xN; y1; . . . ; yNÞ ¼
Y

j1j2

�ðxj1
; xj2Þ

Y

j

�ðxj; yjÞ; ð2Þ

where xi has a discrete representation taking values only on

K possible states, which are candidate sketch patches

f~xljg
K
l¼1 collected through patch matching, as described in

Section 2.2.
The local evidence is computed as

�
�
~xlj; yj

�
¼ exp

�
�k~yj � yjk2=2�2

e

�
; ð3Þ

where ~ylj is the corresponding photo patch of the candidate

sketch patch ~xlj from the training set. If ~xlj is a good

estimation of xj; ~y
l
j should be similar to yj.

Let j1 and j2 be two neighboring patches with overlapping

region A. Let dlj1j2 be the intensity or color vector of the

lth candidate sketch patch ~xlj1 at j1 inside A. Let dmj1j2 be the

intensity or color vector of the mth candidate sketch patch ~xlj2

at j2 inside A. The compatibility function is computed as

�
�
~xlj1 ; ~xmj2

�
¼ exp

�
�kdlj1j2

� dmj1j2k
�

2�2
c

�
: ð4Þ

If both ~xjl
1

and ~xjm
2

are estimations of synthesized patches,

they should have consistent intensities or colors in their

overlapping region.
Given the Markov network, the sketch patches can be

estimated by taking maximum a posteriori (MAP) estimator

x̂jMAP or minimum mean-square error (MMSE) estimator

x̂jMMSE

x̂jMAP ¼ arg max
½xj�

max
½xi;i 6¼j�

P ðx1; . . . ; xN jy1; . . . ; yNÞ; ð5Þ

x̂jMMSE ¼
X

xj

xj
X

½xi;i6¼j�
P ðx1; . . . ; xN jy1; . . . ; yNÞ: ð6Þ

We use belief propagation [20] to do inference. Messages

from local regions propagate along the Markov network to

reach optimal solution. When the network has no loops, (5)

and (6) can be exactly computed using the “message-

passing” rules [18]. The MAP estimate at node j is

x̂jMAP ¼ arg max
½xj�

�ðxj; yjÞ�kM
k
j ðxjÞ; ð7Þ

where Mk
j is the message from the neighbor node k to

node j, and is computed as

Mk
j ¼ max

½xk�
� xj; xk
� �

� xk; ykð Þ
Y

l6¼j

~Ml
k xkð Þ; ð8Þ

where ~Mk
j is Mk

j computed from the previous iteration. The

MMSE estimate at node j is
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Fig. 4. Example of collecting candidate sketch patches from the
training set. (a) A patch on the input photo. (b) Photo patches selected
from the training photos best matching the patch on the input photo.
(c) Sketch patches corresponding to the selected photo patches from
the training set.

Fig. 5. The graphical model of Markov network.



x̂jMSSE ¼
X

xj

xj� xj; yj
� �Y

k

Mk
j xj
� �

; ð9Þ

Mk
j ¼

X

xk

� xj; xk
� �

� xk; ykð Þ
Y

l6¼j

~Ml
k xkð Þ: ð10Þ

When messages pass along the network, a sketch patch
receives information not only from neighboring patches but
also from other patches far away. A detailed description of
belief propagation can be found in [18], [20].

Computing the MAP and MMSE values for a Markov
network with loops is prohibitive. But the above propaga-
tion rules can still be applied to get the approximated
solution. From our experimental results, the MAP estimate
has a better performance while the MMSE estimate often
brings blurring effect. Besides belief propagation, there are
also other approaches, such as graph cut [21], to approx-
imate the optimal solution of Markov Random Fields.

2.4 Stitching Sketch Patches

Since neighboring sketch patches have overlap regions, to
synthesize the whole sketch image, one could average the
neighboring patches. However, this will lead to blurring
effect. Instead, we make a minimum error boundary cut
between two overlapping patches on the pixels where the
two patches match best [22], as shown in Fig. 6. The
minimum cost path through the error surface is computed
with dynamic programming.

2.5 Markov Network at Multiple Scales

In Sections 2.2 and 2.3, we assume that all the image patches

have the same size. A drawback of using a uniform scale of

Markov random field is that it cannot address the long-

range dependency among local patches. When an artist

draws a patch, he usually refers to the larger structure

around that patch. Sometimes even though two photo

patches are very similar, their corresponding sketch patches

might be very different. One example is shown in Fig. 7.

The size of the patch decides the scale of the face structures

to be learned. When the patch is small, some shadow added

by the artist to convey 3D shading information and some

face structures such as the face contour, eyebrows, and the

bridge of the nose might be missed. It seems that these

structures have to be learned using larger patches. How-

ever, patches in large size will lead to distortions and

mosaic effect on the synthesized sketch. To overcome this

conflict, we develop a multiscale Markov Random Fields

model which learns face structures across different scales.

As shown in Fig. 8, a multiscale Markov random fields

model is composed of L layers of random fields,

xð1Þ; xð2Þ; . . . ; xðLÞ, with different resolutions. xð1Þ is the finest

scale random fields with the smallest patch size. xðLÞ is the

coarsest scale random fields with the largest patch size. A

node at layer n is decomposed into s2 nodes at layer n� 1,

where s is the resolution reduction rate. They are defined as

neighboring nodes in different scales. It is assumed that the

distribution of xðnÞ only depends on the neighboring layers:

P
�
xð1Þ; . . . ; xðLÞ; yð1Þ; . . . ; yðLÞ

�

¼
YL

n¼1

�
�
xðnÞ; yðnÞ

�YL�1

n¼1

�
�
xðnÞ; xðnþ1Þ�;

ð11Þ

where yð1Þ; . . . ; yðLÞ are the photo images on different

layers. Their only difference is the patch size. Thus, the joint

probability distribution (2) can be extended by adding the

connection between the hidden variable x
ðnÞ
j and its

neighboring nodes in adjacent scale layers n� 1 and nþ 1:

P
�
xð1Þ; . . . ; xðLÞ; y

�

¼ P
�
xð1Þ; . . . ; xðLÞ; yð1Þ; . . . ; yðLÞ

�

¼ P
�
x
ð1Þ
1 ; . . . ; x

ð1Þ
N1
; x
ðLÞ
1 ; . . . ; x

ðLÞ
NL
; y
ð1Þ
1 ; . . . ; y

ðLÞ
NL

�

¼
YL

n¼1

Y

i

�
�
x
ðnÞ
i ; y

ðnÞ
i

� Y

i;j;m;n

�
�
x
ðmÞ
i ; x

ðnÞ
j

�
:

ð12Þ

When m ¼ n; xðmÞi and x
ðnÞ
j are of the same size and are

neighbors in space. When m ¼ n� 1 , the region covered by

x
ðmÞ
i is part of that covered by x

ðnÞ
j , and �ðxðmÞi ; x

ðnÞ
j Þ is defined

in the same way as (4) by comparing the intensity or color

difference in the overlapping region of two patches. We use

the same belief propagation rules as described in Section 2.3,

except that messages pass between scale layers. We take the

finest resolution layer xð1Þ as the synthesis result.
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Fig. 8. Pyramid structure of the multiscale Markov Random Field model.

Fig. 7. When an artist draws a sketch patch, he often refers to the larger

structure around that patch. In this figure, the two local patches from the

bridge of the nose and the cheek have similar appearance in photos, but

the corresponding sketch patches drawn by the artist are very different.

Fig. 6. Minimum error boundary cut between two overlapping estimated
sketch patches x̂j1 and x̂j2

.



2.6 Discussion

Our sketch synthesis approach is based on local patches. It
does not require that a face photo be well reconstructed by
PCA from the training set, and the photo-sketch transform
can be approximated as a linear procedure as in the global
eigentransformation approach [4]. So it can synthesize more
complicated face structure such as hair which is hard for
global eigentransformation. Hair is an important feature for
entertainment applications of the sketch synthesis algo-
rithm. For the recognition task, in some cases, especially
when two images of the same person are captured long time
apart, e.g., several months or years, hair may not be a stable
feature for recognition since its style may change. However,
under some situations when this interval is not long, hair is
still a distinctive feature for recognition. When the police
ask the witness to generate the sketch of a suspect, hair
feature is often required.

The approach proposed in [5] was also based on local
patches. However, it has several key differences with our
method. First, in [5], sketch patches were synthesized
independently, while in our approach, sketch patches are
jointly modeled using MRF. In our approach, a sketch patch
receives information not only from neighboring patches but
also from other patches far away by belief propagation.
Second, in [5], the size of patches is fixed at one scale.
Experimental results in [5] showed that small and large
patch sizes led to different problems in the synthesis results.
Our approach synthesizes sketch patches over different
scales. Because of these two reasons, our approach can
better learn the long-range face structure and global shape

feature, and generate smoother results. Third, method in [5]
synthesized a local patch through the linear combination of
candidate patches. This brought blurring effect. Alterna-
tively, our approach finally chooses only one candidate
sketch patch as an estimate. We will compare these
approaches through experimental evaluation.

3 EXPERIMENTAL RESULTS

We build a face photo-sketch database for experimental
study. It includes 188 faces from the CUHK student
database, 123 faces from the AR database [23], and 295 faces
from the XM2VTS database [24]. For each face, there is a
sketch drawn by the artist and a photo taken in a frontal
pose, under normal lighting condition, and with a neutral
expression. Some examples are shown in Fig. 9. The data
can be downloaded from our Web site.1

3.1 Face Sketch Synthesis

We conduct the face sketch synthesis experiments on the
three face databases. In the CUHK student database, 88 faces
are selected for training and the remaining 100 faces are
selected for testing. In the XM2VTS database, 100 faces are
selected for training and the remaining 195 faces for testing.
In the AR database, we use the leave-one-out strategy, i.e.,
each time one face is selected for testing and the remaining
122 faces are used for training. In Fig. 10, we show some
examples of sketch synthesis results. We choose examples
from each of the three databases. Please see more results
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Fig. 9. Examples of face photos and sketches from (a) the CUHK student database, (b) the AR database, and (c) the XM2VTS database.

1. http://mmlab.ie.cuhk.edu.hk/facesketch.html.



from our Web site. We use the MAP estimate. Our

multiscale Markov Random Fields model has two layers.
At the first layer, the local patch size is 10� 10. At the
second layer, the local patch size is 20� 20. The face region

is in size of 200� 250. We set �e ¼ 0:5 , �c ¼ 1 in (3) and (4)
throughout the experiments. From (2), (3), and (4), only the

ratio �e=�c actually matters. From our empirical study, good
performance can be achieved when �e=�c takes value

between 0.3 and 0.8.
In Fig. 11, we compare the synthesized sketches after

different numbers of iterations of belief propagation. At

the beginning (zero iteration), a sketch is synthesized from
the sketch patches best matching input photo patches

without considering smoothness constraint. The result is

noisy and has mosaic effect. Based on our statistic, more

than 80 percent of these estimated sketch patches are

subsequently corrected by Markov analysis. Belief propa-

gation quickly converges after five iterations and the

quality of the synthesized sketch is greatly improved after

belief propagation.
In Fig. 12, we compare two different estimation methods:

MMSE and MAP. MMSE estimation has a blurring effect. The

results of MAP have sharper edges and more clear contours,

and are more similar to the sketches drawn by the artist.
In Fig. 13, we compare the sketch synthesis performance

using the one-scale MRF model and the multiscale MRF
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Fig. 10. Face sketch synthesis results: (a) photo; (b) sketch drawn by the artist; and (c) synthesized sketch.



model. Under the one-scale MRF model, when the patch size

is small (10� 10), some shadow texture and face structures,

such as the lower part of the face contour and ear, are missing.

These structures can be learned using patches of larger size.

However, there is distortion and mosaic effect when the

patch size is large (20� 20). Using the multiscale MRF model,

the result has less distortion and mosaic effect compared with

the results learned only at the coarse resolution layer, and

more face structures are synthesized compared with the

results leant only at the fine resolution layer. Based on our

empirical study, there is no significant improvement in the

performance of sketch synthesis when increasing the

numbers of layers to three or more.
In Fig. 14, we compare the sketch synthesis results using

the multiscale MRF model and the global eigentransforma-

tion approach proposed in [4]. Since our synthesis is based on

local patches, it works better for synthesizing local textures

than global transformation. Our results are sharper with less

noise. Global eigentransformation required that the face data

have a Gaussian distribution in the high-dimensional space
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Fig. 12. Comparison of sketch synthesis results using MMSE estimate

and MAP estimate: (a) photo; (b) sketch drawn by the artist;

(c) synthesized sketch using MMSE estimate; and (d) synthesized

sketch using MAP estimate.

Fig. 13. Comparison of sketch synthesis results using the one-scale MRF model and multiscale MRF model. The size of the face region is 200� 250:

(a) face photo; (b) sketch drawn by the artist; (c) synthesized face sketch with patch size of 10� 10; (d) synthesized face sketch with patch size of

20� 20; and (e) sketch synthesized using two-level MRF. The patch size at the first level is 10� 10 and the patch size at the second level is 20� 20.

Fig. 11. Synthesized sketches after different numbers of iterations of

belief propagation. (a) photo, (b) sketch drawn by the artist, (c) after

0 iterations, (d) after 5 iterations, (e) after 40 iterations.



and a testing face photo can be well reconstructed by PCA

from the examples in the training set. However, since human

hair has a large variety of styles, when the hair region is

included, the distribution of face vectors cannot be estimated

as Gaussian and face photos cannot be well reconstructed by

PCA. In Fig. 14, eigentransformation has a much worse

performance on synthesizing hair. The hair region also leads

to errors on the synthesis of other regions in the face. Our

approach has no such constraint. It synthesizes a variety of

hair styles quite well.
In Fig. 15, we compare the face sketch synthesis results

using our approach and the approach proposed in [5]. Liu

et al. [5] used the same database as ours. We choose the

examples which were published in [5] for comparison.

Using our approach, the synthesized sketches are sharper

and cleaner. Large face structures and shape features in

sketches are well captured.

Our sketch synthesis algorithm has a relatively high

computational cost because of patch matching. After being

speeded up using integral computation and 2D fast Fourier

transform as mentioned in Section 2.2, it takes about

3 minutes to synthesize a sketch running on a computer

with 3 GHz CPU. Note that if multiple CPUs are available,

patch matching can be done in parallel, and thus, sketches

can be synthesized faster.

3.2 Face Photo Synthesis

Our approach can also synthesize a face photo, given a

sketch drawn by an artist, by simply switching roles of

photos and sketches. In Fig. 16, we show the face photo

synthesis results. The experiment settings and parameters

are the same as for experiments in Section 3.1.
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Fig. 14. Comparison of the sketch synthesis results of global eigentransformation and the multiscale MRF model when the hair region is included:

(a) photos; (b) sketches synthesized by global eigentransformation; (c) sketches synthesized by the multiscale MRF model; and (d) sketches drawn

by the artist.



3.3 Face Sketch Recognition

At the face sketch recognition stage, there are two strategies
to reduce the modality difference between photos and
sketches: 1) All of the face photos in the gallery are first
transformed to sketches using the sketch synthesis algo-
rithm, and a query sketch is matched with the synthesized
sketches; 2) a query sketch is transformed to a photo and the
synthesized photo is matched with real photos in the gallery.
We will evaluate both strategies in the face sketch recognition
experiments. After the photos and sketches are transformed
into the same modality, in principle, most of the proposed
face photo recognition approaches can be applied to face
sketch recognition in a straightforward way. In this paper,
we will evaluate the performance of several appearance-
based face recognition approaches, including PCA [25],
Bayesianface (Bayes) [26], Fisherface [27], null-space LDA

[28], dual-space LDA [29], and Random Sampling LDA (RS-
LDA) [30], [31].

The 606 photo-sketch pairs are divided into three
subsets. One hundred and fifty-three photo-sketch pairs in
subset I are used for the training of photo/sketch synthesis.
One hundred and fifty-three photo-sketch pairs in subset II
are used for the training of subspace classifiers. When using
strategy 1), the photos in subset II are first transformed to
synthesized sketches using subset I as the training set. Then,
the synthesized sketches and the sketches drawn by the
artist in subset II are used to train subspace classifiers such
as Fisherface and random sampling LDA. Strategy 2) is
similar, except that sketches and photos switch roles. Three
hundred photo-sketch pairs in subset III are used for
testing. The division of the data set is the same as in [4].

In Table 1, we compare the rank-one recognition
accuracy using different sketch/photo synthesis algorithms
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Fig. 15. Comparison of the sketch synthesis results using a nonlinear approach proposed in [5] and our multiscale MRF model: (a) photos;

(b) sketches synthesized by the nonlinear approach proposed in [5]; (c) sketches synthesized by our multiscale MRF model; and (d) sketches drawn

by the artist.



and face recognition methods. We evaluate three sketch/
photo synthesis methods:

. sketch synthesis using global eigentransform: as
described in [4], face photo texture and shape are
first separated, transformed to sketch texture and
shape, and finally combined for recognition;

. sketch synthesis using the multiscale MRF model
(multiscale MRF SS) with strategy 1);

. photo synthesis using the multiscale MRF model
(multiscale MRF SP) with strategy 2).

Sketch synthesis using the multiscale MRF model (multi-
scale MRF SS) achieves better results than global eigen-
transform. Photo synthesis using the multiscale MRF model

(multiscale MRF SP) achieves even better results. These
observations hold even when different face recognition
methods are used. We evaluate six different appearance-
based face recognition methods. Random Sampling LDA
(RS-LDA) always has the best performance over different
sketch/photo synthesis methods.

In Table 2, we compare the cumulative match scores of our

methods with two conventional face recognition methods:

Eigenface [25] and Elastic Graph Matching (EGM) [32] and a

nonlinear face sketch recognition approach proposed in [5].

Eigenface and EGM have very poor recognition performance

on our data set, with the first match accuracies of no more

than 30 percent, which is consistent with results shown in [3],
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Fig. 16. Sketch synthesis results: (a) sketch drawn by the artist; (b) photo; and (c) synthesized photo.



[4]. Liu et al. [5] proposed a face sketch recognition approach
which synthesized sketches based on local patches and used
kernel-based nonlinear LDA classifier for recognition. It had
the first match rate of 86.7 percent and the tenth match rate of
99 percent. Our approaches significantly improve the first
match to 96.3 percent and the tenth match to 99.7 percent.

In this work, we assume that all faces are in a frontal
pose, with normal lighting and neutral expression, and
have no occlusions. If the input photo is taken under a very
different condition than the photos in our training set, our
sketch synthesis algorithm may not work well with these
significant variations. Solving this problem is a direction of
future study. In order to match a normal sketch with photos
with significant variations on poses, lightings, expressions,
and occlusions, it is better to first transform the sketch to a
pseudophoto. Since we can choose the photos in training
set as those taken under a normal condition, there is no
difficulty at this step. The synthesized photo from a sketch
looks like a photo taken under a normal condition. Then, at
the step of matching the pseudophoto with photos taken
under different conditions, the difficulties caused by these
intrapersonal variations have to be overcome. However, it
becomes a traditional photo-to-photo face matching pro-
blem without special consideration on sketches. Many
studies have been done to solve these problems for
photo-to-photo face matching.

To illustrate this, we evaluate the performance of face
sketch recognition on the AR database which includes face
photos taken under different lighting conditions, with
different expressions and occlusions. Each face has one
photo taken under a normal condition, two photos taken

with different occlusions (sun glasses and scarf), three
photos taken under different lighting conditions, and three
photos taken with different expressions. See more details in
[23]. The 123 faces are divided into two subsets with
78 faces in the training set and 45 faces in the testing set.
Random sampling LDA classifiers are trained to suppress
the effect of these intrapersonal variations. For a face sketch
in the testing set, its pseudophoto is synthesized using the
sketches and photos taken under a normal condition in the
training set. With the random sampling LDA classifiers
learned from the training set, the pseudophoto synthesized
from a sketch is used as a query image to match photos with
different variations of lightings, expressions, and occlusions
in the testing set. The recognition accuracies under different
conditions are reported in Table 3. For comparison, instead
of using a sketch, a photo taken under a normal condition is
also used as query with the same classifiers. Its recognition
accuracies are also reported in Table 3. Compared with the
recognition accuracies reported in Table 2, the variations of
lightings, expressions, and occlusions make the recognition
task more difficult. Random sampling LDA significantly
improves the recognition performance compared with
directly matching images using correlation. However, the
difference between using a pseudophoto synthesized from a
sketch and a real photo taken under a normal condition as
query is not very significant. This means that in order to
solve the problems of variations caused by lighting,
expressions, and occlusions in face sketch recognition, we
can use the techniques which have been developed to solve
these problems in photo-to-photo matching.
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TABLE 1
Rank-One Recognition Accuracy Using Different Face Sketch/Photo Synthesis Methods

and Face Recognition Methods (in Percent)

See more detailed description in the text.

TABLE 2
Cumulative Match Scores Using Different Face Sketch Recognition Methods (in Percent)

TABLE 3
Face Recognition Accuracies with Variations of Lighting, Expressions, and Occlusions (in Percent)

The recognition accuracies using sketches and photos taken under normal conditions as queries are compared. See more details in the text.



4 CONCLUSION

In this paper, we proposed a novel face photo-sketch

synthesis and recognition system. Given a face photo (or a

face sketch), its sketch (or photo) can be synthesized using a

multiscale Markov Random Fields model, which learns the

face structure across different scales. After the photos and

the sketches have been transformed to the same modality,

various face recognition methods are evaluated for the face

sketch recognition task. Our approach is tested on a face

sketch database including 606 faces. It outperforms existing

face sketch synthesis and recognition approaches.
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