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Abstract—This paper studies phase singularities (PSs) for image
representation. We show that PSs calculated with Laguerre-Gauss
filters contain important information and provide a useful tool
for image analysis. PSs are invariant to image translation and
rotation. We introduce several invariant features to characterize
the core structures around PSs and analyze the stability of PSs to
noise addition and scale change. We also study the characteristics
of PSs in a scale space, which lead to a method to select key scales
along phase singularity curves. We demonstrate two applications
of PSs: object tracking and image matching. In object tracking,
we use the iterative closest point algorithm to determine the cor-
respondences of PSs between two adjacent frames. The use of PSs
allows us to precisely determine the motions of tracked objects.
In image matching, we combine PSs and scale-invariant feature
transform (SIFT) descriptor to deal with the variations between
two images and examine the proposed method on a benchmark
database. The results indicate that our method can find more
correct matching pairs with higher repeatability rates than some
well-known methods.

Index Terms—Image matching, image representation, object
tracking, phase singularity, scale space, transformation invariance.

1. INTRODUCTION

NE of the fundamental problems in image processing and
O computer vision is image representation. A good repre-
sentation should be compact and stable to noise addition, trans-
formations, and image deformations, while providing rich and
distinctive information for image processing and understanding
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tasks. The phases, estimated by convolving images with com-
plex filters, prove to be robust features with respect to noise ad-
ditions and transformations [1]-[3]. Phases can smooth shading
and brightness variation due to its invariant nature to ampli-
tude [4]. Moreover, phases contain rich information of an input
image. It is shown that one can recover the original image to a
large extent by using phase information only (magnitudes are
set to unity) [5]; on the other hand, if magnitudes are retained
and phases are set to zero, the recovered image is completely in-
discernible. Phases have found successes in many applications,
such as disparity estimation of stereo [2], matching [4], [6], and
face recognition [7].

Phase singularity (PS) refers to a point where a complex
signal equals zero. In most previous phase-based work, PSs are
generally regarded as unfavorable and unreliable positions [8].
The usual treatments fail at these positions as phases change
abruptly around them and cannot be estimated. In [8] and
[3], the authors analyzed the stability of phase to geometrical
deformations, and concluded that the occurrence of PSs is one
of the main causes of instability and PSs should be discarded.

Different from the classical view, in this paper, we find that
PSs (estimated by using the Laguerre-Gauss filter) contain im-
portant information of an image and can provide an efficient
tool for image representation and processing. Unlike direct use
of phase information as in [4], [6], [8], and [3], our focus is on
where and how PSs happen. We prove that PSs are invariant to
translation and rotation, and find that the positions of PSs may
contain nearly complete information for reconstructing the orig-
inal image up to a scale. We study the core structure around a
PS and introduce several invariant measures to characterize its
core structure. We analyze the stability of PSs with noise addi-
tion and scale change. By using multiscale space analysis, we
generalize PS points into PS curves. This allows us to select key
PS points along the PS curves and determine their characteristic
scales. We develop two applications of PSs, object tracking and
image matching. In the first application, we determine the corre-
sponding PSs on the tracked objects by using the iterative closest
point (ICP) algorithm [9]. The use of PSs enables us to precisely
determine the positions and the poses of the tracked objects. In
image matching, we adopt the popular scalable invariant feature
transform (SIFT) features [10] for robust PS matching. The re-
sults show that our method can find more correct matching pairs
with higher repeatability rates than the well-known detector of
Lowe [10]. A small portion of this study has been published in
a conference paper [11]. Although the discussions and analysis
are limited to the PSs estimated by the LG filter, many results

1057-7149/$26.00 © 2009 IEEE



2154

and methods in this paper can be generalized to other complex
filters.

We also note that PSs have been intensively studied in physics
and optics. PSs, also known as dislocations [12], defects [13], or
optical vortices [14], prove to be an effective tool for describing
and analyzing various physical phenomena such as rainbows,
tide waves [15], nonlinear optics [14], condensed-matter [13],
and black-body radiation [16]. More recently, Wang et al. used
PSs to measure the displacement of speckle patterns, which is
referred to as the Optical Vortex Metrology [17], [18].

II. PHASE SINGULARITY

Mathematically, phase is defined as the argument
6 = arctan(a/b) of a complex signal a + ¢b. Phase singularity
refers to a point where the complex signal equals zero and the
phase cannot be estimated. For a 2-D image I(z,y), we can
obtain its complex representation I (z:, /) by convolving I(z, y)
with a 2-D complex filter T(z,y) = T,.(z,y) + iT;(z,y)

I(z,y) =1(z,y) « T(z,y)

where “x” represents convolution operation.
In this paper, we adopt the Laguerre-Gauss (LG) filter [19]

.’172+y2
exp | — 252

where o is a parameter of scale. This filter has been used in
Wang et al.’s work on optical vortex metrology [17], [20]. Al-
though we use the LG filter in this paper, many results can be
applied or generalized to other complex filters, such as steerable
filter [21], Gabor filter [22], [23], Hilbert transform [4], [5], and
Hermite transform [24].

The real and imaginary parts of the LG filter correspond to
the partial derivatives of a 2-D Gaussian function G(z,y) =
1/(270?) exp(—(z* + y?)/(20?)), which have been widely
used for edge detection and scale space analysis [25], [26]

T+ yi

LG(.’IZ7y7J> = 2

2mod

Re{LG(z,y)} = Ga(z,y)
Im{LG(x,y)} = Gy(x,y)-

3)
“4)

Physiological evidence indicates that the profiles of visual re-
ceptive fields in the primate eye can be approximated by the
Gaussian derivatives [27].

Let E(z,y) = I(z,y) * G(z,y) denote the Gaussian
smoothing image. We have E.(z,y) = I(z,y) * G,(x,y) and
E,(z,y) = I(z,y) * Gy(z,y). Thus, the complex image can
be decomposed as

I(z,y) = E.(z,y) +iE,(z,y). Q)

The above formulation (5) indicates an efficient method to ob-
tain 7 by calculating the partial derivatives of E(x,y). This can
also be generalized to the higher order derivatives, for example

The Fourier transform of the LG filter (2) is given by

H—G(fzafy) = 27r(ifz - fy)exp(—27r202(f3 + fyZ)) @)
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(a) Original image (b) Smooth image

(c) Phase singularities
N

Fig. 1. (a) Original image. (b) Gaussian smoothing image E/ (2, y) with level
sets. The scale parameter ¢ = 12. (c) Filtered image |I(x, y)| with zero-
crossing lines. The black lines in (b) denote the level-sets of E(x, y). The di-
amonds and squares in (b) and (c) represent extreme and saddle PS points, re-
spectively. The solid and dash lines in (c) represent the zero-crossing lines of
the real and imaginary parts of I(«, y), respectively.

It can be seen from (7) that 1) the LG filter is a band-pass
filter, and its bandwidth is determined by the scale parameter o.
This allows us to control the density (number) of PSs in I(z, y)
by changing o; 2) the LG filter is DC free, which makes it ro-
bust to homogeneous illumination variations; 3) the LG filter is
“self-Fourier” in the sense that it has the same functional form
as its 2-D Fourier transformation (only certain parameters are
changed or inverted).

As another choice for calculating (1), we can calculate
the Fourier transform of I(z,y) first, then multiply it with
LG(fz, fy), and finally obtain the complex image I(z,y) by
taking the inverse Fourier transform of the multiplication.

PS points, or PSs for short, are the positions where I (z,y) =
0. Formally, we use PS(I,0) = {(z,4y)|1(x,y,0) = 0} to de-
note the set of PSs. PSs can also be seen as the intersection points
of two zero-crossing curves, E,(z,y) = 0 and E,(z,y) = 0.
An example of a LG-filtered image and the associated PSs are
shown in Fig. 1. An important property of PSs are their in-
variance to certain transformations described by the following
theorem.

Theorem 1: The translated and rotated version of an image
has the same PSs as those in the original image.

The proof of Theorem 1 is straightforward. Although the in-
variance does not hold for image scaling, we will analyze how
PS points are affected by image scaling in Section III-A. The
image scaling problem can be further solved in a solid frame-
work through key PS selection in Section III-C. Small noise ad-
dition or image distortion can change the positions of PS points.
However, they are topologically-stable points, and small pertur-
bation usually cannot eliminate or create PS points [28]. We an-
alyze the stability of PS points to noise addition in Section II-C.

A. Core Structure of PSs

In this section, we study the core structure of PSs and intro-
duce several invariant measures to characterize their core struc-
tures. These measures have their roots in physical studies [16],
[17], and are invariant to certain transformations. We also dis-
cuss the relation among different types of PSs, and show how
PSs are related to level-sets of Gaussian smoothing image and
zero-crossing lines of complex image.

In this paper, we mainly consider PSs with nonsingular Hes-
sian matrices. These PSs can be divided into two classes: ex-
tremes and saddles, which correspond to the extremal and saddle
points of E(x,y), respectively (shown as diamonds and squares
in Fig. 1). Examples of extreme and saddle points are given in
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Fig. 2. Core structure of PS points. (a) An extreme point (137.1,99.8) in
Fig. 1(b). (b) A saddle point (86.3, 156.9) in Fig. 1(b). Gray lines represent
the level-sets of E(x,y). The solid lines and dash lines represent the real and
imaginary zero-crossing lines of I(x, y), respectively.

Fig. 1(b) and (c). For convenience, we call the lines with con-
stant density in the Gaussian smoothing image E(z,y) as level
sets, and the lines with zero real (imaginary) parts of 7(x,y)
as real (imaginary) zero-crossing lines. Each extreme point is
encircled by a set of closed level-sets [Figs. 1(b) and 2(a)]. A
saddle point is the self-intersection of a level-set [Figs. 1(b)
and 2(b)]. PSs also correspond to intersection points of real and
imaginary zero-crossing lines [Figs. 1(c) and 2]. An extreme
point corresponds to a local maximum or minimum value of
E(z,y) with the two zero-crossing lines intersecting at it, while
a saddle point has a local maximum value in one zero-crossing
line and a minimum value in another.

It is easy to see that the Jacobian matrix of the real and imag-
inary parts of I(z,y) equals the Hessian matrix of F(z,y)

R Re{LG(z, z
J(U(z,y)) = [Im}LGgiﬂzﬁ

Re{LG(z,y)}y
Im{LG(z,y)}y

- [gm gji] = H(E(z,y)).

yr

®)
The above matrix is also called vorticity in physics [16]

Q(p) = VRe{LG(z,y)} x VIm{LG(z,y)}

= J(I(z,y)) = H(E(x,y)). ©

The sign of vortex p is defined as the sign of the determinant
of vorticity matrix [16], [29]: s(p) = sgn(E.oFyy — E2,).
In this sense, extreme points are positive and saddle points are

negative. The ropological charge of p is defined as

1
c(p) = %ﬁdﬂ(fmy) (10

where C' is a counter-clockwise closed curve enclosing
p. The topological charge is positive when the phase in-
creases along C. c¢(p) must be an integer. Recall that
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6(z,y) = arctan(Ey(z,y)/E.(z,y)). For an extreme point,
(z,y) increases along C except at the abrupt change from 7
to —m [Fig. 2(a)]; while for a saddle point, 0(x,y) decreases
except at the abrupt change from — to 7 [Fig. 2(b)]. Thus, ¢(p)
has the same sign with s(p). In fact, the topological charge is
always +1 at an extreme point. At a saddle point, if the number
of zero-crossing lines connected with it is 2k, its topological
charge is 1 — k, where k is a positive integer. The signs of
neighboring PSs satisfy the following theorem [29].

Theorem 2: Two adjacent PSs along a zero-crossing (real or
imaginary) line have opposite signs.

The above theorem can be verified in Fig. 1(c), where a dia-
mond (an extreme point) always has squares (saddle points) as
its neighbors, and vice versa. One can refer to [30] for an exten-
sive study on the topological relations among saddles, extremes
and level-sets. [16] describes a solid theoretical study on the ge-
ometry and statistics of PS points, such as density, curvature and
correlation. Their results indicated that the statistics of PSs de-
pend on the frequency spectrum of E(xz,y).

We use the directions of zero-crossing lines ¢, and 6, to de-
scribe the orientation of a PS point. For a real zero-crossing line
(such as the solid line in Fig. 2)

f; = arctan d_:c = —arctan Eay
L dy) E.o

and for an imaginary zero-crossing line (such as the dashed line
in Fig. 2)

d E
0y = arctan &) = —arctan LEAN
dy E.y

The angle between two zero-crossing lines is calculated by [17],
(18]

Y

12)

Opr = |61 — 6s]. (13)

The real and imaginary parts of a complex signal near a PS
can be approximated by two planes [17], [20]

(14)
5)

Re{l(x,y)} ~a,z + by + ¢,
Im{1(z,y)} ~a;x + by + c;.

In this way, the level-sets of |I(x,)| around a PS can be ap-
proximated by a set of concentric ellipses, whose eccentricity
is estimated by [17], [20]: see (16), shown at the bottom of the
next page.

It is not difficult to verify that vortex’s sign s, vorticity deter-
minant |{2[, crossing angle #ry, and eccentricity e are invariant
to the in-plane transformations of rotations and translations [17],
[18].

B. Image Reconstruction

PS points contain nearly complete information of an image. In
[31], Kanters et al. developed a method to reconstruct an image
from multiscale critical points (corresponding to PS points).
However, they required the derivatives at critical points for re-
construction, and did not discuss that under what conditions the
image can be reconstructed. Here we show that generally it is
possible to reconstruct an image up to a scale if enough “inde-
pendent” PS points {py, (Zm, Ym,om)} can be obtained. Sup-
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pose that I(x,y) can be expanded into a polynomial up to order
n

I(z,y) = ai,ja:iyj. a7

2

i,J
(n>i+j>0)

The problem of recovering I(z,y) is then equivalent to deter-
mining the coefficients a; ;’s. By convolving the image with the
LG filter, we have

E, =1(z,y) x Gz(z,y)

-/ 2: ai3 (0 = w)'(y — o)

(n>1+j>0)
X Gz (u,v)dudv (18)
and
E, =1(z,y) * Gy(z,y)

-/ > aste— o)

(n>1+]>0)
X Gy(u,v)dudv.

oS} " 1,2
/ exp (——2> dx
oo V27O 20

_ J(n=Dlo™, niseven
10, n is odd

19)

Since

G" (o) =

(20)

where n!! is the double factorial defined by
n(n—2)...3-1, nisodd
n(n—2)...4-2, niseven
1, n=-1,0

n!l =

21

we have

1173/7

/ / & — u)i(y — v)I Go(u, v)dudv

/_w Nere: xp< 2;) (x — u)idu

= (zi:iCk(—l)ika:kGikH(a))
=

(

(22)

-

j@@w*ww*m)
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and

(z,y,0
/ / o)
wr exp( gyx_u)du
/O:o gt P <—%) (y —v)ldv
=—= <Z Cr(—1)"~ kszi—k(a))

' (Z J’Ck(—l)jkyijkH(U)) :
k=0

It is impossible to uniquely reconstruct image I(z,y) from
PSs. This is because I(z,y) and al(z,y) (o # 1 is a constant)
have the same PSs. However, we can determine b; ; = a, j/ao,0
from enough PSs, where the number of variables {b; ; } is (n +
1)(n + 2)/2 — 1. In an extreme case, for a completely flat
image with constant density, every pixel becomes a PS. We
cannot estimate the pixel density from PSs. For every PS point
P (Lms Ym, Om ), We can obtain two linear equations for b; ;

Z Mi{j(xmvym70m)bi,j

2%

—v) Gy (u, v)dudv

(23)

(n>i4i>1)
= — M o(Zm; Ym, Om) (24)
Z M7 (T, Yo, O )bi

(n>z+]>1)
= M0,0($m7ym7am)- (25)

1 2

Use two column vectors v,, and wv;, to represent the
coefficients M1 (T Y, am) and M2 (T Yy Om),s
n > 1+ j > 1, respectively. Then we only need to find
a certain number of PS points {p,, }2_,, such that the matrix
V = [vho}, ... v}, v3]T hasarank of (n+1)(n+2)/2—1.
This results in a sufficient number of equations to solve for
{bi;}. It is easy to see that the number of points is at least
[(n? + 3n)/4].

The above analysis indicates that PSs, the abnormal points,
can provide a nearly complete description of an image up to a
scale. In spite of the polynomial form, we can also reconstruct
the image based on the coefficients of discrete Fourier transfor-
mation (DFT). The details are omitted due to space limitation.

C. Stability of PSs to Noise

Small perturbations usually do not create new PS points or
eliminate existing ones, since PS points are individually topo-

aZ+a? + b2+ b7 —

((a? +a? — b —

b2)2 + 4(apb, + a;b;)2)t/?

a2 +a? + b2 + b7 +

o= \i-

(@ + a7 =02 -

(16)

b2)2 + 4(arb, + azb;)2) /2
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logically stable [28], [32], but they can cause the changes of the
positions of PSs. In this section, we study the stability of PSs
to noise addition. It should be mentioned that our stability anal-
ysis is different from that in [3]. Their focus is on the changes
of phases, while ours is on the changes of PSs’ positions.

Let N (z,y) be the noise added to image I(z,y), and p(z,y)
be a PS point in I(z,y). Then the noisy image is I'(z,y) =
I(xz,y) + N(z,y), and PS p(z,y) moves to a new position de-
noted by p/(z’,y’) in I'(x,y). Our objective is to estimate the
gradient vector Vx = [dz,dy]”, where dv = 2’ — x and
dy = y' — y are the displacements. Applying the LG filter to
I'(x,y), we have

I'(w,y) = (I(z,y) + N(z,y)) * LG(z,y)

I(z,y) + N(z,y).

(26)

Assume that N(z,y) is i.i.d. (independent and identically dis-
tributed) additive Gaussian noise with mean 4 and standard de-
viation 3. We take N = N,. + ilV; as a 2-D vector [N, N;]T.
Then N can be described by a 2-D Gaussian distribution with
zero mean and the following diagonal covariance matrix
o[gmr O
— 8o

Yy =2 [ 5 87304 ] . (27)
Using Taylor expansion on Re{f(x’, y')} and Im{f(yt:’7 ')},

and omitting the terms with orders higher than 2, we have

Re(1(s'.5)) " (1)
E,,

+ vxT <§MT g”y ) Vx (28)
Ty zyy

Im{f(:v', Y} = vxT < g'”’ )

vy

+ vxT <§”J gm> Vx. (29)

Tyy yyy

Then we can approximate the probability of point (z’,y’) being
a PS in image I by (30), shown at the bottom of the page. We
can insert (28) and (29) into (30) to get an explicit form. Note
that with only the first order of (28) and (29), the probability of
(30) reduces to a Gaussian distribution of Vx.

We also conduct experiments to examine the shift of PSs
caused by noise addition with the image set constructed in [33],
which includes images of various contents and textures. This
set has been widely used for evaluating image matching, and
is adopted in our experiment 2 (Section V). For each image, we
add Gaussian noise to it and calculate two sets of PSs in the orig-
inal image I and the noisy image I’. Then the two PS sets are
compared by two criteria: 1) shift error: the distance between
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Fig. 3. Average absolute shift error and repeatability of PSs versus noise ad-
dition with different scales. The total numbers of PSs are 214077, 99701, and
57078, for scales 4, 6, and 8, respectively.

each PS in I and its nearest PS in I’; 2) repeatability: the per-
centage of PSs in I, which are repeated in I’ with shift of at most
5 pixels. We repeat this procedure for each image and each noise
level. The average results over all images are shown in Fig. 3.
As expected, the shift error linearly decreases as SNR increases.
It can also be found that the shift error increases as scale o in-
creases. This is because I becomes flatter as scale increases,
which makes it more sensitive to additive noise. However, it
should be noted that this does not mean that the smaller the scale
is, the more desirable it is. In fact, a small scale corresponds to a
small image patch, which is sensitive to image deformation. The
number of PSs increases exponentially with the decrease of the
scale, and it can be equal to or more than the number of pixels in
the image if the scale is small enough. A large number of PSs not
only lead to extensive computation but also diminish the com-
pactness for using PSs to represent an image. We will discuss
the scale selection problem in Section III-C. In the experiments
(Sections IV and V), we can see that the PSs are generally stable
to real noise and image deformation.

III. SCALE SPACE ANALYSIS OF PHASE SINGULARITY CURVES

In Section II, we study the properties of PSs in a fixed scale
and show its invariance to translation and rotation. The calcula-
tion of PSs depends on the scale parameter o of LG transforma-
tion. Different settings of the scale parameter lead to different
results: new PS points may appear, and existing ones may move
or disappear. The bandwidth of the LG filter increases as o de-
creases. Usually, the larger o is, the fewer PS points we have.
So we have to solve the problem of how to select good scales for
the calculation of PSs. However, a single scale is seldom suffi-
cient. In fact, the objects in an image may locate at different dis-
tances from the camera and have different sizes (corresponding
to different scales). It is difficult to assert that one scale is better
than another. Therefore, other than using a single scale, we con-
sider PSs in a scale space coordinated by (z,y, o). The scale

p(IL(a,y') =0,1(z',y) = 0)

= _27r|21v|1/2

Lo {_ (Re{I(',y)})* + (m{i(a’,)})? } 30)

21341
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Fig. 4. Examples of PS curves in scale space.

space analysis was first studied by lijima [34] in 1960s, and
then became well known due to the works of Witkin [35] and
Koenderink [36]. Lindeberg [37] provided a good introduction
of scale space analysis for computer vision. In our scale space
analysis, PS points are connected into curves, named PS curves
as shown in Fig. 4. The positions of PSs are not invariant to
scale change. As we show in the next, the scale space analysis
can help to solve this problem.

A. Stability of PSs to Scale Changes

This section studies how PSs move when the scale
changes. In 3-D scale space, PS points connect each other
into PS curves. Let p(z,y,0) denote a point in a PS curve
L = (x(¢),y(t),o(t)), where t is a curve parameter. L can be
seen as an intersection curve of two 3-D surfaces, denoted by

E.(z,y,0) =0 (31)
E,(z,y,0) =0. (32)
From these two equations, we have
E, E, Ee E.
dB, OB, dv OB, dy OB, do 35
dt Ox dt dy dt do dt
dE, O0E,dr O0E,dy OE,do 0 (34)
dt Oz dt = 9dy dt  Oo dt

To estimate the movement of PSs with scale change, we calcu-
late the derivatives dz/do and dy/do along L. Setting t = o
and solving (33) and (34) (E,, = E,.), we have

2~ Farlm = Byl (35)
do Eszyy - Exy

d E7 G'EII - EZG'E:B’I

s T (36)
do EzzEyy - Exy

Recall that the Gaussian smoothing image F(x,y) satisfies
the following diffusion equation [37], [38]

2
Exx + Eyy = ;Ea (37)
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Fig. 5. Annihilation, creation, and PS curves. Hessian determinant |Q| =0at
a catastrophe point, |Q2| > 0 along an extreme curve, || < 0 along a saddle
curve, and AE = 0 at a space scale saddle.

where F,, denotes the partial derivative of E(x,y) with respect
to scale o. Thus, we have

Epp = %(E + By (38)
g
Ey = §(Emy + Eyyy) (39)

The above equations allow us to estimate the stability of
PSs to scale changes. It can be found that the denominators of
(35) and (36) consist of the determinant of vorticity |{2| (see
(9)). Roughly speaking, the larger || is, the smaller dz/do
and dy/do are, and the more stable the PSs are. Also one can
find in Fig. 4 that most PS-curves are nearly vertical, which
indicates that mostly the derivatives of (35) and (36) are small
and the associated PSs are stable to scale change.

B. Properties of PS Curves

In catastrophe theory [39] and topological structure analysis
of scale space [40], PSs with nonzero |§2| correspond to Morse
critical points, PSs with zero || are called non-Morse points,
catastrophe points or toppoints, and PS curves correspond to
critical curves. According to the Morse lemma [38] and Thom
theorem [41], the neighborhoods of a Morse critical point can
be described by a second order polynomial in canonical coordi-
nates, while the local topology of a toppoint requires a higher
order polynomial. A classification study of toppoints was de-
scribed in [42]. There are two basic generic events in Gaussian
scale space: annihilations and creations of one extreme and one
saddle. Damon [38] proved that all the other events can be re-
duced into a combination of one of these two events and one “in
which nothing happens”.

Like PS points, PS curves can also be divided into two types:
extreme curves and saddle curves. Extreme curves can be further
classified into maximum curves and minimum curves. An ex-
treme curve is jointed with a saddle curve at a catastrophe point
where annihilation or creation happens as shown in Fig. 5. The
PSs along an extreme curve and a saddle curve have different
signs of |€2|, and at a catastrophe point, |[2| = 0. This indicates
that one can trace a PS curve until meeting a catastrophe point.
According to catastrophe theory, each PS curve must have its
upper bound of the scale. If the scale is large enough, there is
only one extreme left. An extreme curve satisfies the following
extreme principle [37].
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Theorem 3: The Gaussian smoothing density F(z,y) de-
creases (increases) along a maximum (minimum) curve when
the scale increases.

The above theorem states the nonenhancement of local ex-
tremes in Gaussian scale space. The proof is easy: at a local
maximum, Laplacian AE = F,, + FE,, is negative, while at a
local maximum, AFE is positive. From (37), the Laplacian has
the same sign as the partial derivative E,;. Along a saddle curve,
generally there exists a point where the Laplacian AE = 0,
called scale space saddle. Since the sign of A F on the two sides
of a scale space saddle is different, the density £ changes op-
positely. This means that a scale space saddle corresponds to
a local maximum (minimum) of the density F along a saddle
curve. Kuijper found the Iso-Intensity Manifolds through saddle
points provide a scale space hierarchy tree representation and
used this for image segmentation [43], [44].

C. Key PS Point Selection

It can be seen from Fig. 4 that PS points of different scales
along a PS curve are highly correlated; their x and y coordi-
nates are usually similar, since PS curves are nearly vertical.
The direct use of PS curves for image representation is obvi-
ously very redundant. Therefore, it is necessary to study scale
(PS point) selection problem along PS curves. An image usually
contains objects of different sizes. The intrinsic problem is to
determine the characteristic scale of PS points, from which we
can estimate the “physical length” of objects (or structures). It is
desirable if we can select scales according to the sizes of the ob-
jects. However, in most cases, we do not have prior knowledge
of the sizes of the objects. To circumvent this difficulty, we adapt
the principle proposed by Lindeberg [25], which states that the
scale level, where a certain combination of normalized deriva-
tives [refer to (42) below] has a local maximum, reflects a char-
acteristic scale length of a corresponding structure in an image.
For example, 1) for a sinusoidal signal, the normalized deriva-
tives achieve maximum at the scales proportional to the wave-
length of the signal; 2) the normalized Laplacians have max-
imum at scales corresponding to the sizes of blob patterns.

In the following, we show how the image scaling problem
can be solved by key PS selection. Consider two images I and
I’ related by scaling

(z,y) = I'(sz, sy) (40)
where s is a zooming factor. Let 2’ = sz, 9y’ = sy,and ¢’ = so.
Then I(z,y) = I'(«',y') and E(z,y,0) = E'(2',y,0'),
where FE’ is the Gaussian smoothing image of I'. It is not diffi-
cult to examine that the derivatives of £/ and E’ satisfy
Ez’"y” (a:,y,a) = 3m+nEl$my" ($I7yl70/) (41)
where m and n denote the orders of derivative. Therefore,
(z,y,0) = sI'(2',y', o).
The normalized derivatives are defined by [25]

By (z,y,0) = 0" Egmyn (2,9, 0). (42)
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Fig. 6. Example of PS selection by maximizing the normalized vorticity (NV)
in two matching images. The two black points in the upper figures denote two
key PSs. And the radius of the circles equal to 20 times of the key scales of
the two PSs. One can find that the two circles have almost the same contents.
The two figures below show the NV functions of the two PS curves which pass
through the two PSs.

The following are two examples:

Normalized Laplacian : NL(z,y, o)

=0*(Eys + Eyy) (43)
Normalized Vorticity : NV (z,y,0)
=o'Q(z,y,0). (44)
Then it can be found that
Bt (x,y,0) = B (2,9, 0"). (45)

The above equation yields an invariant measure for im-
ages before and after zooming. Consider two corre-
sponding PS curves PS(t) = (z(t),y(t),o(t)) and
PS'(t') = («'(t"),y'(t"),o'(t')) of I and I", where t' = st.
The normalized derivatives E2%0"% and E'5) " have the same
values at two corresponding points PS(t) and PS’'(t').
Thus, PS and PS’ achieve their local extremes (max-
imum or minimum) at the corresponding positions and
scales. Let (zar,ynm,on) and (2y,,9),,00,) denote two
corresponding extremes of F along the PS curves. Then
EXrn (zar, yaonr) = B0 (2, Yy, 07 ). An example
is shown in Fig. 6. We can estimate the zooming factor by

/
M
oM

5= (46)

The above analysis lead to a method to select key PS points
along PS curves by maximizing (minimizing) the normalized
derivatives. This has important practical significance. For
example, in image matching and registration, we want to de-
termine the matching points between two images, which may
undertake transformations. We have shown that PS points are
invariant to rotation and translation. By searching for extremes
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along PS curves, we can find key PS points with corresponding
scales in the two images. This allows us not only to solve the
image scaling problem but also to determine the characteristic
scales associated with the key PSs.

The main difference between our method and previous scale
selection methods [10], [33], [45] is that our selection is con-
strained to PS curves. Unlike previous selection methods, we do
not need to compare the normalized Laplacian of every point
with its neighbors in scale space for selecting extreme points.
Moreover, the use of PS curves allows us to achieve sub-pixel
precision.

IV. APPLICATION 1: OBJECT TRACKING

PSs are expected to have a number of potential applications
in image processing and computer vision. We illustrate two
applications in this paper. This section shows how PSs can be
applied on object tracking. In the context of object tracking, the
positions of the object in the previous frame I;_; is available
and the objective is to determine the object’s position in the
current frame I;. The problem of object tracking has been under
intensive studies in computer vision. The tracking methods
differ in the models of objects and the assumptions/constraints
on motions and/or cameras. A comprehensive survey on object
tracking can be found in [46]. Although many tracking methods
can deal with large image deformations and abrupt motions, one
of the common shortcomings of these methods is that they only
provide relatively rough positions of the tracked object. Since
PS calculation can provide sub-pixel locations of characteristic
points, we can develop a precise tracking method based on PSs.

We calculate a set of PS points on a tracked object in the
previous frame I;_;. Then the tracking problem becomes iden-
tifying their corresponding PS points in the current frame I;.
Because the sizes of the object in two adjacent frames do not
change much, we do not consider image scaling problem in PS
calculation. Perhaps the simplest idea to determine the matching
of PSs is to find the corresponding pairs with the least differ-
ence of the local core measures, such as topological charge c,
vorticity €2, eccentricity e, and crossing angle fg; introduced
in Section II-A. However, we found that this method leads to
miss-matchings due to complex textures and noise in images.
For this reason, we only use these local core features to find the
candidate matching PSs, and then determine the final matching
pairs by the spatial structure (geometrical information) of PSs.
The spatial structure refers to the mutual position relations be-
tween the individual PSs, which remains stable between two ad-
jacent frames. Thus, the spatial structure can be used for the
unique identification of the corresponding relations of PSs.

The details are formally described as follows. Let G;_; =
{PSi_i}», and G; = {PS{}™, denote two groups of PS
points on the tracked object in I;_; and Iy, respectively. Our
objective is to determine the corresponding relations j = M (i)
between G;_; and G, where PS¢_, and PSf are two matching
points (M (z) = 0 if the corresponding point does not exist).
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For each PS;_,, firstly, we identify the set D(3) of its candi-
date corresponding points using the local core measures intro-
duced in Section II-A with certain thresholds [17], [18]

D(i) = {J| (PS{_1) = c(PS])

(Q(Psf 1)~

le(PS;_y) = e(PS))] < eth} (47
where 45, 0;1, and ey, are three thresholds.

Let (zi_,,yi_,) and (27,27) denote the coordinates of
PSi_, and PStj . Using structural representation of PSs, the
geometrical matching of two groups of PSs is related to de-
termining the geometrical transformation between them. Let
T = (s, 0,1z, t,) denote the transformation parameters, where
s represents scaling, [ rotation, and (tx,ty) translation. The
ideal transformation of two matching points P.Si | and PSJ

is given by
—ssin 3 Tl te
scos ) <y§_1> + (ty> - @8

x{ _ [ scosf3
vyl ] \ ssinf

Then the optimal matching with respect to minimum squared
error can be formulated as

scosfB —ssinf fﬂi—l
m}n Z H(ssinﬂ scos 3 > <y§—1>

M(i)#
()G
ty g

In (49), if the transformation 7" is known, we can find the
optimal matching by bipartite matching or nearest neighbor
methods. On the other hand, if the matching M is known, we
can determine the optimal transformation parameters as

VET B

(49)

T o (50)
B
[ = arctanz 51
t. =% — s(cos B)Ty—1 + s(sin B)Ge—1 (52)
ty =7 — s(sin B)Z—1 — s(cos B)Yr—1 (53)
where
Z ) (54)
" M@0
_ 1 i
== (55)
M (i) #£0
o1 M (i)
Tt—1 = ﬁ Z Ty_1 (56)
M (i)#0
TR S (57)
1= t—1

M (i)70
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D SR (CEE T

M (i) 0

+ (Y =g ) - ﬂt)} (58)
B= Y, {<wi1 )"V~ 5)
M (i)#0
— (yiy = Gr—1) (@ - m} (59)

C= Z {(wi_1 = #-1) + (Yi—1 — G1-1)"}- (60)
M (i)#£0

Here the difficulty comes from that we know neither T nor M.
We use the iterative closet point (ICP) algorithm [9] to deal with
this difficulty. The ICP algorithm is widely used for aligning
two groups of points based on geometrical information. The
ICP starts with a rough initial estimation on the transforma-
tion between the two groups of points, and then iteratively re-
fines the transformation by identifying the matching points and
minimizing an error metric. It can be proved that the ICP al-
gorithm always converges to a local minimum when using the
mean squared error objective function [9]. Different from clas-
sical ICP algorithm, here we do not need to generate matching
points in each iteration since the candidate matching points are
limited to the PS points. The details are described in Algorithm
1. In our experiments, the algorithm usually converges in a few
iterations.

Algorithm 1 ICP based PS Matching Algorithm

1: INPUT Two groups of PSs: Gy_1 = {PSi_,} and

2: Initialization Transformation parameters: s = 1, 3 = 0,
t, =0,t, =0.

3: while Matching M changes do

4: Transform {PS! ,} into {PS! ,'} using (48) and the

parameters (s, 5, tz, ty).

5: For each PSf_ll, find its nearest PS in G, denoted by PSi,
where

/

j argkrenl%%)dzs( S; 1, PSy) (61)

If dis(PSi_,', PS}) < dy, set M(i) = j; else, set M(i) = 0.
(dis denotes the Euclidean distance between two PSs and dyy,
is a distance threshold to remove outliers.)

6: Recalculate the parameters (s, 3, ¢, t,) by using current
matching M and (50)—(53).

7: end while

5: OUTPUT Matching M and transformation
T = (5,08,tz,ty).
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(a) Frame 0

(b) Frame 40

Fig. 7. Examples of PSs’ trajectories. Solid lines and dash lines represent the
positive and negative PS trajectories respectively. Small plates denote the PSs
in current frame.

We apply the proposed method on the video of swimming
fugus in water. The video is recorded as 30 frames/second and
each frame is of size 512 x 480. We calculate the PSs for each
frame and the scale is fixed as 5. We track the corresponding PSs
in the frames by the above method and record the trajectories of
the PSs. The main computation here comes from the PS calcu-
lation, which takes 0.054 s per frame by a PC with an Intel 1.8G
CPU. Several example trajectories with the frame images are
shown in Fig. 7. More trajectories are available in a video which
show the trajectories existing more than 90 frames (http://www.
gavo.t.u-tokyo.ac.jp/~qiao/fugu.avi). The two fugus undertake
clear shift and rotation motions in the video. The images also ex-
hibit illumination changes due to waves. A number of PSs can
be detected within the fugu bodies, which are separated from
each other and cover the whole body of fugu. The trajectories
of the PSs provide detailed information on the local motion of
the fugus’ body, which can be used for further biological kine-
matic analysis.

We also make comparison with the Harris corner (HC)
[47] based tracking method. We use the implementation given
by [48] to calculate Harris corners. To have a fair compar-
ison, we set the threshold for determining HC as the one
such that the number of Harris corners and the number of
PSs are almost the same. We determine the corresponding
relations of HCs in two continuous frames and calculate the
trajectories of Harris corners with the same method for PS.
For every two continuous frames, we calculate the successful
matching-point (HC or PS) number (SMPN) and the successful
matching rate (SMR) of SMPN to the total point number in
the previous frame. In the experiment with Harris corners,
the average SMPN is 253 and the average SMR is 58.9%;
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Fig. 8. Histogram of trajectory’s length.

while in the PS-based experiment, the average SMPN is 302
and the average SMR is 73.0%. Our method can find more
successful matching points with higher successful matching
rates. In object tracking, one is also interested in the feature
points (PS or HC) which can exist in a number of continuous
frames. We estimate the number of PS or HC trajectories which
exist in more than 50, 70, 80 and 90 frames. The results are
depicted in Fig. 8. It can be seen that the PS-based method
can find markedly more longer trajectories than the HC-based
method. We also make a video of HC-based fugu tracking
(http://www.gavo.t.u-tokyo.ac.jp/~qiao/fugu_HC.avi), which
shows the trajectories with length more than 70 frames. There
is only one trajectory found in the down-left fugu, which
conducts a larger movement than the other fugu. On the other
hand, there exist a number of trajectories on both the fugues
in the PS-based experiment. This indicates that the PS-based
method is more robust to the distortion caused by fugu motion.

Finally, it is not our objective to develop the best object
tracking system in this paper. Here we only evaluate the usage
of PSs for precise tracking without considering motion models.
Moreover, it is possible to incorporate the PSs into a statistical
tracking framework by using the probability model (30) and
the scale stability analysis (38) and (39).

V. APPLICATION 2: IMAGE MATCHING

In this section, we describe another application of PSs: image
matching. Using PSs, the image matching problem can be seen
as identifying the corresponding pairs of PSs in two images. Dif-
ferent from the object tracking task in Section IV where two
adjacent frames usually have similar scale and texture, we deal
with relatively significant transformations and deformations be-
tween two matched images in this section. We have shown that
PSs are invariant to translation and rotation (Section II) of an
image, and the scaling problem can be further solved through
PS selection in scale space (Section III-C). Thus, the image
matching problem is reduced to how to match the selected key
PSs.

The challenge here comes from the fact that natural images
contain complex patterns and it is difficult to uniquely identify
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corresponding PS pairs only using the local core measures pre-
sented in Section II-A; moreover, the two matched images do
not necessarily have the same contents due to viewpoint and
scale changes, and, thus, there may exist a number of PSs which
do not have counterparts. Therefore, a rich and discriminant de-
scription of PSs is necessary for precious image matching. Gen-
erally, a rich description can be calculated as a feature vector
for a local image patch associated with a PS point. Here we do
not require image segmentation or object detection as prepro-
cessing, since the size of the patch can be determined by the se-
lected scale. The rich descriptions are also called local descrip-
tors (features). Local descriptors have been successfully used
for various tasks such as image matching, object recognition,
and category classification. Mikolajczyk and Schmid [49] car-
ried out an extensive comparison study of various local descrip-
tors. Their results indicate that the scale invariant feature trans-
form (SIFT) based descriptors proposed by Lowe [10] perform
the best. For this reason, we adopt the SIFT descriptor for our
application.

The classical SIFT approach [10] identifies a key point by
comparing its difference-of-Gaussian value with those of its
eight neighbors in 3-D scale space. Unlike this, here the key
points with associated scales are determined by finding the ex-
treme points of normalized derivatives along PS curves. For
each PS point, we can crop a circled patch in the image centered
at this point, whose radius is determined by the associated scale.
Then we calculate the SIFT descriptor from this patch. The de-
tails are as follows. At first, the image patch is divided into 4 x 4
subregions. Secondly, we calculate the image gradient magni-
tudes and orientations for every pixel in a subregion. Then, the
magnitudes are weighted by a 2-D Gaussian function centered
at the PS point, and the gradient angles are quantized into eight
orientations. Finally, we accumulate the weighted magnitudes
for each quantized orientation to obtain a histogram representa-
tion in every subregion. The SIFT descriptor for the whole patch
has a total dimensionality of 8 x 4 x 4 = 128. SIFT descriptors
are highly discriminant in the sense that it can be used to cor-
rectly identify two matching points among a larger number of
candidates [10]. They are also robust to illumination changes,
noise, and occlusion.

We evaluate the above image matching method on the bench-
mark database![33]. The database contains eight sets of struc-
tured and textured images. Each set includes a reference image
and five compared images under different types of variations,
such as viewpoint, scale, illumination, blur, and JPEG compres-
sion. The homographies (affine transformation matrixes)
the reference image and the compared images in a particular
set are available, which allows us to examine the correctness of
the identified corresponding relations. For each image, we cal-
culate the key PS points with extremal normalized Laplacian
value and determine their associated scales. For a key PS p; in
a reference image, we calculate its corresponding point p} and
scale s/ in a test image based on the homography matrix. If there
exists a key PS po with scale s in the reference image where

! Available at http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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Fig. 10. Repeatability rates under various variations.

Py — p2| < 2% s} and s} /s2 < 1.2, we call p; and p) a cor-
rect matching pair. We count the number of correct matching
pairs among the key points in the two images, and calculate the
repeatability rate of the key PS with correct matching pair in
the reference image. The scale range for searching PS or SIFT
points are set as [5], [10] in the reference images, and the scale
range for the testing images are set according to the rough scale
difference between the two images. We make comparisons with
Lowe’s key point detection method [10], since both methods are
scale invariant (not fully affine invariant as those in [33]). The
parameters are set the same for both methods. The experimental
results are summarized in Figs. 9 and 10.

For all the comparisons, the proposed method always can find
more correct matching pairs than Lowe’s detector (Fig. 9). This

is a desirable fact that allows us to obtain more matching points.
Moreover, except the “bikes” image set, the repeatability rates
of our method are always higher than those of Lowe’s detector
(Fig. 10). This indicates that the selection of key PSs are usually
more robust than Lowe’s detector for the image matching task.
Five examples of image matching based on key PS points are
shown in Fig. 11. It can be seen that the proposed method can
find a large number of correct matching points for each pair,
which distribute over the whole images.

VI. CONCLUSION

This paper develops a theory of phase singularities for image
representation. We show that PSs calculated by the Laguerre-
Gauss filter contain important information of an image, and
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(a) boat, Scale (634)

Fig. 11. Examples of image matching. The numbers in brackets denote the
numbers of matching pairs found. Green points represent all the matching
points. For easy observation, we only draw 20 matching pairs (red lines) in
each example.

provide an efficient and effective tool for image analysis and
presentation. PSs are invariant to translation and rotation. We
analyze the local core structure about PSs, and discuss the re-
lations among PSs, level-sets, and zero level-sets. Several in-
variant measures are introduced to characterize the core struc-
ture of PSs. The stability of PSs to noise addition is analyzed
both theoretically and experimentally. We also study PSs in
scale space where PS points connect to form PS curves. We
show how to select key PS points with characteristic scales along
PS curves by maximizing (minimizing) the normalized deriva-
tives. The PS selection allows us to solve the image scaling
problem.
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To examine the usefulness of PSs, we develop two ap-
plications: object tracking and image matching. In the first
application, we show that one can precisely locate the tracked
objects by using the spatial structure of PSs. In the second appli-
cation, we combine key PSs with the SIFT descriptor for robust
image matching. The experimental results on a benchmark
database [33] indicate that our method achieves comparable
results with Lowe’s well-known method [10], [33]. Although
this paper is limited to PSs calculated by the LG filter, many
results can be applied or generalized to other complex filters.
The two promising applications have verified the usefulness
of the proposed theory of PSs for image representation. We
believe that there will be more applications of phase singularity
in future work.
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