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ABSTRACT
In this paper, we propose a simple interactive way for a
novel type of image synthesis called image rearrangement
whose goal is to construct a new image based on some ob-
jects cropped from source images. The synthesis results are
obtained by copying patches from the source images in a
globally consistent way. The patch copying problem is for-
mulated with the Markov random field model, and belief
propagation is used as the optimization tool. To speed up
our algorithm, a two-step belief propagation and a multi-
scale patch copying scheme are taken. Experimental results
indicate that our algorithm obtains satisfactory results in
both performance and efficiency.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations

General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
Image synthesis, whose goal is to synthesize a new image

based on some given source images, is an important topic in
multimedia processing, image editing, and computer vision.
Some examples of image synthesis are texture synthesis [4,
13], image stitching [2, 7], and image stylization [3, 5, 12]. In
this paper, we focus on image rearrangement, a type of im-
age synthesis. The process of image rearrangement is illus-
trated in Figure 1. It includes three steps: object cropping,
patch copying, and refining.
First, the interesting objects are cropped from the source

images and pasted in the locations selected by the user on
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the canvas (see the part in the first dashed box in Figure 1).
There are some object cutout algorithms [8, 10] which can
segment object well with human interaction. In our algo-
rithm, we do not use such tools, but use a simpler interac-
tive method by just cropping objects roughly together with
some background (see Figure 1).

The second step of our image rearrangement algorithm is
to fill the canvas by patch copying in a globally consistent
way. Patch copying approaches have been popular in im-
age synthesis and image editing, e.g. [6, 13]. In this paper,
the patch copying problem is formulated with a Markov ran-
dom field (MRF) model, and belief propagation (BP) is used
as the optimization tool. In order to reduce the computa-
tional cost, we use a two-step BP and propose a multi-scale
scheme for patch copying. After constructing image pyra-
mids for the canvas and the source images, the main idea
of the multi-scale scheme is to copy patches at the top level
of the image pyramids, and then the results at the other
levels are reconstructed via a local search method based on
the result at the top level (see the illustration in the second
dashed box in Figure 1).

Although after patch copying, the visually natural results
can be obtained, they may not be good enough especially in
the region with strong structure. In the last step, we use an
interactive refining to improve the results.

The main contributions of this paper are twofold. First,
we propose the algorithm for image rearrangement, a new
type of image synthesis. Second, the proposed multi-scale
scheme greatly reduces the computational cost. We test
our algorithm in several applications. Experimental results
demonstrate that our algorithm is excellent in both perfor-
mance and efficiency.

2. PATCH COPYING
For a given canvas, the first step of image rearrangement

is to manually crop the interesting objects from the source
images and paste the cropped regions on the canvas. Then
the step of patch copying synthesizes the rest part of the
canvas to compose a visually natural image. Let C be the
canvas, S be the source images, Ω be the region of the pasted
objects in the canvas, and Φ = C − Ω be the rest region in
the canvas. Our algorithm synthesizes the colors in Φ based
on the information in S and Ω in a globally consistent way.

First, the source images S and the canvas C are sampled
with a horizontal and vertical spacing. Let P = {p1, p2, ..., pN}
be N sampled pixels in Φ. The process of our algorithm is
to fill Φ by copying patches taken from the source images to
the locations centered at pi ∈ P , 1 ≤ i ≤ N .
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Figure 1: Illustration of image rearrangement. We try to synthesize a new image with some objects appearing
in the given source images. First, the interesting objects are manually cropped and pasted in the canvas.
Then multi-scale patch copying synthesizes the image in a globally consistent way. Finally, the result is
refined in an interactive way.

Let L = {l1, l2, ..., lK} be the set of label candidates con-
taining all patches taken from the source images. Then
under the MRF model, patch copying is to find the best
label configuration X = {x1, x2, ..., xN} by minimizing an
energy function defined later in this section, where xi ∈ L,
1 ≤ i ≤ N , and xi = lk means that the patch lk is copied
and pasted in the location centered at pi.

2.1 MRF Model
Similar to [6, 9], we define the energy function under the

MRF model in the following form

E(X) =
∑
pi∈P

D(xi) +
∑

pj∈N (pi)

V (xi, xj), (1)

where pj ∈ N (pi) means that pj is a neighbor of pi, D(xi)
is the data cost for label xi and V (xi, xj) is the consistency
cost for (xi, xj).
The cost term for xi is defined as

D(xi) = d(xi,Ω), (2)

where d(xi,Ω) is used to constrain the synthesized patch xi

to match well with the region Ω when xi and Ω overlap.
d(xi,Ω) is the sum of the squared differences (SSD) of pixel
colors in the overlapping part between xi and Ω. When xi

and Ω do not overlap, D(xi) = 0.
The consistency cost term V (xi, xj) in our algorithm is

defined as

V (xi, xj) = αVt(xi, xj) + βVs(xi, xj), (3)

where Vt(xi, xj) is used to enforce consistency for texture,
Vs(xi, xj) is for structure, and α and β are two constants to
balance D, Vt, and Vs. Vt(xi, xj) is computed by

Vt(xi, xj) = d(xi, xj), (4)

where d(xi, xj) is the SSD in the overlapping part between
xi and xj . Vs(xi, xj) is computed by

Vs(xi, xj) = d2x(xi, xj) + d2y(xi, xj), (5)

where dx(xi, xj) and dy(xi, xj) are the gradient differences
between xi and xj in x and y directions, respectively. The
maximum gradient of the pixels in a patch is used to denote
the gradient of the patch, which describes the structure of
the patch.

2.2 Multi-Scale Scheme
After the energy function is defined, BP can be used to

solve the minimization problem. The computational com-
plexity of BP is the square of the number of label candidates.

(a) (b)

(c) (d) (e)

Figure 2: An example of multi-scale patch copying
in a 3-level pyramids. (a) The source image. (b)
Two objects are cropped from the source image and
pasted on the canvas. (c) The patch copying re-
sult at the top level. (d) The result at the second
level. (e) The result at the bottom level (the original
scale).

Therefore, the large number of label candidates (more than
10000) in our case causes BP very slow. We take a multi-
scale scheme to reduce the running time. Here the multi-
scale scheme includes two parts: one is a two-step BP and
the other is multi-scale patch pasting.

2.2.1 Two-Step BP
The main idea of the two-step BP [6, 9] is to perform BP

twice with K1 and K2 label candidates each time instead of
running BP once with K candidates, where K1 and K2 are
much smaller than K.

We first use the K-means algorithm to classify all the
patches in L into K1 clusters. The first running of BP takes
the K1 cluster centers as the label candidates. Suppose that
after the first BP, the result for xi is the center of the kth
cluster. Then in the second BP, the label candidates for
xi are the elements in the kth cluster (if the number of the
elements is larger thanK2, thenK2 candidates are randomly
selected from the elements).

2.2.2 Multi-Scale Patch Copying
The main idea of multi-scale patch copying is to run global
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(a) (b)

(c) (d)

Figure 3: An example of the refining step. (a) The
structure labeled manually. The red region is syn-
thesized by copying patches from the green region.
(b) The result with refined structure. (c) The black
region is manually labeled for patch re-copying. (d)
The final result.

Figure 4: Illustration of structure refining.

patch copying in a small scale. First, M -level image pyra-
mids are constructed for the source images and the canvas.
Then patch copying is taken at the top level (Mth level) of
the pyramids (an example result is shown in Figure 2(c)).
Compared to patch copying in the original scale, this reduces
the running time due to two aspects: 1) Since the source im-
ages are downsampled, the number of the patches sampled
in the source images reduces. This reduces the label can-
didates in BP. 2) Downsampling of the canvas reduces the
number of the nodes in BP.
After patch copying at the top level of the pyramids, we

take a local search scheme to obtain the result at the other
levels. Suppose that at the mth level, the result for xm

i is
xm
i = lmk , where lmk is a patch in the mth level source images.

Let xm−1
i be the correspondence of xm

i at the (m − 1)th
level, lm−1

k be the correspondence of lmk and p be the center
of lm−1

k . Then we obtain the result of xm−1
i as

xm−1
i = argmin

l∈N (lm−1
k

)
d (U(xm

i ), l) , (6)

where N (lm−1
k ) represents all patches whose centers are in a

window centered at p, U is the upsampling operator, and d is
the SSD operator. An example of multi-scale patch copying
is shown in Figure 2(c)-(e).

2.3 Refining
Although our algorithm obtains globally consistent re-

sults, they may not be satisfactory enough especially in the
regions with strong structure. We propose an interactive

(a) (b) (c)

Figure 5: Example result of object duplicating. (a)
The source image. (b) The cropped object are
pasted on the canvas. (c) The synthesized image.

method, which is similar to [11], to refine the results. We
explain the refining step based on an example in Figure 3.

First, two parts are manually labeled by the user for struc-
ture refining (see Figure 3(a)). The structure in the red
region is refined by copying patches from the green region.
The result is also obtained via minimizing the energy func-
tion defined in equation (1), where P is the set of the posi-
tions that should be refined (sampled points in the red line
in Figure 3(a)). Let pb and pe be the start and end points to
be refined in the red line. Different from above multi-scale
patch copying, the data term D(xi) here is defined as

D(xi) = Dt(xi) + λDs(xi), (7)

where Dt(xi) is the term to enforce texture consistency and
Ds(xi) enforces structure consistency. Let x0

i be the result
of position pi before refining. Then we define{

Dt(xi) = d(xi, x
0
i ) for pi = pb or pe

Dt(xi) = 0 others
, (8)

where d(xi, x
0
i ) is the SSD value in the green region in the

left part of Figure 4. Let Q be all the points in the labeled
line in x0

i . D
s(xi) is defined as

Ds(xi) =
∑
q∈Q

dist(xi, q), (9)

where dist(xi, q) is the distance from q to the labeled line
in xi. The definition of V (xi, xj) here is the same as (3),
(4), and (5). Figure 3(b) is the structure refining result of
Figure 3(a).

After refining the structure, some textural region should
be also refined. As shown in Figure 3(c), the black region is
labeled by the user and the multi-scale patch copying algo-
rithm described above is applied to this region again. Fig-
ure 3(d) is the final result.

3. EXPERIMENTAL RESULTS
We test our algorithm on several images. All experiments

provided in this paper are run on a PC with 2.6GHz AMD
Athlon CPU. The running time of each experiment (the im-
age size is around 400× 600) is between 1 and 2 seconds.

The first experiment is shown in Figure 5. In this case,
we crop the swan in the source image and duplicate it in the
new positions in the synthesized image.

In Figure 6, we use the image rearrangement algorithm
for content aware image resize. When resizing image with
aspect ratio changing, the objects in the image are warped.
Warping causes the image unnatural, especially for the salient
foreground (e.g., the two men riding on the bicycles in Fig-
ure 6). We compare our result to a traditional resize al-
gorithm (nearest neighbor) and a content aware algorithm
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(a) (b) (c) (d) (e)

Figure 6: Example results of content aware image resize. (a) The source image. (b) The resized image by
nearest neighbor. (c) The resized image by seam carving [1]. (d) The cropped object are pasted on the
canvas. (e) Our result.

(a) (b)

(c) (d)

Figure 7: Example result of our algorithm. (a)-(b)
The source images. (c) Two parts cropped from the
source images. (d) Our result.

(seam carving [1]). From the results in Figure 6(b) and
(c) we can see that nearest neighbor and seam carving cause
the two men flat. Although our algorithm changes the back-
ground, it keeps the salient regions better. The result of our
algorithm looks more natural than the others.
In the experiment shown in Figure 7, we synthesize the

image with the left four people in the first source image
and the right two people in the second source image. These
people are rearranged in the canvas, and the sea and sky are
reconstructed excellently.

4. CONCLUSION
In this paper, we propose an interactive image rearrange-

ment algorithm. It includes three steps: object cropping,
patch copying, and refining. Object cropping is to select
interesting objects from source images. Patch copying is to
synthesize a new image via copying patches from the source
images. In our algorithm, patch copying is conducted in a
globally consistent way with the MRF model. By taking
a two-step BP and a multi-scale scheme, the computational
time is greatly reduced. The refining step is used to improve
the results. The experimental results have demonstrated the
good performance of our approach.
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