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Abstract. In this paper, we propose a novel type of explicit image fil-
ter - guided filter. Derived from a local linear model, the guided filter
generates the filtering output by considering the content of a guidance
image, which can be the input image itself or another different image.
The guided filter can perform as an edge-preserving smoothing opera-
tor like the popular bilateral filter [1], but has better behavior near the
edges. It also has a theoretical connection with the matting Laplacian
matrix [2], so is a more generic concept than a smoothing operator and
can better utilize the structures in the guidance image. Moreover, the
guided filter has a fast and non-approximate linear-time algorithm, whose
computational complexity is independent of the filtering kernel size. We
demonstrate that the guided filter is both effective and efficient in a great
variety of computer vision and computer graphics applications including
noise reduction, detail smoothing/enhancement, HDR compression, im-
age matting/feathering, haze removal, and joint upsampling.

1 Introduction

Most applications in computer vision and computer graphics involve the concept
of image filtering to reduce noise and/or extract useful image structures. Simple
explicit linear translation-invariant (LTI) filters like Gaussian filter, Laplacian
filter, and Sobel filter are widely used in image blurring/sharpening, edge detec-
tion, and feature extraction [3]. LTI filtering also includes the process of solving
a Poisson Equation, such as in high dynamic range (HDR) compression [4], im-
age stitching [5], and image matting [6], where the filtering kernel is implicitly
defined by the inverse of a homogenous Laplacian matrix.

The kernels of LTI filters are spatially invariant and independent of any
image content. But in many cases, we may want to incorporate additional in-
formation from a given guidance image during the filtering process. For exam-
ple, in colorization [7] the output chrominance channels should have consistent
edges with the given luminance channel; in image matting [2] the output alpha
matte should capture the thin structures like hair in the image. One approach
to achieve this purpose is to optimize a quadratic function that directly enforces
some constraints on the unknown output by considering the guidance image.
The solution is then obtained by solving a large sparse matrix encoded with the
information of the guidance image. This inhomogeneous matrix implicitly de-
fines a translation-variant filtering kernel. This approach is widely used in many
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applications, like colorization [7], image matting [2], multi-scale decomposition
[8], and haze removal [9]. While this optimization-based approach often yields
the state-of-the-art quality, it comes with the price of long computational time.

The other approach is to explicitly build the filter kernels using the guidance
image. The bilateral filter, proposed in [10], made popular in [1], and later gen-
eralized in [11], is perhaps the most popular one of such filters. Its output at a
pixel is a weighted average of the nearby pixels, where the weights depend on the
intensity/color similarities in the guidance image. The guidance image can be the
filter input itself [1] or another image [11]. The bilateral filter can smooth small
fluctuations and preserve edges. While this filter is effective in many situations,
it may have unwanted gradient reversal artifacts [12,13,8] near edges (further
explained in Section 3.4). Its fast implementation is also a challenging problem.
Recent techniques [14,15,16,17] rely on quantization methods to accelerate but
may sacrifice the accuracy.

In this paper we propose a new type of explicit image filter, called guided
filter. The filtering output is locally a linear transform of the guidance image.
This filter has the edge-preserving smoothing property like the bilateral filter,
but does not suffer from the gradient reversal artifacts. It is also related to the
matting Laplacian matrix [2], so is a more generic concept and is applicable in
other applications beyond the scope of ”smoothing”. Moreover, the guided filter
has an O(N) time (in the number of pixels N) exact algorithm for both gray-scale
and color images. Experiments show that the guided filter performs very well
in terms of both quality and efficiency in a great variety of applications, such
as noise reduction, detail smoothing/enhancement, HDR compression, image
matting/feathering, haze removal, and joint upsampling.

2 Related Work

2.1 Bilateral Filter

The bilateral filter computes the filter output at a pixel as a weighted average
of neighboring pixels. It smoothes the image while preserving edges. Due to this
nice property, it has been widely used in noise reduction [18], HDR compression
[12], multi-scale detail decomposition [19], and image abstraction [20]. It is gen-
eralized to the joint bilateral filter in [11], in which the weights are computed
from another guidance image rather than the filter input. The joint bilateral
filter is particular favored when the filter input is not reliable to provide edge
information, e.g., when it is very noisy or is an intermediate result. The joint bi-
lateral filter is applicable in flash/no-flash denoising [11], image upsamling [21],
and image deconvolution [22].

However, it has been noticed [12,13,8] that the bilateral filter may have the
gradient reversal artifacts in detail decomposition and HDR compression. The
reason is that when a pixel (often on an edge) has few similar pixels around
it, the Gaussian weighted average is unstable. Another issue concerning the
bilateral filter is its efficiency. The brute-force implementation is in O(Nr2)
time, which is prohibitively high when the kernel radius r is large. In [14] an



Guided Image Filtering 3

approximated solution is obtained in a discretized space-color grid. Recently,
O(N) time algorithms [15,16] have been developed based on histograms. Adams
et al. [17] propose a fast algorithm for color images. All the above methods require
a high quantization degree to achieve satisfactory speed, but at the expense of
quality degradation.

2.2 Optimization-Based Image Filtering

A series of approaches optimize a quadratic cost function and solve a linear
system, which is equivalent to implicitly filtering an image by an inverse ma-
trix. In image segmentation [23] and colorization [7], the affinities of this matrix
are Gaussian functions of the color similarities. In image matting, a matting
Laplacian matrix [2] is designed to enforce the alpha matte as a local linear
transform of the image colors. This matrix is also applicable in haze removal
[9]. The weighted least squares (WLS) filter in [8] adjusts the matrix affinities
according to the image gradients and produces a halo-free decomposition of the
input image. Although these optimization-based approaches often generate high
quality results, solving the corresponding linear system is time-consuming.

It has been found that the optimization-based filters are closely related to the
explicit filters. In [24] Elad shows that the bilateral filter is one Jacobi iteration
in solving the Gaussian affinity matrix. In [25] Fattal defines the edge-avoiding
wavelets to approximate the WLS filter. These explicit filters are often simpler
and faster than the optimization-based filters.

3 Guided Filter

We first define a general linear translation-variant filtering process, which in-
volves a guidance image I, an input image p, and an output image q. Both I and
p are given beforehand according to the application, and they can be identical.
The filtering output at a pixel i is expressed as a weighted average:

qi =
∑

j

Wij(I)pj , (1)

where i and j are pixel indexes. The filter kernel Wij is a function of the guidance
image I and independent of p. This filter is linear with respect to p.

A concrete example of such a filter is the joint bilateral filter [11]. The bilateral
filtering kernel W bf is given by:

W bf
ij (I) =

1
Ki

exp(−|xi − xj |2
σ2

s

) exp(−|Ii − Ij |2
σ2

r

). (2)

where x is the pixel coordinate, and Ki is a normalizing parameter to ensure
that

∑
j W bf

ij = 1. The parameters σs and σr adjust the spatial similarity and the
range (intensity/color) similarity respectively. The joint bilateral filter degrades
to the original bilateral filter [1] when I and p are identical.
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3.1 Definition

Now we define the guided filter and its kernel. The key assumption of the guided
filter is a local linear model between the guidance I and the filter output q. We
assume that q is a linear transform of I in a window ωk centered at the pixel k:

qi = akIi + bk, ∀i ∈ ωk, (3)

where (ak, bk) are some linear coefficients assumed to be constant in ωk. We use
a square window of a radius r. This local linear model ensures that q has an edge
only if I has an edge, because ∇q = a∇I. This model has been proven useful in
image matting [2], image super-resolution [26], and haze removal [9].

To determine the linear coefficients, we seek a solution to (3) that minimizes
the difference between q and the filter input p. Specifically, we minimize the
following cost function in the window:

E(ak, bk) =
∑

i∈ωk

((akIi + bk − pi)2 + εa2
k). (4)

Here ε is a regularization parameter preventing ak from being too large. We will
investigate its significance in Section 3.2. The solution to (4) can be given by
linear regression [27]:

ak =
1
|ω|

∑
i∈ωk

Iipi − μkp̄k

σ2
k + ε

(5)

bk = p̄k − akμk. (6)

Here, μk and σ2
k are the mean and variance of I in ωk, |ω| is the number of pixels

in ωk, and p̄k = 1
|ω|

∑
i∈ωk

pi is the mean of p in ωk.
Next we apply the linear model to all local windows in the entire image.

However, a pixel i is involved in all the windows ωk that contain i, so the value
of qi in (3) is not the same when it is computed in different windows. A simple
strategy is to average all the possible values of qi. So after computing (ak, bk)
for all patches ωk in the image, we compute the filter output by:

qi =
1
|ω|

∑

k:i∈ωk

(akIi + bk) (7)

= āiIi + b̄i (8)

where āi = 1
|ω|

∑
k∈ωi

ak and b̄i = 1
|ω|

∑
k∈ωi

bk.
With this modification ∇q is no longer scaling of ∇I, because the linear

coefficients (āi, b̄i) vary spatially. But since (āi, b̄i) are the output of an average
filter, their gradients should be much smaller than that of I near strong edges.
In this situation we can still have ∇q ≈ ā∇I, meaning that abrupt intensity
changes in I can be mostly maintained in q.

We point out that the relationship among I, p, and q given by (5), (6), and (8)
are indeed in the form of image filtering (1). In fact, ak in (5) can be rewritten
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as a weighted sum of p: ak =
∑

j Akj(I)pj , where Aij are the weights only
dependent on I. For the same reason, we also have bk =

∑
j Bkj(I)pj from

(6) and qi =
∑

j Wij(I)pj from (8). It can be proven (see the supplementary
materials) that the kernel weights can be explicitly expressed by:

Wij(I) =
1

|ω|2
∑

k:(i,j)∈ωk

(1 +
(Ii − μk)(Ij − μk)

σ2
k + ε

). (9)

Some further computations show that
∑

j Wij(I) = 1. No extra effort is needed
to normalize the weights.

3.2 Edge-preserving Filtering

Fig. 1 (top) shows an example of the guided filter with various sets of parameters.
We can see that it has the edge-preserving smoothing property. This can be
explained intuitively as following. Consider the case that I = p. It is clear that
if ε = 0, then the solution to (4) is ak = 1 and bk = 0. If ε > 0, we can consider
two cases:

Case 1: ”Flat patch”. If the image I is constant in ωk, then (4) is solved by
ak = 0 and bk = p̄k;

Case 2: ”High variance”. If the image I changes a lot within ωk, then ak

becomes close to 1 while bk is close to 0.
When ak and bk are averaged to get āi and b̄i, combined in (8) to get the

output, we have that if a pixel is in the middle of a ”high variance” area, then
its value is unchanged, whereas if it is in the middle of a ”flat patch” area, its
value becomes the average of the pixels nearby.

More specifically, the criterion of a ”flat patch” or a ”high variance” is given
by the parameter ε. The patches with variance (σ2) much smaller than ε are
smoothed, whereas those with variance much larger than ε are preserved. The
effect of ε in the guided filter is similar with the range variance σ2

r in the bilateral
filter (2). Both parameters determine ”what is an edge/a high variance patch
that should be preserved”. Fig. 1 (bottom) shows the bilateral filter results as a
comparison.

3.3 Filter Kernel

The edge-preserving smoothing property can also be understood by investigating
the filter kernel (9). Take an ideal step edge of a 1-D signal as an example (Fig. 2).
The terms Ii−μk and Ij −μk have the same sign (+/-) when Ii and Ij are on the
same side of an edge, while they have opposite signs when the two pixels are on
different sides. So in (9) the term 1 + (Ii−μk)(Ij−μk)

σ2
k+ε

is much smaller (and close
to zero) for two pixels on different sides than on the same sides. This means
that the pixels across an edge are almost not averaged together. We can also
understand the smoothing effect of ε from (9). When σ2

k � ε (”flat patch”), the
kernel becomes Wij(I) = 1

|ω|2
∑

k:(i,j)∈ωk
1: this is a low-pass filter that biases

neither side of an edge.
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input

σs=2

σs=4

σs=8

σr=0.1

Bilateral Filter

σr=0.4σr=0.2

ε=0.12

r=2

r=4

r=8

Guided Filter

ε=0.42ε=0.22

Fig. 1. The filtered images of a gray-scale input. In this example the guidance I is
identical to the input p. The input image has intensity in [0, 1]. The input image is
from [1].

Fig. 3 shows two examples of the kernel shapes in real images. In the top
row are the kernels near a step edge. Like the bilateral kernel, the guided filter’s
kernel assigns nearly zero weights to the pixels on the opposite side of the edge.
In the bottom row are the kernels in a patch with small scale textures. Both
filters average almost all the nearby pixels together and appear as low-pass
filters.
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μ
σ

σ

Ii

Ij

Ij

Fig. 2. A 1-D example of an ideal step edge. For a window that exactly center on the
edge, the variables μ and σ are as indicated.

Guidance I Guided Filter’s Kernel Bilateral Filter’s Kernel 

Fig. 3. Filter kernels. Top: a step edge (guided filter: r = 7, ε = 0.12, bilateral filter:
σs = 7, σr = 0.1). Bottom: a textured patch (guided filter: r = 8, ε = 0.22, bilateral
filter: σs = 8, σr = 0.2). The kernels are centered at the pixels denote by the red dots.

3.4 Gradient Preserving Filtering

Though the guided filter is an edge-preserving smoothing filter like the bilateral
filter, it avoids the gradient reversal artifacts that may appear in detail enhance-
ment and HDR compression. Fig. 4 shows a 1-D example of detail enhancement.
Given the input signal (black), its edge-preserving smoothed output is used as
a base layer (red). The difference between the input signal and the base layer is
the detail layer (blue). It is magnified to boost the details. The enhanced signal
(green) is the combination of the boosted detail layer and the base layer. An
elaborate description of this method can be found in [12].

For the bilateral filter (Fig. 4 left), the base layer is not consistent with input
signal at the edge pixels. This is because few pixels around them have similar
colors, and the Gaussian weighted average has little statistical data and becomes
unreliable. So the detail layer has great fluctuations, and the recombined signal
has reversed gradients as shown in the figure. On the other hand, the guided
filter (Fig. 4 right) better preserves the gradient information in I, because the
gradient of the base layer is ∇q ≈ ā∇I near the edge. The shape of the edge is
well maintained in the recombined layer.
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Bilateral Filter Guided Filter

Detail Layer

Enhanced Signal

Input Signal
Base Layer

reversed 
gradients

Fig. 4. 1-D illustration for detail enhancement. See the text for explanation

3.5 Relation to the Matting Laplacian Matrix

The guided filter can not only be used as a smoothing operator. It is also closely
related to the matting Laplacian matrix [2]. This casts new insights into the
guided filter and inspires some new applications.

In a closed-form solution to matting [2], the matting Laplacian matrix is
derived from a local linear model. Unlike the guided filter which computes the
local optimal for each window, the closed-form solution seeks a global optimal.
To solve for the unknown alpha matte, this method minimizes the following cost
function:

E(α) = (α − β)TΛ(α − β) + αTLα, (10)

where α is the unknown alpha matte denoted in its matrix form, β is the con-
straint (e.g., a trimap), L is an N×N matting Laplacian matrix, and Λ is a
diagonal matrix encoded with the weights of the constraints. The solution to
this optimization problem is given by solving a linear system: (L + Λ)α = Λβ.

The elements of the matting Laplacian matrix are given by:

Lij =
∑

k:(i,j)∈ωk

(δij − 1
|ω|(1 +

(Ii − μk)(Ij − μk)
σ2

k + ε
)). (11)

where δij is the Kronecker delta. Comparing (11) with (9), we find that the
elements of the matting Laplacian matrix can be directly given by the guided
filter kernel weights:

Lij = |ω|(δij − Wij), (12)

Following the strategy in [24], we can further prove (see the supplementary
materials) that the output of the guided filter is one Jacobi iteration in op-
timizing (10). If β is a reasonably good guess of the matte, we can run one
Jacobi step and obtain an approximate solution to (10) by a guided filtering
process: αi ≈

∑
j Wij(I)βj . In Section 4, we apply this property to image mat-

ting/feathering and haze removal.
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3.6 O(N) Time Exact Algorithm

One more advantage of the guided filter over the bilateral filter is that it auto-
matically has an O(N) time exact algorithm. O(N) time implies that the time
complexity is independent of the window radius r, so we are free to use arbitrary
kernel sizes in the applications.

The filtering process in (1) is a translation-variant convolution. Its computa-
tional complexity increases when the kernel becomes larger. Instead of directly
performing the convolution, we compute the filter output from its definition
(5)(6)(8). All the summations in these equations are box filters (

∑
i∈ωk

fi). We
apply the O(N) time Integral Image technique [28] to calculate the output of a
box filter. So the guided filter can be computed in O(N) time.

The O(N) time algorithm can be easily extended to RGB color guidance
images. Filtering using color guidance images is necessary when the edges or
details are not discriminable in any single channel. To generalize to a color
guidance image, we rewrite the local linear model (3) as:

qi = aT
k Ii + bk, ∀i ∈ ωk. (13)

Here Ii is a 3 × 1 color vector, ak is a 3 × 1 coefficient vector, qi and bk are
scalars. The guided filter for color guidance images becomes:

ak = (Σk + εU)−1(
1
|ω|

∑

i∈ωk

Iipi − μkp̄k) (14)

bk = p̄k − aT
k μk (15)

qi = āT
i Ii + b̄i. (16)

Here Σk is the 3×3 covariance matrix of I in ωk, and U is a 3×3 identity matrix.
The summations are still box filters and can be computed in O(N) time.

We experiment the running time in a laptop with a 2.0Hz Intel Core 2 Duo
CPU. For the gray-scale guided filter, it takes 80ms to process a 1-megapixel
image. As a comparison, the O(N) time bilateral filter in [15] requires 42ms
using a histogram of 32 bins, and 85ms using 64 bins. Note that the guided
filter algorithm is non-approximate and applicable for data of high bit-depth,
while the O(N) time bilateral filter may have noticeable quantization artifacts
(see Fig. 5). The algorithm in [16] requires 1.2 seconds per megapixel using 8
bins (using the public code on the authors’ website). For RGB guidance images,
the guided filter takes about 0.3s to process a 1-megapixel image. The algorithm
for high-dimensional bilateral filter in [16] takes about 10 seconds on average to
process per 1-megapixel RGB image.

4 Applications and Experimental Results

In this section, we apply the guided filter to a great variety of computer vision
and graphics applications.
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(c) (d)(b) (c)(a)

zoom-in of (b)

zoom-in of (c)

Fig. 5. Quantization artifacts of O(N) time bilateral filter. (a) Input HDR image (32bit
float, displayed by linear scaling). (b) Compressed image using the O(N) bilateral filter
in [15] (64 bins). (c) Compressed image using the guided filter. This figure is best
viewed in the electronic version of this paper.

Detail Enhancement and HDR Compression. The method for detail en-
hancement is described in Section 3.4. For HDR compression, we compress the
base layer instead of magnifying the detail layer. Fig. 6 shows an example for
detail enhancement, and Fig. 7 shows an example for HDR Compression. The re-
sults using the bilateral filter are also provided. As shown in the zoom-in patches,
the bilateral filter leads to gradient reversal artifacts.

Bilateral FilterGuided FilterOriginal 

Fig. 6. Detail enhancement. The parameters are r = 16, ε = 0.12 for the guided filter,
and σs = 16, σr = 0.1 for the bilateral filter. The detail layer is boosted ×5.

Flash/No-flash Denoising. In [11] it is proposed to denoise a no-flash image
under the guidance of its flash version. Fig. 8 shows a comparison of using the
joint bilateral filter and the guided filter. The gradient reversal artifacts are
noticeable near some edges in the joint bilateral filter result.

Matting/Guided Feathering. We apply the guided filter as guided feather-
ing: a binary mask is refined to appear an alpha matte near the object boundaries
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Original HDR Guided Filter Bilateral Filter

Fig. 7. HDR compression. The parameters are r = 15, ε = 0.122 for the guided filter,
and σs = 15, σr = 0.12 for the bilateral filter.

Guidance I Guided Filter

Filter Input p Joint Bilateral Filter

Fig. 8. Flash/no-flash denoising. The parameters are r = 8, ε = 0.22 for the guided
filter, and σs = 8, σr = 0.2 for the joint bilateral filter.

(Fig. 9). The binary mask can be obtained from graph-cut or other segmentation
methods, and is used as the filter input p. The guidance I is the color image. A
similar function “Refine Edge” can be found in the commercial software Adobe
Photoshop CS4. We can also compute an accurate matte using the closed-form
solution [2]. In Fig. 9 we compare our results with the Photoshop Refine Edge
and the closed-form solution. Our result is visually comparable with the closed-
form solution in this short hair case. Both our method and Photoshop provide
fast feedback (<1s) for this 6-mega-pixel image, while the closed-form solution
takes about two minutes to solve a huge linear system.

Single Image Haze Removal. In [9] a haze transmission map is roughly esti-
mated using a dark channel prior, and is refined by solving the matting Laplacian
matrix. On the contrary, we simply filter the raw transmission map under the
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Guidance I Binary Mask p Guided Filter Output q

Closed-formGuided Filter Photoshop Closed-formGuided Filter Photoshop

Fig. 9. Guided Feathering. A binary mask p is filtered under the guidance of I . In
the zoom-in patches, we compare with the Photoshop Refine Edge function and the
closed-form matting. For closed-form matting, we erode and dilate the mask to obtain
a trimap. The parameters are r = 60, ε = 10−6 for the guided filter.

(d)(a) (b) (e)(c)

Fig. 10. Haze Removal. (a) Hazy image. (b) Raw transmission map [9]. (c) The raw
transmission map is refined by the guided filter (r = 20, ε = 10−3). (e) Recovered
image using (c). (d) The result in [9].

guidance of the hazy image. The results are visually similar (Fig. 10). The guided
filter takes about 0.1s to process this 600×400 color image, but the running time
is over 10 seconds as reported in [9] .

Joint Upsampling. Joint upsampling [21] is to upsample an image under the
guidance of another image. Taking the application of colorization [7] as an exam-
ple. A gray-scale luminance image is colorized through an optimization process.
To reduce the running time, the chrominance channels are solved at a coarse res-
olution and upsampled under the guidance of the full resolution luminance image
by the joint bilateral filter [21]. This upsampling process can also be performed
by the guided filter. The result is visually comparable (Fig. 11).
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Colorized image (upsampled using GF)

NN JBF GFNN GFJBF

Gray scale image with color strokes

Fig. 11. Joint Upsampling for Colorization. The upsampling methods includes: nearest-
neighbor (NN), joint bilateral filter (JBF), and guided filter (GF).

5 Discussion and Conclusion

In this paper, we have presented a novel filter which is widely applicable in com-
puter vision and graphics. Different from the recent trend towards accelerating
the bilateral filter [14,15,16,17], we define a new type of filter that shares the
nice property of edge-preserving smoothing but can be computed efficiently and
exactly. Our filter is more generic and can handle some applications beyond the
concept of ”smoothing”. Since the local linear model (3) can be regarded as
a simple case of learning, other advanced models/features might be applied to
obtain new filters.

As a locally based operator, the guided filter is not directly applicable for
sparse inputs like strokes. It also shares a common limitation of other explicit
filter - it may have halos near some edges. In fact, it is ambiguous for a low-
level and local operator to determine which edge should be smoothed and which
should be preserved. Unsuitably smoothing an edge will result in halos near it.
However, we believe that the simplicity and efficiency of the guided filter still
make it beneficial in many situations.
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