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Abstract— Subspace learning techniques for face recognition
have been widely studied in the past three decades. In this
paper, we study the problem of general subspace-based face
recognition under the scenarios with spatial misalignments and/or
image occlusions. For a given subspace derived from training
data in a supervised, unsupervised, or semi-supervised manner,
the embedding of a new datum and its underlying spatial mis-
alignment parameters are simultaneously inferred by solving a
constrained `1 norm optimization problem, which minimizes the
`1 error between the misalignment-amended image and the image
reconstructed from the given subspace along with its principal
complementary subspace. A byproduct of this formulation is the
capability to detect the underlying image occlusions. Extensive
experiments on spatial misalignment estimation, image occlusion
detection, and face recognition with spatial misalignments and/or
image occlusions all validate the effectiveness of our proposed
general formulation for misalignment-robust face recognition.

I. INTRODUCTION

Subspace learning techniques for face recognition have
experienced a dramatic growth over the past decade [5] [7]
[23] [25]. Among them, some popular ones are Principal Com-
ponent Analysis (PCA) [16], Linear Discriminant Analysis
(LDA) [3], Random Subspace [18], Unified Subspace [19],
LaplacianFaces [8], Marginal Fisher Analysis [21], Kernel
LDA [23], Probabilistic LDA [11], and the recently pro-
posed extensions for handling tensor data [21] [24]. Subspace
learning was originally motivated for overcoming the curse
of dimensionality in the learning process and reducing the
computational cost for practical applications. Then subspace
learning was further proved to be possible and necessary from
the fact that the data in a certain application often lie on
or nearly on a lower-dimensional manifold. Recently, beyond
the different motivations of these popular subspace learning
algorithms, most of them were claimed to be unified within a
general framework called graph embedding [21].

Subspace learning is a powerful tool widely used in a variety
of research areas. Generally explicit semantics is assumed for
each feature, but for computer vision tasks, e.g., face recogni-
tion, the explicit semantics of the features may be degraded by
spatial misalignments. Face cropping is an inevitable step in an
automatic face recognition system, and the success of subspace
learning for face recognition relies heavily on the performance
of the face detection and face alignment processes. Practical
systems, or even manual face cropping, may bring consider-
able image misalignments, including translations, scaling and
rotation, which consequently change the semantics of two
pixels with the same index but in different images. Figure 1

Gallery

(a)
Without Misalignment Amending With Misalignment AmendingProbe

(b)

Fig. 1. Euclidean distance variations caused by image misalignments. a)
Example gallery images. b) Euclidean distances between the probe image
and the gallery samples indexed from 1 to 15, 1st row: original image, 2nd
row: vertical translation, 3rd row: horizontal translation, 4th row: scaling, 5th
row: rotation, and 6th row: occlusion. The statistics are computed within the
LDA subspace of the YALE database, and the right column is obtained from
our proposed misalignment robust algorithm, which effectively overcomes the
influence of the spatial misalignments and image occlusions.

demonstrates that these spatial misalignments and image oc-
clusions may greatly affect image similarity measurement, and
consequently degrade classification performance. Hence it is
desirable to have a general solution for misalignment-robust
face recognition that is applicable to all the above-mentioned
subspace learning algorithms.

In the literature, there exist some attempts to analyze [13]
and tackle this problem, e.g., in [12], the effect of spatial
misalignments was alleviated to some extent by adding virtual
training samples with manual spatial misalignments. However,
the spatial misalignment problem is still far from being solved,
since 1) in the training stage, usually all samples have been
cropped out, and the virtual sample synthesis process may
bring noises to the pixels near image borders; 2) the added
virtual samples may make the data more inseparable; and
3) the number of virtual samples is limited compared with
the huge amount of possible spatial misalignments. The work
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in [10] instead used patch-based philosophy for overcoming
misalignment issue.

In this paper, we provide our solution to the face recognition
problem under the scenarios with spatial misalignments and/or
image occlusions. A unified constrained `1 norm optimization
formulation, generally applicable to any learnt subspace, is
proposed to infer the embedding of a new datum in the
learnt subspace and at the same time estimate the spatial
misalignment parameters as well as the possible image oc-
clusions. Consequently we achieve algorithmic robustness to
spatial misalignment and image occlusion for face recognition.
The constraints of the `1 norm optimization problem im-
pose the feasibility of obtaining the misalignment parameters.
The objective function measures the difference between the
misalignment-amended image and the image reconstructed
from the learnt subspace as well as its principal comple-
mentary subspace. The minimization of the `1 norm of this
difference ensures that the border areas and the possibly
occluded area of the new datum have less effect on the
estimation of the parameters for the subspace and spatial
misalignments.

The rest of this paper is organized as follows. Section
II introduces the related work and the motivation of this
work. The details of the `1 norm minimization formulation for
misalignment-robust face recognition are described in Section
III. Section IV presents extensive comparison experiments on
three benchmark face databases, and concluding remarks are
given in Section V.

II. BACKGROUND AND MOTIVATION

Face recognition, as a classic multi-class pattern recog-
nition problem, has been very popular for validating the
effectiveness of newly proposed subspace learning algorithms
and classification approaches. In this section, we first give
a brief overview of subspace learning, and then introduce
the spatial misalignment issue specifically suffered by visual
classification tasks.

A. Subspace Learning Overview

For face recognition, let the training data be {xi|xi ∈
Rm}N

i=1, where N is the number of training samples and
the data are assumed to be zero centered. The correspond-
ing subject indices of the samples are denoted as {ci|ci ∈
{1, 2, ..., Nc}}N

i=1, where Nc is the number of subjects. In
practice, dimensionality reduction is in great demand owing to
the fact that the effective information for classification often
lies within a much lower dimensional feature space.

A simple but effective approach to dimensionality reduction
is to find a matrix W = [w1, w2, ..., wd] ∈ Rm×d (Rank(W )
= d, ‖wk‖ = 1, k = 1, 2, . . ., d) to transform the original
high-dimensional data x into a low-dimensional form y ∈ Rd

(usually d ¿ m) as
y = WT x, (1)

where the column vectors of the matrix W constitute a
subspace for data representation. Subspace learning algorithms
are designed to search for such a matrix.

Principal Component Analysis (PCA) [9] seeks projection
directions with maximal variances, namely with the best
capability to reconstruct the original data. LDA [3] [14] and
its variants [26] [22] search for the directions that are most
effective for discrimination by minimizing the ratio between
the intra-class and inter-class scatters. Locality Preserving
Projection (LPP) [8] tries to preserve the local neighborhood
relations across the data manifold through a projection matrix
W . Marginal Fisher Analysis (MFA) [21], derived from the
graph embedding framework, maximizes the ratio of projected
distances of between-class marginal points to that of within-
class neighboring points. According to the graph embedding
framework introduced in [21], most state-of-the-art algorithms
for subspace learning can be unified as an optimization of the
ratio:

arg min
W

∑
i 6=j ‖WT xi −WT xj‖2Sij∑
i 6=j ‖WT xi −WT xj‖2Sp

ij

, (2)

where the weight matrix S = [Sij ] describes the relationships
between sample pairs that we try to preserve in subspace
learning, while Sp = [Sp

ij ] characterizes the unfavorable
relationships that should be avoided.

B. Motivation

Assume that a projection W has been derived from a certain
subspace learning algorithm. When a new datum x comes,
generally it is directly projected into the learnt subspace
spanned by the column vectors of W as in (1). However, for
computer vision tasks, e.g., face recognition, the face image
needs first to be cropped out from the original whole image
which possibly contains background. A naive way to perform
this is to fix the locations of the two eyes in the cropped
rectangle [21]. For practical systems, however, the positions
of the two eyes need be automatically located by a face
alignment algorithm [6] or eye detector [17], so it is inevitable
that there may exist localization errors, namely spatial mis-
alignments. Generally, the spatial misalignments include four
components, translations in horizontal and vertical directions
(Tx, Ty), scaling (r), and rotation (α). Mathematically, the
underlying face image x̂ without spatial misalignments can be
considered as the transformed face image by a matrix P from
the cropped face image x, and then the exact low-dimensional
representation is

WT x̂ = WT Px, (3)

which is not exactly the same as WT x. Their difference is

ε̂ = WT x̂−WT x = WT (P − I)x. (4)

Here, an empirical evaluation of the effect from ε̂ to the data
metric measurement is presented in Figure 1. We can see
that the spatial misalignments may greatly affect the metric
measurement within the learned subspace. This motivates the
need for a general procedure to infer the representation of a
new datum within a certain learnt subspace in a way robust
to spatial misalignments.
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III. MISALIGNMENT ROBUST FACE RECOGNITION

In this section, we present our solution to misalignment-
robust face recognition. More specifically speaking, when a
new datum comes, its embedding in the subspace spanned
by W and the underlying image misalignment parameters
are simultaneously inferred, and consequently the datum is
essentially projected from the misalignment-amended image.

A. Problem Formulation

Image reconstruction from W and its principal com-
plementary subspace. Let x be a new datum, which may
contain image misalignments. We use a generative model to
estimate the parameters describing the spatial misalignments.
As the matrix W may be learnt for varying purposes, such
as discriminating power [3][21] and locality preservation [8],
it is unnecessary to be best, or even possible to be not
good, at reconstructing the original datum. Thus, we introduce
another subspace spanned by W ] ∈ Rm×r, called the principal
complementary subspace of W , to reconstruct the underlying
misalignment-amended image of x along with the learned
matrix W .

The matrix W ] is learnt as follows. First, we remove the
information covered by the matrix W for all the training data
as

xr
i = xi −W †WT xi, (5)

where W † is the pseudo-inverse of the matrix W and used
to transform the low-dimensional representation back to the
original feature space. Note that the training data are assumed
to be zero centered, and hence the above equation does not
include the data mean term. Then, the column vectors of W ]

are computed as the principal components of the covariance
matrix Cr from the remainder data xr

i ’s, where

Cr =
1
N

N∑

i=1

xr
i x

r
i
T . (6)

Finally, the misalignment-amended version x̂ of the datum
x is set to be reconstructed from these two subspaces as

x̂ = [W, W ]]
[

y
y]

]
+ ε, (7)

where y ∈ Rd and y] ∈ Rr are the coefficient vectors for
the two basis matrices W and W ], and ε represents noise.
Our task is to infer the vector y and then use it for final face
recognition.

Discussion: Although PCA is theoretically optimal in data
reconstruction, we do not directly use PCA in this work be-
cause the column vectors of W may not lie within the subspace
spanned by the principal components, and the reconstructed
image from PCA then loses the information useful for the
specific purpose characterized by the learnt W .

Misalignment-amended image. As mentioned above, the
underlying misalignment-amended image of x can be consid-
ered as the image transformed by matrix P from the observed
image x. In this work, we do not explicitly use the four param-
eters θ=(Tx, Ty, r, α) to model the spatial misalignments. In-
stead we simplify this model to assume that each pixel within

the misalignment-amended image is the nonnegative linear
combination of its neighboring pixels within the observed
image x. More specifically, we assume that the misalignment
only affects a ks-by-ks local neighborhood for each pixel. We
divide the face image plane into n blocks of size k-by-k with
m = n × k2, and assume that the same linear combination
coefficients apply to all the pixels within each block. We
arrange the elements of the image vector x block by block,
and then the misalignment-amending process can be defined
as

Tθ(x) = diag{(Pθ ⊗ ek2)Nx}, (8)

where Pθ ∈ Rn×k2
s and each row of Pθ represents a set

of linear combination coefficients for a block; ek2 is a k2

dimensional column vector with all ones; ⊗ is the Kronecker
Product, defined as A⊗B = [AijB] where A = [Aij ] and B

are two arbitrary matrices; Nx ∈ Rk2
s×m, with each column

vector representing the gray level values (in image x) of the
k2

s nearest neighbors of a pixel; and diag{·} denotes a vector
consisting of the diagonal elements of a square matrix. Then,
we have the misalignment-amended image x̂ = Tθ(x), i.e.,

[W, W ]]
[

y
y]

]
+ ε = diag{(Pθ ⊗ ek2)Nx}. (9)

For the better understanding of the relationships between
different variables, the example images for these variables are
shown in Figure 2.

Parameter estimation from the `1 norm minimization
formulation. In (9), there exist three sets of parameters to
estimate, namely, subspace coefficients (y and y]), noise vector
(ε), and spatial misalignment parameters (Pθ). Eqn. (9) itself
is insufficient for inferring the solution of the subspace and
the spatial misalignment parameters, and the scaling of the
solution is also the solution of (9). To derive a feasible
and reasonable solution, on the one hand, the misalignment
parameters should be non-negative, that is,

Pθ ≥ 0, (10)

and the linear combination coefficients for a certain pixel
should sum up to one, namely,

Pθ ek2
s

= en, (11)

where ek2
s

and en are k2
s and n dimensional column vectors

respectively with all ones.
When the neighboring pixels are out of the image plane for a

certain pixel, we generally use zero values to fill in these areas,
and consequently, there may exist very large errors within ε for
the pixels near the boundary. Moreover, the image occlusions
and noises may also result in large values for the elements of
ε. In these scenarios, the number of pixels with large-value
noises is relatively small compared with the total number of
pixels, namely, the ε is sparse. As studied in [4] and [20], a
sparse solution can be achieved by minimizing the `1 norm.
Thus a natural way to obtain a solution robust to the above
factors is to minimize the `1 norm of the error term ε, such that
the large errors only appear on the pixels near the boundary
or with possible occlusions/noise [20].
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Fig. 2. Example W , W ], x (with misalignments mainly in horizontal direction), x̂, and ε based on images from the CMU PIE database used in the
experiment part, and the subspace is obtained from Linear Discriminant Analysis.

Algorithm 1 Procedure for simultaneously inferring the sub-
space and misalignment parameters

Minimize: ||ε||1, s.t.

1: [W, W ]]
[

y
y]

]
+ ε = diag{(Pθ ⊗ ek2)Nx};

2: Pθ ek2
s

= en;
3: Pθ ≥ 0.

To sum up the above objective function and all constraints,
we have the formulation for the subspace and misalignment
parameter estimation as listed in Algorithm 1. It is a general `1
norm optimization problem with variables (y, y], ε, Pθ). This
problem is convex and can be transformed into a general linear
programming problem by adding extra auxiliary coefficients.
Hence there exists a globally optimal solution. In practice we
drop the last nonnegative constraint and incorporate the second
constraint into the objective with a large penalty coefficient.
Then the optimization can be solved efficiently using the
general linear programming toolbox or `1 norm optimization
toolbox as in [1].

B. Misalignment Estimation
After obtaining the low-dimensional feature representation

y corresponding to W for each sample x, face recognition
can then be conducted based on simple yet effective Nearest
Neighbor approach or other more complicated classifiers.

Besides face recognition, the estimation of image spatial
misalignments is also very useful. From the formulation in
Algorithm 1, we can obtain the misalignment parameter ma-
trix Pθ. This matrix characterizes the image misalignments,
including translations (Tx, Ty), rotation (α), and scaling (r),
however the θ=(Tx, Ty, r, α) cannot be directly inferred from
Pθ due to the simplification aforementioned. Instead, we first
obtain a set of pixel pairs (original pixel vs. misalignment-
amended pixel) based on Pθ, and then use these pixel pairs to
infer the θ=(Tx, Ty, r, α). More specifically, for the ith block,
we select the centroid pixel with coordinates zi as the reference
pixel, and it is transformed to the pixel ẑi. The pixel ẑi is
interpolated by using the coefficients in Pθ, and then

ẑi =
k2

s∑

j=1

Pθ(i, j) zij , (12)

where zij
is the coordinate vector of the jth neighboring pixel

of the pixel zi.
Then, based on these pixel pairs, we can have(
a b
−b a

)
[z1, · · · , zn] +

(
Tx

Ty

)
⊗ eT

n = [ẑ1, · · · , ẑn],

where a = r cos(α), b = r sin(α). The parameters can
be directly solved by using the Least Squares Error (LSE)
approach, and the parameters r and θ can be then deduced
from a and b. In this work, as the datum itself may have spatial
misalignments even if it is manually cropped, we cannot eval-
uate the exact accuracy of the parameter estimation without
ground truth, and hence we instead show the misalignment-
amended images to demonstrate the accuracy of misalignment
estimation in the experimental section.

Byproduct: Occlusion Detection. A byproduct of this
formulation is that, when there exist image occlusions in the
observed face image x, the `1 norm minimization of the error
vector ε can also recover these areas as the pixels with large
errors in ε. For the case with image occlusions, after we detect
the occlusion area, the subspace parameters y and y] can be
further refined by replacing the occluded pixels with the values
from the reconstructed image based on the subspaces spanned
by W and W ].

C. Discussions

In this subsection, we discuss the relationship between our
proposed general formulation for misalignment-robust face
recognition and two related works [12][15] that also try to
tackle this spatial misalignment problem.

1) Relationship with [12] using virtual samples: Shan et
al. [12] introduced the concept of the curse of misalignment,
and proposed to add virtual training samples with manual
misalignments for bridging the distribution gap between train-
ing data without spatial misalignments and testing data with
spatial misalignments. Our formulation in this work is different
from [12] in several aspects: 1) the work [12] cannot handle
image occlusion; 2) the work [12] cannot work under scenarios
where the training images are already cropped; 3) the virtual
samples essentially make the classification boundaries more
nonlinear and thus maybe beyond the capability of linear
subspace techniques; 4) it cannot estimate the exact spatial
misalignment parameters or occluded areas; and 5) our pro-
posed formulation is general and can be used under scenarios
with both spatial misalignments and image occlusions, and
it can also be used for both misalignment and occlusion
estimation. Moreover, our formulation can also work on the
derived subspace from the training set with virtual samples to
further improve algorithmic performance on testing data with
unforeseen spatial misalignments. In the experimental section,
we compare our proposed algorithm with the work in [12] in
the cases where the images are automatically cropped out and
neither algorithm can estimate the spatial misalignments in a
theoretically reasonable way.
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Fig. 3. Demonstration of misalignment (translations) estimation and image
reconstruction on the CMU PIE database. Original samples are displayed
in the first row, the second row is the corresponding samples with random
translations of 4 pixels, and the bottom row contains the reconstructed samples
by our algorithm.

Fig. 4. Demonstration of misalignment (scales and rotations) estimation
and image reconstruction on the CMU PIE database. Original samples are
displayed in the first row, the second row is the corresponding samples with
random scalings (1–4th columns) and rotations (5–8th columns), and the
bottom row contains the reconstructed samples by our algorithm.

2) Relationship with the shift invariant PCA [15]: Tu et al.
[15] proposed a shift invariant probabilistic PCA for alleviating
the influence of image shifts, namely spatial translations, on
PCA based face recognition. This algorithm is specific to
PCA and limited in the following aspects compared with our
formulation: 1) the work can only handle image translations,
but not other types of spatial misalignments; 2) the work
is specific to generative algorithms, and cannot be used for
discriminative algorithms, such as LDA and MFA discussed
in the nest section; 3) similar to [12], it cannot handle the
cases with image occlusions.

IV. EXPERIMENTS

In this section, we systematically evaluate the effectiveness
of our general formulation for misalignment-robust (MAR)
face recognition, and we take two popular subspace learning
algorithms, LDA [3] and MFA [21], as examples for the
evaluation. The evaluation consists of four aspects: 1) spatial
misalignment estimation and image reconstruction, 2) occlu-
sion detection and recovery, 3) face recognition on testing data
with synthesized spatial misalignments or image occlusions,
and 4) face recognition under the scenario with automatic
image cropping.

A. Data Sets

Four benchmark face databases, ORL, CMU PIE, YALE 1,
and the Face Recognition Grand Challenge database (FRGC

1Available at http://www.face-rec.org/databases/.

Fig. 5. Demonstration of occlusion detection on the CMU PIE database.
Original samples are displayed in the first row. An 18-by-18 occlusion is
randomly generated as shown in the second row. The third row shows the error
maps derived from our algorithm, and the recovered images are demonstrated
in the bottom row.

version 1.0) [2] are used in our experiments. The ORL
database contains 400 images of 40 persons, where each image
is manually cropped and normalized to the size of 32-by-28
pixels. The CMU PIE (Pose, Illumination, and Expression)
database contains more than 40, 000 facial images of 68
people. In our experiment, a subset of five near frontal poses
(C27, C05, C29, C09 and C07) and illuminations indexed as
08 and 11 are used and manually normalized to the size of
32-by-32 for the face recognition experiments. The Yale face
database contains 165 grayscale images of 15 individuals with
11 images per subject, one per different facial expression or
configuration: center-light, with/without glasses, happy, left-
light, normal, right-light, sad, sleepy, surprised, and wink. The
images are also manually cropped and normalized to the size
of 32-by-32 pixels. The FRGC database consists 5658 images
of 275 subjects. The number of facial images of each subject
varies from 6 to 48. For this database, we randomly select half
of the images of each person for model training, and the left
half for testing. Since manually cropped faces are not available
for FRGC database, the face images are automatically cropped
and then normalized to the size of 32-by-32 pixels in the
experiments.

B. Spatial Misalignment Estimation

In this subsection, we demonstrate the spatial misalignment
estimation performance of our proposed MAR formulation.
The CMU PIE database is used for this evaluation. We
randomly select four images per subject for model training,
and from the remaining images we randomly select 8 probe
images, as illustrated in the first row of Figure 3. To simulate
misalignment in real cases, a random translation of +4 or
−4 pixels in the vertical or horizontal direction is added to
each probe image. Using the proposed MAR formulation,
the random translations can be detected and estimated by
examining the parameter vector Pθ. The images can also be
reconstructed using Eqn. (7) by removing the noise term. The
reconstruction results are shown in the 3rd row of Figure 3.
The subspace learning algorithm used in this evaluation is
LDA, and the dimension of the LDA subspace is set to 50.
For better visualization, the images are normalized to the
size of 64-by-64 pixels and the dimension of the principal
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complementary space is set to N −dl, where N is the sample
number and dl (= 50) is the dimension of the LDA subspace.
Also, the reconstruction performance for image scaling and
rotation is demonstrated in Figure 4. For scaling, the original
image is randomly scaled by a factor r ∈ [0.9, 1.1], and
for image rotation, a random rotation α ∈ [−10o,+10o] is
imposed on the original image.

We also conducted the experiments to quantitatively eval-
uate the accuracies on image misalignment estimation based
on our proposed algorithm. The CMU PIE database is used
for the experiments and six images each person without image
misalignments are used for model training. The image size and
the detailed subspace learning algorithm are set the same as in
the experiments for qualitative evaluation. In the evaluation,
each type of misalignment is evaluated independently and
all the test images are used for experiments. The image
translation is set as integer within [−6, 6] pixels for both
horizontal and vertical directions, the rotation is set randomly
within (−12o,+12o), and the scaling is set randomly within
(0.85, 1.15]. The detailed results on the average estimation
errors within different misalignment ranges are summarized in
Table I, from which we can observe: 1) the image translation
estimation in both horizontal and vertical directions shows
to be very satisfying; 2) for image rotation estimation, the
accuracy within the range of (−6o, 6o) is acceptable; 3) for
image scaling estimation, the performance for scaling down
the size is generally better than that from scaling up the
size; and 4) when the misalignment range is further enlarged,
the estimation error shall further increase but our proposed
algorithm still shows effective within the ranges we evaluated.

C. Occlusion Detection
For facial images with occlusions, the occluded parts can

be revealed by detecting the elements of ε with relatively
large reconstruction errors. In this subsection we examine the
occlusion detection capability of our MAR formulation on
the CMU PIE database. We randomly pick 4 images of each
subject for training the subspace to derive W and W ]. The
remaining 6 images of each person serve as probe images.
Similar to the spatial misalignment estimation experiments, we
normalize the images to a larger size of 64-by-64 pixels and
then an 18-by-18 artificial occlusion is generated at a random
position. Correspondingly, we select 18×18 = 324 pixels with
the largest values of ε as the occluded pixels. For real images
with occlusions, the occlusion area can be selected by setting
an empirical threshold for the ε value to determine whether
a pixel is occluded. Eight images are randomly selected from
the probe set and the occlusion detection results are shown in
Figure 5, from which we observe that the positions of the oc-
cluded parts are generally recognized. Consequently, the facial
images without occlusions can be further reconstructed from
Eqn. (7), which is demonstrated in Figure 5. The configuration
for the subspace learning algorithm is the same as that for the
spatial misalignment estimation.

D. Face Recognition with Misalignments
In this subsection, face recognition experiments are con-

ducted on three benchmark face databases with spatial mis-

alignments for the testing data. Our MAR framework is
evaluated based on two popular subspace learning algorithms,
LDA and MFA. For the MFA related algorithms, the number
of intra-class nearest neighbors of each sample is fixed as 3,
and the number of closest inter-class pairs for each class is
set to 40 for CMU PIE and ORL. For the Yale database, the
latter number is set to 10 since the class number is comparably
smaller for this database. To speed up model training and avoid
the singularity problem, PCA is conducted as a preprocessing
step for the original LDA and MFA. Similar to the Fisherface
algorithm [3], the PCA dimension is set to N −Nc, where N
is the sample number and Nc is the class number.

For comparison, the classification results on the original
gray-level features without dimensionality reduction are also
reported as the baseline, denoted as ‘w/o DR’ in the result
tables. In all the experiments, the Nearest Neighbor method is
used for final classification. All possible dimensions of the
final low-dimensional representation are evaluated, and the
best results are reported. For each database, we test various
configurations of training and testing sets for the sake of
statistical confidence, denoted as ‘NxTy′ for which x images
of each subject are randomly selected for model training and
the remaining y images of each subject are used for testing.
To simulate the spatial misalignments, translation randomly
generated within the interval [−1, +1] pixels, random rotation
within the interval [−10o, +10o], and random scaling within
[0.9, 1.1] are added to the probe images. We also use the mixed
spatial misalignments to simulate the misalignments brought
by the automatic face alignment process. In the mixed spatial
misalignment configuration, a rotation α ∈ [−5o,+5o], a scal-
ing r ∈ [0.95, 1.05], a horizontal shift Tx ∈ [−1,+1], and a
vertical shift Ty ∈ [−1,+1] are randomly added to the original
image. The detailed results with random translations for the
testing data are listed in Table II, the recognition results with
random scalings are shown in Table III, the recognition results
with random rotations are shown in Table IV, and the perfor-
mance with mixed spatial misalignments is demonstrated in
Table V compared with the performance on manually cropped
images. From these tables, we can have the observations: 1) for
all the experiments, the MAR framework combined with LDA
and MFA both greatly improve the face recognition accuracy;
2) the MFA based algorithms generally outperform the LDA
based algorithms, the performance of which greatly relies on
the assumption of the Gaussian distribution for the data; 3) the
unsupervised learning algorithm PCA is more robust to spatial
misalignments than the supervised algorithms LDA and MFA,
especially on the ORL and PIE databases; and 4) under the
manual cropping scenario, the recognition rate on the YALE
gets a dramatic increase from the MAR framework, while for
the other two databases, the improvement is not so obvious,
an explanation of which is that spatial misalignments are more
serious in the YALE database even though they are manually
cropped.

E. Face Recognition with Occlusions

In this subsection, we evaluate the face recognition per-
formance of MAR formulation under scenarios with image
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TABLE I
QUANTITATIVE IMAGE MISALIGNMENT ESTIMATION ERRORS FOR FOUR DIFFERENT TYPES OF MISALIGNMENTS EVALUATED ON THE CMU PIE DATASET.

Type Translation Tx (pixel) Translation Ty (pixel)
Ground Truth -6:-4 -3:-2 -1:1 2:3 4:6 -6:-4 -3:-2 -1:1 2:3 4:6

Average Estimation Error 0.81 0.56 0.57 0.57 0.63 0.54 0.34 0.45 0.45 0.79

Type Rotation α (o) Scaling r
Ground Truth (-12, -6] (-6, -2] (-2, 2] (2, 6] (6, 12) (0.85, 0.95] [0.95 1] (1, 1.05] (1.05, 1.15)

Average Estimation Error 3.49 1.50 0.486 1.11 3.02 0.0090 0.0076 0.0197 0.0236

TABLE II
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON THE THREE DATABASES WITH RANDOM IMAGE TRANSLATIONS. NOTE THAT THE

BOLD NUMBERS ARE THE BEST ACCURACIES FOR EACH CONFIGURATION.

Configuration Baselines LDA Related Algorithms MFA Related Algorithms
YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 68.0 69.3 77.3 80.0 78.7 80.0
N5T6 62.2 64.4 66.7 74.4 70.0 73.3
N4T7 63.8 67.6 67.6 77.1 65.7 71.4
ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N4T6 66.3 68.8 68.3 77.1 71.3 77.5
N3T7 61.4 64.3 66.8 72.1 67.9 72.5
N2T8 56.9 55.3 54.7 62.5 54.7 63.1
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 69.1 73.6 74.9 82.0 75.7 87.8
N3T7 66.0 70.1 67.4 82.1 68.9 83.2
N2T8 60.5 64.4 60.1 76.4 64.3 76.8

TABLE III
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON THE THREE DATABASES WITH RANDOM IMAGE SCALING.

Configure Baselines LDA Related Algorithms MFA Related Algorithms
YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 69.3 66.7 76.0 81.3 77.3 84.0
N5T6 65.6 65.6 74.4 78.9 74.4 76.7
N4T7 66.7 64.8 71.4 77.1 67.6 77.1
ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N4T6 70.4 70.0 65.0 74.6 65.8 73.8
N3T7 67.1 67.9 64.6 77.1 65.4 76.1
N2T8 56.9 57.2 54.7 60.6 55.9 61.6
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 81.2 83.3 83.9 91.8 84.7 91.3
N3T7 74.4 76.4 81.2 87.3 81.4 88.9
N2T8 70.6 69.6 74.2 84.9 74.0 85.7

TABLE IV
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON THE THREE DATABASES WITH RANDOM IMAGE ROTATIONS.

Configuration Baselines LDA Related Algorithms MFA Related Algorithms
YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 70.7 68.0 76.0 80.0 76.0 78.7
N5T6 64.4 63.3 71.1 74.4 70.0 75.6
N4T7 67.6 66.7 70.5 73.3 70.5 74.3
ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N4T6 78.3 79.2 74.6 80.0 75.8 77.5
N3T7 73.2 73.9 71.4 78.2 73.2 79.3
N2T8 60.3 61.3 64.1 64.7 65.3 65.6
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 81.8 84.7 77.3 86.2 79.1 87.8
N3T7 76.4 78.9 70.1 80.7 72.6 83.0
N2T8 71.2 70.6 65.9 80.4 66.3 81.8



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009 8

TABLE V
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON THE THREE DATABASES: MANUALLY ALIGNED IMAGES VS. IMAGES WITH MIXED

MISALIGNMENTS.

Configuration Baselines LDA Related Algorithms MFA Related Algorithms
YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 78.7/56.0 82.7/60.0 89.3/68.0 94.6/78.7 90.7/68.0 93.3/81.3
N5T6 72.2/52.2 72.2/53.3 82.2/63.3 90.0/73.3 82.2/62.2 92.2/72.2
N4T7 72.4/54.3 72.4/53.3 82.9/61.0 88.6/75.2 83.8/61.9 88.6/73.3
ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N4T6 87.9/64.2 88.0/63.2 88.3/51.7 89.6/65.7 89.2/51.2 90.0/69.6
N3T7 81.4/52.9 81.8/53.9 84.3/50.4 85.0/65.7 83.6/48.9 86.1/64.6
N2T8 71.6/46.9 68.8/49.1 71.3/45.3 75.6/54.4 72.2/45.9 76.3/55.0
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 84.4/62.2 87.8/65.9 92.9/54.0 94.2/78.8 93.9/55.0 94.4/79.6
N3T7 80.7/54.2 83.5/55.9 94.1/50.3 94.1/72.6 95.0/51.5 95.0/73.7
N2T8 78.8/51.8 81.8/51.6 84.7/46.2 89.1/69.6 86.7/46.4 89.9/70.8

TABLE VI
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON THE THREE DATABASES WITH RANDOM IMAGE OCCLUSIONS.

Configuration Baselines LDA Related Algorithms MFA Related Algorithms
YALE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 78.7 82.7 87.8 90.2 90.5 92.3
N5T6 74.4 71.1 88.7 91.6 89.6 92.1
N4T7 74.3 73.3 77.8 86.1 79.4 87.1
ORL w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N4T6 87.1 86.3 84.6 92.1 86.8 91.3
N3T7 82.5 82.1 81.4 85.4 83.2 86.1
N2T8 71.6 69.4 69.7 71.6 70.0 71.9
PIE w/o DR PCA Ori-LDA MAR-LDA Ori-MFA MAR-MFA

N4T6 84.1 87.3 87.8 90.2 90.5 92.3
N3T7 80.3 82.1 88.7 91.6 89.6 92.1
N2T8 78.0 78.6 77.8 86.1 79.4 87.1

TABLE VII
RECOGNITION ACCURACY RATES (%) OF DIFFERENT ALGORITHMS ON AUTOMATICALLY CROPPED IMAGES (FOR BOTH TRAINING AND TESTING DATA).

Configuration Baselines LDA Related Algorithms MFA Related Algorithms
FRGC w/o DR PCA Work [12] Ori-LDA MAR-LDA Ori-MFA MAR-MFA

50%:50% 57.4 57.5 87.2 86.0 90.0 86.0 89.5
YALE w/o DR PCA Work [12] Ori-LDA MAR-LDA Ori-MFA MAR-MFA
N6T5 80.0 78.7 84.0 89.3 89.3 85.3 85.3
N5T6 72.2 68.9 80.0 78.9 82.2 78.9 82.2
N4T7 74.3 70.5 81.9 79.1 84.8 80.0 83.8

occlusions. The configuration is similar to the case with
spatial misalignments, except that a 6-by-6 occlusion patch is
generated at a random position for each probe image. The face
recognition results are listed in Table VI, from which we can
see that with the aid of occlusion detection and reconstruction,
the recognition rates are generally boosted by 3–9 points from
our MAR formulation, and the improvement is more dramatic
when the training sample number is small.

F. Scenario with Automatic Cropping

Finally, we examine the performance of the MAR frame-
work under the scenario with automatic cropping. We utilize
the Active Shape Model [6] as the face alignment algorithm
for automatically locating the key points on the face, and
then cropped the face based on the detected key points.

The face alignment is conducted on the YALE and FRGC
databases for automatic cropping, while for the PIE and ORL
databases, automatic face alignment is unavailable since the
faces have been cropped out for the ORL database and the
face alignment results are unacceptable on the PIE database
due to the influence of illuminations.

The algorithm introduced in [12] is also evaluated under
this scenario, and 25 virtual samples are synthesized for each
training sample by translating the positions of two eyes with
±1 pixels in both directions. The detailed results are listed
in Table VII, from which the observations can be made: 1)
the recognition accuracies under the scenario with automatic
cropping are decreased for almost all the algorithms on the
YALE database, compared with the scenario with manual
cropping; 2) the MAR framework can greatly compensate
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the effect of spatial misalignments caused by the automatic
cropping process; and 3) the work in [12] can generally
enhance the algorithmic robustness to image misalignments,
but its improvement is not as significant as that from the MAR
formulation proposed in this paper.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a general `1 norm minimization formulation
has been proposed to provide misalignment-robust face recog-
nition based on subspace learning techniques. In this formu-
lation, the embedding of a new datum in the learnt subspace
and the spatial misalignment parameters are simultaneously
estimated, and the image occlusion areas can also be detected
based on the `1 norm minimization of the difference between
the misalignment-amended image and the reconstructed image
from the learnt subspace along with its principal comple-
mentary subspace. To the best of our knowledge, this is
the first work to study the problem of general subspace-
based face recognition with the consideration of both spatial
misalignments and image occlusions. In the future, we plan to
take pose variation as a type of specific spatial misalignment,
and investigate a more general formulation to handle face
recognition with pose variations. Also the extension of this
work to tensor data [24] is another interesting direction for
study.
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