Boosting 3D Object Retrieval by Object Flexibility
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ABSTRACT

In this paper, we propose a novel feature, called object flex-
1bility, at a point of a 3D object to describe how the neigh-
borhood of this point is massively connected to the object.
We show that this feature is stable to the deformation of ob-
jects’ articulations, in addition to commonly concerned lin-
ear transforms, i.e., translation, scale, and rotation. A shape
descriptor is obtained based on this feature using the bag-
of-words model. As an application, the descriptor is used to
perform 3D object retrieval. Extensive experiments demon-
strate its superiority over a variety of existing 3D shape de-
scriptors in the retrieval of articulated objects, as well as its
enhancement of other shape descriptors to retrieve generic
3D objects.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
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INTRODUCTION

3D data are now widely recognized as the upcoming wave
of digital media. 3D object retrieval rapidly becomes a key
issue in this new multimedia content processing, and attracts
more and more research interests. Some 3D object bench-
marks and experimental retrieval systems have been made
available, such as the Princeton shape benchmark and its
associated search engine [9], and the NTU 3D model bench-
mark and its corresponding retrieval system [1]. The reader
is referred to [10] for a comprehensive survey of this research.

The shape of a 3D object can be with arbitrary scale, lo-
cation, and orientation. For generic 3D object retrieval, a
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retrieval method has to either perform a pose normalization
process or use shape descriptors that are inherently invariant
to linear transformations (translation, rotation, and scale).
Much work has been presented in solving these problems so
far. Shilane et al. compared twelve shape descriptors in [9].
Bimbo and Pala included five descriptors in their experimen-
tal analysis, which fall into statistics-based, geometry-based,
and view-based categories [2].

On the other hand, less attention has been paid to the
problem of non-linear shape deformations caused by ob-
jects’ articulations. Zhang et al. carried out the first work
of 3D articulated object retrieval using medial surfaces and
their graph spectra, and provided a 3D articulated object
database, the McGill 3D shape benchmark [11]. The main
problem in the graph-based method is that it is sensitive to
topological changes which are common in generic 3D mod-
els. Jain and Zhang tried to achieve articulation invariance
in [5] by using the spectral embedding of an affinity ma-
trix. Ton et al. used the continuous eccentricity transform
to make their method insensitive to shape articulations [4].
However, these two methods [5][4] are sensitive to objects
with disconnected parts or outliers.

In this paper, we propose a novel feature, called object
flexibility, at a point of a 3D object to describe how the
neighborhood of this point is massively connected to the
object. This feature is stable to both linear transforma-
tions and non-linear deformations caused by objects’ artic-
ulations. Based on this object flexibility, we propose a new
shape descriptor for 3D object retrieval. Extensive experi-
ments show that it outperforms a variety of existing shape
descriptors in the retrieval of articulated 3D objects, which
are often natural objects like animals, plants, and humans.
Besides, combined with existing shape descriptors, it also
helps to obtain better performance of retrieving generic 3D
objects.

2. OBJECT FLEXIBILITY

In this section, we first define the object flexibility math-
ematically, and then we discuss how to compute it and to
form the final shape descriptor based on it.

2.1 Definition

Definition 1. Given a radius r, let Cp, C O be the set
of points within a sphere S° centered at a point p of a 3D
object O. The object flexibility at p is defined as:

polp) = Li92XX)

r

(1)



Figure 1: Illustration of the flexibility.
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Figure 2: (a) A 3D model of an ant. (b) Sampled
points of the ant. (c¢) The flexibility distribution on
the ant.

where X is the data matrix consisting of the 3D coordinates
of all the points in Cp -, one point per row, and Eigs(-) is
a function that returns the second largest eigenvalue of a
square matrix.

Consider a small part enclosed by S2, centered at a point p
on the leg of an ant in Fig. 1. Suppose that the three dimen-
sions denoted by d1, d2, and d3 are arranged as d1 > d2 > ds
according to the variance on each dimension. In the defini-
tion, we estimate the normalized variance in the direction
dz2, which can be a potential measure about how the local
part (a segment of the ant’s leg) is massively connected to
the object (the ant), or how easily that part of the object
can be bent. The smaller p,(p) is, the more tenuous that
part is with more “bending ability”.

Note that we do not use the variance in d; because it
tends to be constant for different parts of an object when r
is fixed. We also discard the third eigenvalue since it may
degenerate to zero when the points in C) ;- lie in a plane.

2.2 Computation of the Flexibility

Before computing the flexibility, we need to determine the
radius r and the points of an object where their flexibilities
are computed.

Since the flexibility describes local shape characteristics,
we have to select enough points of a 3D model to obtain a
complete shape description. For an object represented by
voxels, we select all its surface points, each of which has less
than 13 non-zero voxels among its 26 neighbor voxels. In our
experiments, 590 surface points of a 3D model are left on av-
erage after filtering out inner points in the McGill database
[11], where each model is represented by 128> voxels. For an
object represented by meshes in the Princeton shape bench-
mark [9], 2000 surface points are sampled using a scheme
presented in [8] in the first round, and then 500 points are
randomly selected from them. We use all the 2000 points
to compute the flexibilities of the 500 points. One example
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Figure 3: (a) Flexibility variance versus radius. (b)
DCG versus size of the codebook.

of the sampled points from a mesh model is shown in Fig.
2(b).

Next, a proper radius r is determined for each selected
point. It is easy to see that

lim pr(p) =0, lim p.(p) =0, (2)

for p € O, which further result in

3)

lir% n(r) =0, lim n(r) =0,
where

(4)

Therefore, there exists a r* such that the variance n(r*) is
maximized. The goal of maximizing n(r) is to obtain the
richest descriptor on flexibility for a given 3D model.

Fig. 3(a) shows the flexibility variances n(r) versus dif-
ferent radii, 0.1R;,0.2R;,--- ,1.0R;, 1 < i < 10, for 10 ran-
domly selected objects (dashed lines), where R; is the radius
of the i-th 3D model defined as the average distance from
all the surface points to the center of mass. The solid curve
in Fig. 3(a) denotes the average variances of 100 randomly
selected objects. This figure shows that the maxima of the
curves mainly fall into a relatively small range of r, indicat-
ing that the discriminative ability of p.(p) is insensitive to
the choice of r. In practice, one can compute the flexibility
of a point p using some r € [0.2R, 0.4R)]. Fig. 2(c) shows the
flexibility distribution of an ant computed using r = 0.3R.
Alternatively, we can define a more elaborate measure to
explore the flexibility characteristic thoroughly by using a
series of radii to form a flexibility vector at a point. We
discuss it in the next section.

2.3 A Flexibility Descriptor

Let r = [r1,72,--- ,rx]%, r1 <72 < --- < 7, denote the
radii of a series of concentric spheres centered at some point
p. A flexibility vector p:(p) at p is then obtained by

n(r) = Varpeo(pr(p))-

()

Note that a 3D model generates a number of flexibility vec-
tors and two models usually have different numbers of such
vectors. To organize these vectors into a global shape de-
scriptor, the bag-of-words model [3] is adopted here. We use
the k-means algorithm to cluster the flexibility vectors from
half of the objects in a database to N clusters, the centers of
which compose a codebook {ci,c2, - ,cn}. Each flexibil-
ity vector is then represented by a codeword c; if it is clos-
est to ¢;, and a 3D model is described by a histogram over

pr(D) = [prs (P), pra(B), -+, pry ()]



{c1,c2, - ,cn} obtained by counting the codewords repre-
senting all the flexibility vectors of the 3D model. Finally,
the object flexibility descriptor is formed by normalizing the
histogram.

To measure the dissimilarity between two flexibility de-
scriptors P and @, we use the symmetric Kullback-Leibler
divergence defined as

dispi(P||Q) = Drr(P||Q) + Dr1r(Q||P), (6)

where
N

Drr(PIIQ) = Y P(i)log

=1

P(i)
Q)

With this descriptor, we can conduct 3D object retrieval
by computing the dissimilarities between a query and every
object in a database. Using every object as the query in the
McGill database [11] and the Princeton training set [9], Fig.
3(b) shows the average retrieval performance (evaluated by
the discounted cumulative gain (DCG) [9]) of the flexibility
descriptor. We can see that DCG remains consistent in quite
a wide range of the size of the codebook. We choose N = 10
for the McGill benchmark and N = 60 for the Princeton
benchmark in our experiments.

2.4 Enhancing Existing Methods

The flexibility descriptor performs very well in retrieving
articulated 3D objects (see Section 3). In addition, it can en-
hance existing shape descriptors when combined with them
to retrieve generic 3D objects. A majority of existing shape
descriptors represent a 3D shape without explicit geometric
meanings, while the flexibility descriptor measures a par-
ticular geometric characteristic, the flexibility. So a more
complete shape description of a 3D model can be obtained
by combining it with other descriptors.

A natural way to combine two shape dissimilarity mea-
sures is

(7)

dis = a~dis/Fl +(1- a)-dz‘s/omer,

(8)

’
where disg; is a normalized version of disg; defined in (6)

such that it is in [0, 1], dis/Other is some other dissimilarity
measure, also normalized into [0, 1], and « is a weighting
factor to balance the two measures with 0 < o < 1.

3. EXPERIMENTS

Three groups of experiments are carried out in this paper,
each with emphasis upon different requirements for a shape
descriptor. In these experiments, we compare our flexibility
descriptor (FD) with four other shape descriptors, the source
codes or executable programs of which have been provided
by the authors. They are the statistics-based shape distribu-
tion D2 [8] and one of its extended descriptors, the mutual
absolute-angle distance histogram (AAD) [7], the geometry-
based spherical harmonic descriptor (SHD) [6], and the view-
based light field descriptor (LFD) [1]. The retrieval re-
sults are quantified using the Princeton shape benchmark
(PSB) evaluation tools of first tier (FT), second tier (ST),
e-measure (EM), discounted cumulative gain (DCG), and
the precision-recall plot [9].

The first group of experiments is designed to measure the
robustness of the shape descriptors to nonlinear shape trans-
formations caused by objects’ articulations, with the McGill
articulated shape database. This database consists of 255
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Table 1: Retrieval performance of different shape
descriptors for retrieving 3D articulated objects.

FD LFD SHD AAD D2
FT 0.560 0.508 0.478 0.439 0.419
ST 0.720 0.697 0.641 0.624 0.605
EM 0.530 0.497 0.464 0433 0.414
DCG 0.844 0.831 0.804 0.768 0.764
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Figure 4: Precision-recall plots of different shape
descriptors for retrieving 3D articulated objects.

models in 10 classes. Every model is used as the query.
Table 1 shows the average retrieval results of the five de-
scriptors evaluated by FT, ST, EM, and DCG. Fig. 4 is the
precision-recall plots of the five descriptors. We can see that
our FD outperforms the other descriptors.

In the second group of experiments, we use the whole
McGill shape benchmark (MSB) which includes the 255 ar-
ticulated objects used in the previous experiments and the
other 200 objects with few or no articulations. Our FD it-
self does not perform very well in retrieving such generic
objects. However, significant improvements can be achieved
when it is combined with other descriptors using (8) (o = 0.5
is chosen here). Fig. 5 shows the retrieval results of LFD,
SHD, AAD, and D2 with and without our FD combined,
evaluated by FT, ST, EM, and DCG. With the improved
performance, all the four shape descriptors are enhanced by
our FD under different evaluations. The improvements are
due to the fact that the four shape descriptors describe 3D
models from a general viewpoint only, without considering
particular geometry properties, but the fusion of them with
our FD provides a more complete description.

The reader may wonder if the combination of two of the
previous descriptors can also give similar or even better re-
sults than the combination of our FD with one of the pre-
vious. Since LFD works best among the previous four de-
scriptors in our experiments as well as in [9] and [2], we use
it as the baseline and combine each of the other descrip-
tors with it. The retrieval results are given in Fig. 6(a),
which are the precision-improvement-recall plots obtained
from the precision-recall plots by subtracting the precision
of LFD from the precisions of the four combinations. Fig.
6(a) indicates that our FD with LFD not only outperforms
the other combinations, but also has improvement over the
original LFD in a wide range of the recall.

The third group of experiments is conducted on the Prince-
ton shape benchmark (PSB) training set [9], which contains
907 models in 90 classes. The majority of the models are
rigid, man-made objects without much requirements for a
shape descriptor to be articulation invariant. Even though
it seems that the articulation invariant property of our FD
is not necessary in such a case, it is still able to enhance
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Figure 5: Retrieval performance of different shape
descriptors with and without FD on MSB.

the other shape descriptors to some extent. Fig. 6(b) shows
the precision-improvement-recall plots by fusing FD, SHD,
AAD, or D2 with LFD tested on the PSB training set. Ob-
viously, LFD combined with FD improves the performance
of LFD itself.

More specifically, there are improvements in 72 classes in
the PSB training set where LFD with FD performs better
than LFD itself. Among them, 17 classes are with more than
5% improvements. These improvements mainly happen to
natural objects such as tree, apatosaurus, and face, and ob-
jects with large intra-class variances such as city, shoe, rect-
angular, roman building, and antique car.

The extensive experiments demonstrate that our flexibil-
ity descriptor is suited for retrieving articulated objects, es-
pecially natural objects. For generic object retrieval, it pro-
vides a favorable complementary to other shape descriptors.

The feature extraction times of FD, LFD, SHD, AAD,
and D2 are about 1.12s, 2.69s, 2.25s, 0.46s, and 0.23s, re-
spectively, on average for each object in the PSB training
set. The programs are run on an Intel Pentium(R) 3.20GHz
CPU with 2 GB RAM.

4. CONCLUSIONS

We have proposed a new feature, called object flexibility,
to measure local shape characteristics of an object about
how a local part is massively connected to the object. Based
on this feature, a new shape descriptor is obtained, which
is stable to shape deformations caused by articulations. Ex-
tensive experiments show that this shape descriptor outper-
forms four previous popular shape descriptors in retrieving
articulated objects. For generic 3D object retrieval, it can
be combined with them to obtain better performance.
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Figure 6: Precision improvement comparison when
FD, SHD, AAD, or D2 is combined with LFD on
MSB (a) and on the PSB training set (b).
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