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We propose a learning-based background subtraction approach based on the theory of sparse representation and dictionary
learning. Our method makes the following two important assumptions: (1) the background of a scene has a sparse linear
representation over a learned dictionary; (2) the foreground is “sparse” in the sense that majority pixels of the frame belong to
the background. These two assumptions enable our method to handle both sudden and gradual background changes better than
existing methods. As discussed in the paper, the way of learning the dictionary is critical to the success of background modeling
in our method. To build a correct background model when training samples are not foreground-free, we propose a novel robust
dictionary learning algorithm. It automatically prunes foreground pixels out as outliers at the learning stage. Experiments in
both qualitative and quantitative comparisons with competing methods demonstrate the obtained robustness against background
changes and better performance in foreground segmentation.

1. Introduction

Segmenting foreground objects from a video sequence is a
fundamental and critical step in video surveillance, traffic
monitoring, video conferencing, video editing, and many
other applications. Background Subtraction (BGS) is used
in many of these applications, where each video frame is
compared against a background model, and those pixels
significantly deviating from the model are considered to
belong to the foreground. These “foreground” pixels are
further postprocessed for object localization and tracking.

The general framework of BGS usually comprises of
four steps: preprocessing, background modeling, foreground
detection, and postprocessing. The preprocessing step col-
lects training samples and removes imaging noises; The
background modeling step builds a background model
which is in general robust to certain background changes;
the foreground detection step generates foreground can-
didates through calculating the deviation of a pixel from
the background model; finally, the postprocessing step
thresholds those candidates to form foreground masks.
Among the four steps, background modeling is the most
critical and challenging one to the success of a BGS
method.

The difficulties in building a good background model
mainly lie in the following two facts.

(a) Background Changes. In practice, the background may
undergo complex changes. These changes can be at low-
frequency, for example, intensity variation caused by global
illumination; they can be at high-frequency, like irregular
movements of the rain, tree shaking, and water waves;
they can also be repetitive and sudden changes caused
by background switching among different configurations,
such as traffic light switching among several statuses as
illustrated in Figure 2. The background pixels undergoing
these complex changes are prone to be misclassified as
foreground objects.

(b) Outliers in Training Samples. Another challenge in
practical scenarios such as traffic monitoring is that, it
is often difficult and laborious in a learning-based BGS
method to build a background model with foreground-
present frames. The training samples extracted directly
from a video record often contain both background regions
and unwanted foreground pixels. Directly employing a
nonrobust learning method leads to inaccurate background
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modeling and poor foreground detection perform-
ance.

In this paper, we propose a novel BGS method, which
better handles background configuration changes. It exploits
two sparsity assumptions for background modeling as well as
foreground object detection: (1) the background has sparse
linear representation with respect to a learned dictionary,
each atom of which characterizes one of the background
configurations. (2) The foreground is group sparse in the
sense that the majority pixels in a frame belong to the
background and these foreground pixels are spatially cor-
related. Based on these two assumptions, we formulate the
background modeling step as a dictionary learning problem,
and the foreground detection step as a modified sparse
coding problem. Furthermore, in order for the background
model to work with foreground-present training samples,
we propose a robust learning approach. It simultaneously
detects foreground pixels as outliers and builds a correct
background model at the learning stage.

The remainder of this paper is organized as follows.
Section 2 surveys the literature of background subtraction,
and Section 3 gives the mathematical formulation of the pro-
posed method. In Section 4, we show experimental results in
comparison with existing methods, and in Section 5, we draw
the conclusion.

2. Related Works

Existing BGS methods can be approximately classified into
two categories, based on how the background and the
foreground are formulated: pixel-level models and frame-
level models.

Pixel-level methods typically model the distribution of
each pixel in a frame locally and independently. One of
the most representative examples is the frame differencing,
which is fast but not able to capture interior pixels of a
uniformly colored moving object. Along this direction, a
more advanced method, known as Mixture of Gaussian
(MoG), was proposed in [1]. It states that a static scene
can be modeled reasonably well with a mixture of Gaussian
distributions. Friedman used a mixture of three Gaussians
(corresponding to the road, shadow, and vehicles, resp.) to
model the background and foreground in traffic surveillance
applications. Stauffer and Grimson [2] extended this idea
using multiple Gaussians with multiple hypotheses and
found it useful in modeling dynamic scenes such as waving
trees, beaches, rain, and snow. The MoG method is popular
and usually regarded as the basis for a large number
of related techniques. When the assumptions imposed by
the selected hypotheses fail, nonparametric approaches are
more suitable. A popular nonparametric approach is to use
kernels. In this method, a kernel is created around each
of the previous samples and the density is estimated using
an average over the kernels. While different kernels can be
considered, the Normal kernel was proposed by Elgammal
et al. [3]. The advantage of such approach is its ability in
handling an arbitrary shape of the density function. Last
but not the least, Kalman-filter was applied in [4, 5] to

model backgrounds with dynamic textures. Kalman filters
that exploit more complex state vectors often include higher-
order motion characteristics such as velocity and acceleration
and are be able to capture more complex dynamic behavior.
These methods directly model the distribution of each pixel
in the background, and for a new pixel, they calculate its
probability of being a foreground or a background one.
However, pixel-level BGS methods suffer from deficiencies
when facing the two challenges mentioned in Section 1,
because these methods often ignore the cue of spatial
correlation in background changes. The innocence leads
to information insufficiency in both background modeling
and foreground segmentation. For example, pixel-intensity
changes caused by global illumination variation are highly
spatially correlated, and when considered independently
they are in nature no different than those caused by the
presence of foreground objects, and thus are prone to be
misclassified.

Different from pixel-level methods, frame-level methods
treat the background pixels of a frame as a whole image
and discover the inner structure of the background variation.
Owing to the introduction of higher-level information, they
can better model global background changes. A represen-
tative of this line of works involves employing Principle
Component Analysis and its variant versions. The basic
assumption is that background changes due to illumination
variation are low dimensional, and a background image
can be represented by a linear combination of a set of
learned basis vectors known as eigen-backgrounds [6]. Later
in [7], the authors proposed an incremental PCA method to
predict model states, which can be used to capture motion
characteristics of backgrounds. In practical applications,
there are cases like traffic monitoring that foreground-free
training samples are not available. To enable the algorithm
to work under these circumstances, the author in [8, 9]
proposed a Robust PCA model, which was further developed
in [10] to be much faster, more effective and thus more
practical. The main advantage of these models is that
background changes like illumination variation are treated
globally and better modeled in comparison to pixel-level
methods.

In addition, recent few years have witnessed successful
employment of the Compressive Sensing theory [11] in
solving BGS problems. The theory states that a signal can be
almost perfectly recovered from only a few measurements if
it is sparse [12], that is, majority of its elements are zero or
close to zero. These methods make the assumption that the
majority of the pixels in a frame belong to the background,
and thus the foreground is sparse after background subtrac-
tion and can be nearly perfectly recovered from only a few
measurements. Since the number of pixels in the foreground
is significantly smaller than that in the whole frame, the
foreground detection step enjoys significant power reduction
on the sensor of a camera. The idea was further developed by
[13], in which Markov Random Field (MRF) was employed
to impose group effect on foreground pixels since they are
spatially adjacent when forming an “object”. Later in [14]
the authors proposed an alternative approach—the Dynamic
Group Sparsity (DGS).
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Figure 1: Framework of background subtraction.
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Figure 2: Background switches among several configurations controlled by the status of traffic lights.

In this paper, we propose a novel BGS approach. It is
related to the eigen-background methods in the sense that
a representative set of basis vectors are learned and retained
for background modeling. The difference is that our method
provides an automatic mechanism for the background to
switch among a set of atoms for its representation without
involving all of them at the same time. Our approach is also
related to Compressive Sensing methods in its assumption
that the pixels in the foreground are group sparse as similar
as [13, 14]. However, the difference is that we also assume the
background to have a sparse representation and learn a dic-
tionary to characterize the background changes. This enables
our background model to handle different configurations
caused by, for example, traffic light switching among differ-
ent statuses. Furthermore, the learning of the dictionary is
different from conventional dictionary learning techniques
such as [15, 16] in its robustness against outliers. The
proposed learning method does not require foreground-free

training samples, and it can build a correct background
model with outlying foreground pixels automatically pruned
out. This is practically important and convenient when
foreground-free training samples are difficult to obtain in
scenarios like traffic monitoring.

In summary, the main contributions made in this paper
and the advantages obtained are the following.

(a) We use dictionary learning to model a background,
so that it better handles background changes caused
by switching among different configurations.

(b) In order for the learning method to work with
corrupted training samples, we propose a Robust
Dictionary Learning (RDL) approach, which auto-
matically prunes unwanted foreground objects out in
the learning stage and greatly reduces human labor
involvement.
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Figure 3: Discovery of foreground objects.
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Figure 4: Robust dictionary learning.

(c) We model the foreground detection problem as an
L1-measured and L1-regularized optimization, the
global optimal solution of which can be efficiently
found. Furthermore, we use the feature of group
effect to segment foreground objects.

3. Methodology

The common framework of existing methods formulates the
background subtraction as a linear decomposition problem:
to find a background component xB and a foreground
component xF together constituting a given frame x:

x = xB + xF , (1)

where xB , xF , and x are column vectors of the size as the
number of pixels. To achieve the decomposition, we rely on
prior assumptions about both xB and xF . The key to the
success is the modeling of the background xB , which varies
among different methods. For example, in [1, 2], the pixels
in xB are assumed to follow a distribution as a mixture of
Gaussians. And xF is in general regarded as the deviation
of x from xB in the sense that whenever a foreground pixel
appears it occludes the collocated background pixel, and
xF reflects the confidence of a pixel in x from being a
background one.

The work [6] observes that the background of a scene
under varying illumination condition is a low-dimensional
structure. To identify the structure, they build a set of
basis vectors by performing PCA on a set of training back-
ground frames. This observation is reasonable because the
dimension of illumination variation should be significantly
lower than that of the image. However, this assumption is
often violated in practical scenarios by (1) local and sudden
changes that the background of a scene undergoes and (2)
foreground objects that are present in the collected training
samples used for background modeling. These scenarios may
introduce inaccuracy in the background modeling step and
performance degradation in the foreground detection step.

In this section, we address how to model those sudden
and local changes caused by the background switching
among a number of configurations. Taking Figure 2 for
example, the configurations of the background are different
when the traffic lights are at different statuses. In Section 3.2,
we model the background as a sparse linear combination of
atoms from a dictionary D, each atom of which characterizes
one of the configurations. We then formulate in Section 3.3
the foreground detection as a sparse coding problem, to
simultaneously recover a sparse foreground and a sparse code
for the background. In Section 3.4, we address how to build
a dictionary D for background modeling so that a new frame
can smartly choose only a few atoms for its background
representation.

3.1. Sparsity Assumptions. Suppose a scene has C configura-
tions, we assume that each configuration of the background
is low dimensional and can be characterized by a set of basis
vectors. By stacking these vectors as columns of a matrix Di,
we say that the background xB of the ith configuration has
linear representation xB = Diαi, where αi is the coefficient
vector. We define a new matrix D as the concatenation of all
the C matrices D = [D1,D2, ...,DC], and thus rewrite xB in
terms of D as

xB = Dα, (2)

where α = [0, ..., 0,αTi , 0, ..., 0]
T

is a sparse coefficient vector
whose entries are ideally zeros except at those positions asso-
ciated with Di. This leads to our first sparsity assumption:

Assumption 1. Background xB of a specific frame x has sparse
representation over a dictionary D.

Furthermore, based on the observation that foreground
objects usually occupy minority pixels in a frame, we make
another sparsity assumption on the foreground.

Assumption 2. The candidate foreground xF of a frame is
sparse after background subtraction.

3.2. Background Subtraction. With the above two assump-
tions, the BGS problem can be interoperated as follows: given
a frame x, to find the decomposition which has a sparse
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Figure 5: Robust dictionary update step. (a)–(c) A few of samples for update of an atom. (d) Updated atom by K-SVD [15]. (e)–(g) Outliers
pruned out by our method. (h) Updated atom by our method.

coded background xB = Dα and a sparse foreground xF =
x −Dα:

α = arg min
α

‖x −Dα‖0 + λ‖α‖0. (3)

Here ‖α‖0 is the L0-norm counting the number of nonzero
elements, D is the dictionary capturing all the background
configurations of a scene as mentioned in Section 3.1, and λ
is the weighting parameter balancing between the two terms.

To find the optimal solution for (3) is NP-hard due to
the nonconvexity of L0-norm. Recent development on the
theory of compressive sensing [11] advocates that a sparse
signal can be recovered by either employing a greedy pursuit
algorithm or replacing L0-norm with its tightest convexation
version L1-norm. However, the problem (3) is different from
the CS literature since it involves two sparse terms rather than
only one: the sparse foreground x − Dα as well as the sparse
coded background α. The authors in [17] addressed this type
of problem and rewrote (3) as

β = arg min
β

∥
∥β
∥
∥

0 s.t. x = D′β, (4)

where β is the concatenation of α and x − Dα, that is, β =
[α; x−Dα], and D′ is the concatenation of D and the identity
matrix, that is, D′ = [DI]. Since (4) becomes a standard
sparse coding problem, it can be solved without difficulty
within a general CS framework.

In this paper, we make a different modification by
expanding the dictionary in a different manner: we first
replace L0-norm with L1-norm and obtain an L1-measured
and L1-regularized convex optimization problem:

α = arg min
α

‖x−Dα‖1 + λ‖α‖1, (5)

where ‖α‖1 = ∑

i |α(i)|. We then rewrite (5) into an
equivalent L1-approximation problem:

α = arg min
α

∥
∥
∥
∥
∥
∥

⎛

⎝
x

0

⎞

⎠−
⎛

⎝
D

λI

⎞

⎠α

∥
∥
∥
∥
∥
∥

1

. (6)

The advantage of this reformulation over [17] is that, since
the number of dictionary atoms in a BGS problem is usually
far less than the number of pixels leading to a tall matrix
D, the dictionary of size (K + N) × K in problem (6) is
dramatically smaller than that in problem (4) which is as
large as N × (K + N). Therefore, the computational cost of
solving (6) is lower than solving (4) in essence.

And since the set of linear equations

⎡

⎣
x

0

⎤

⎦ =
⎡

⎣
D

λI

⎤

⎦α (7)

is highly overdetermined (with the number of known
elements in α is far less than the number of equations), (6)
gracefully satisfies the conditions posed in [18] and thus has
a guaranteed global optimal solution. Thus we can reliably
segment the candidate foreground xF from the background
xB given a frame x.

It is worth mentioning that the reason we use L1-norm
instead of L0-norm is twofold: (a) it enjoys the theoretic
advantage that the global optimal solution is guaranteed. (b)
It practically accommodates small errors much better than
L0-norm does. This is important since x − Dα is usually not
perfectly sparse but contain minor model errors or noises
even at the locations of inliers.

3.3. Foreground Segmentation. As mentioned in Section 1,
the value of a pixel in xF is the deviation of the pixel
from belonging to the background. A nonzero value can be
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(a) Original (b) xB by MoG [2] (c) xB by DGS [14] (d) xB by K-SVD [15] (e) xB by ours

(f) Truth (g) xF by MoG [2] (h) xF by DGS [14] (i) xF by K-SVD [15] (j) xF by ours

Figure 6: Qualitative comparison of background subtraction results.

caused by the presence of foreground objects, high-frequency
background changes, and model errors. In this section,
we postprocess the candidate foreground xF to separate
foreground objects from the other two possibilities. The key
idea is based on an important observation that foreground
objects not only are sparse but also have grouped pixels, that
is, pixels on foreground objects are spatially correlated. On
the other hand, pixels of high-frequency changes or model
errors are comparatively more scattered and less structured.

The authors in [13, 14] made use of this fact, and,
respectively, proposed to use MRF and DGS for discovering
grouped elements of a sparse signal in the framework of
compressive sensing. Inspired by their work, we propose to
segment foreground objects which have grouped pixels by
calculating a confidence score. It measures the likelihood of
a pixel in xF belonging to a foreground object by not only
taking the intensity of the pixel but also its neighborhoods’:

score(i) = x2
F(i) +

∑

j∈Neighbor(i)

x2
F

(

j
)

. (8)

Figure 3 shows an example of its distribution. As can be
observed, measured by this metric, foreground objects are
much more emphasized than other unstructured and high-
frequency changes and model errors. The spirit is the same
with [14] in the sense that grouped elements are much easier
to be segmented out than other isolated elements. However,
the difference is that we do not need to try different sparsity
levels to determine the proper number of nonzero elements,
leading to more efficient optimization.

3.4. Background Modeling via Dictionary Learning. It is
obvious from previous discussion that, the key to the success
of applying the approach is how to design an appropriate
dictionary D, each atom of which characterizes one of the
background configurations. Since the background of a scene
in general occupies only a tiny part of the whole image space,
those analytical dictionaries such as Over-complete DCT or
Wavelets are of no interest. Furthermore, these dictionaries
do not characterize background configurations, thus they
cannot serve a choice.

A straightforward alternative is to manually collect a
number of training samples, and then learn a basis Di

for each background configuration, and finally concatenate
them into the dictionary D. This method theoretically
works; however, it involves laborious manual classification
of training samples, and most importantly, our concern
is only the dictionary D, rather than each of its subpart
Di.

The above two facts motivate us to directly learn
such a dictionary D from training samples. The idea of
dictionary learning technique [15, 16, 19] is to collect a few
representative background frames as training samples, and
then find an optimal dictionary D satisfying the following:
it tries its best at representing all the training samples
with minimal error and meanwhile producing the sparsest
representations.

D = arg min
D,{αm}

M
∑

m=1

‖xm −Dαm‖2
2 + λ · ‖αm‖1, (9)

where xm is the mth sample within a training set of size M
and αm is a sparse coefficient vector for each sample. Notice
that we choose L1-norm instead of L0-norm for the reason
mentioned in Section 3.1.

Existing dictionary learning makes a good method
for building a background model if a collection of clean
background frames can be provided. However, in certain
practical scenarios such as traffic monitoring, foreground-
free samples are difficult or laborious to collect. When
working with the above objective function, those fore-
ground pixels may violate model assumptions (e.g., linear
representation of xB and iid-Guassin error), and the local
regions which are foreground-corrupted cannot be modeled
well by these methods. As shown in Figure 5(d), one
drawback of these methods is its vulnerability to outliers
existed in training samples. To learn a dictionary under this
circumstance is a chicken-egg puzzle: a correct dictionary
can be built if those outliers can be excluded, and vice
versa. To solve this puzzle, we propose in Section 4 a robust
learning method which achieves both the above two targets
simultaneously.
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Figure 7: Comparison of a few representative atoms from the dictionary learned by: (top) K-SVD [15] and (bottom) our RDL method.

4. Robust Dictionary Learning

To make the learning algorithm robust against outliers,
we develop in this section a Robust Dictionary Learning
(RDL) approach which simultaneously segments the outly-
ing foreground pixels out and builds a correct dictionary
(see Algorithm 1). This is achieved by optimizing a modified
objective function (10): to find the optimal dictionary
D which approximates the training data with minimum
amount of outlying foreground pixels and produces the
sparsest representations of the backgrounds.

D = arg min
D,{αm}

M
∑

m=1

‖xm −Dαm‖1 + λ‖αm‖1. (10)

The difference from conventional dictionary learning meth-
ods [15, 16, 19] lies in the measure of the reconstruction
error: they employ L2-norm while we employ L1-norm.
However, the modification is not trivial, since outlying
foreground objects make the iid-Gaussian error assumption
violated, and we instead assume a heavy-tailed iid-Laplacian
distribution, which is known to handle outliers better.

To find an optimal solution D for (10) is not easy, since it
involves the product of unknown termsD and αm. We rewrite
it into a matrix form and obtain an equivalent problem:

D = arg min
D,A

‖X −DA‖1 + λ‖A‖1, (11)

where X is the matrix of training data each stacked as a
column, A is the matrix of coefficient vectors stacked in a
similar way, and ‖A‖1 =

∑

i, j |A(i, j)| is the “1-norm” of the
matrix A defined in this paper as the sum of absolute values
of its entries.

Figure 4 illustrates the objective in a matrix-factorization
perspective X = DY + E, where E is a sparse matrix of
outliers.

In this factorization problem, the known variable is only
X. Previous discussions shed some lights on the unknowns
D, A, and E: the dictionary D is of fixed size, coefficients
A and errors E are sparse, leading to the objective function
(11). Since it is not jointly convex for D and A, we use the
same spirit with [15, 16, 19] which iteratively and alternately
optimizes D and A with each other frozen. We name the two
steps as robust sparse coding and robust dictionary update,
respectively.

4.1. Robust Sparse Coding. The robust sparse coding step
optimizes coefficient matrix A with dictionary D being
constant:

A = arg min
A

‖X −DA‖1 + λ‖A‖1. (12)

Since the training samples (columns of X) are assumed
to be independent from each other, we break (12) into M
independent subproblems in a columnwise fashion:

αm = arg min
αm

‖xm −Dαm‖1 + λ‖αm‖1 for m = 1, . . . ,M.

(13)

Each subproblem in (13) is an L1-measured and L1-
regularized convex optimization problem which has been
addressed in Section 3.2, so we redirect the readers to that
section on the solutions.
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(a) Original (b) Ground truth (c) MoG [2]

(d) KDE [3] (e) DGS [14] (f) Ours

Figure 8: Results on the sequence “Rain”.

4.2. Robust Dictionary Update. With the coefficient matrix
A being updated and considered constant, we disregard the
second term in (11) and update D:

D = arg min
D

‖X −DA‖1. (14)

We assume that the atoms in D are independent from each
other and thus update them each separately.

dk = arg min
dk

∥
∥
∥X − dkαk

∥
∥
∥

1
for k = 1, . . . ,K , (15)

dik = arg min
dik

∥
∥
∥xi − dikα

k
∥
∥
∥

1
for i = 1, . . . ,N , k = 1, . . . ,K ,

(16)

αkj = arg min
αkj

∥
∥
∥xj − dkα

k
j

∥
∥
∥

1
for j = 1, . . . ,M, k = 1, . . . ,K ,

(17)

where dk is kth atom of D and αk is kth row (coefficients
corresponding to dk) of A. It is worth to mention that in (15),
we only extract the columns of X whose coefficients in αk are
above a small threshold. This is because the elements in αk
may not be exactly zero but close to, and the thresholding
step retains those “related” samples rather than involves all
of them. It significantly speeds up updating dk and avoids
from overfitting. Besides, we normalize the atoms dk so that
they have unit Euclidean norms, otherwise (15) may run into
trivial solutions with arbitrary small values.

By further breaking each of (15) into a set of L1-
regression problems (16), we obtain a closed-form solution
for each of them by employing the Iterative-Reweighted Least
Square method [20, 21]. While this strategy works well,
we find that the convergence of solving (15) requires fewer
iterations if we involve (17) at the same time, which updates
the coefficients αk . In summary, we iterate between (16) and
(17) until the convergence on dk is reached.

Figure 5(h) illustrates an updated dictionary atom, with
some of the involved samples shown in Figures 5(a)–5(c) and
detected outliers in Figure 5(e)–5(g). For comparison with
conventional learning techniques, we show the updated atom
using K-SVD [15] in Figure 5(d). As can be observed, K-
SVD produces inaccurate dictionary atom (ghosting effect)
at regions where outliers (foreground vehicles) are present,
while our method generates a correct update completely free
from outliers.

5. Experimentation

To test the performance of the proposed method in handling
above-mentioned background changes, in this section, we
conduct two experiments: one is on the background config-
uration changes which are local and sudden, the other is on
the nonstructured and high frequency changes.

5.1. Local and Sudden Changes. A typical example in practice
is that the scene of interest contains traffic lights switching
among different statuses. The background undergoing these
changes can be well modeled by a dictionary each atom of
which captures one of the traffic light statuses. Since this type
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(a) Original (b) Ground truth (c) MoG [2]

(d) Monnet’s [4] (e) DGS [14] (f) Ours

Figure 9: Results on the sequence “Ocean”.

of change has not been addressed in existing works, we do
not have a public dataset to experiment on. Therefore, we
collect some video clips on Youtube [22] to make the data.
The video of size 120×160 is shot by a surveillance camera set
at a railway crossing. The traffic lights take on three different
statuses: on-off, off-on, and off-off.

To model the background, we extract totally 38 frames
(containing foreground vehicles) at a constant interval to
form the training set. These frames cover all the three traffic
light statuses. We randomly select K = 15 of them to
initialize a dictionary, and then update the dictionary by
dictionary learning techniques, such as K-SVD as well as
ours. The parameters are set to be iteration number J = 5
and λ = 3. Notice that, while still using the name K-SVD
throughout this paper, we replace the L0-norm by L1-norm
for fair comparison. For foreground object detection, we
implement both methods on the remaining part of the video.
In addition, we implement the method of Dynamic Group
Sparsity (DGS) [14] and Mixture of Gaussians (MOG) [2]
with provided source codes.

To measure the segmentation results quantitatively, we
manually labeled the ground-truth masks on 10 representa-
tive frames of each sequence. As shown in Figure 6(f), white
pixels indicate foreground objects, and gray ones indicate the
background. Since there are ambiguous pixels, for example,
on shadows or blurred edges, we label them as black and
disregard them in the calculation of segmentation error.
The qualitative and quantitative comparisons are given in
Figure 6 and Table 1, respectively. The numbers in Table 1
indicate the permillage of misclassified pixels over the total
number pixels of the frames.

Table 1: Quantitative comparisons on data collected from [22].

MOG [2] DGS [14] K-SVD [15] Ours

False negative 1.45‰ 0.0‰ 2.45‰ 0.46‰

False positive 8.23‰ 21.3‰ 38.49‰ 2.14‰

Total error 9.67‰ 21.3‰ 40.94‰ 2.60‰

As can be observed, our method performs consistently
better than existing BGS methods MOG [2] and DGS [14]
when the traffic light switches in the background. For both
MOG and DGS methods, the pixels are misclassified as
foreground objects. It is worth to mention that, although the
method DGS also assumes sparse representation of the back-
ground and group sparse of the foreground, it still fails to
model the traffic lights because it does not successfully build
a dictionary to describe these background configurations.
And since a frame mostly resembles its immediate previous
neighbors, their online dictionary update boils down to an
extended frame-differencing approach in a certain sense.
Thus the pixel changes caused by background switching are
persistently regarded as foreground objects in their method.
Besides, its exhaustive searching strategy for the proper
amount of foreground pixels is computationally inefficient
especially for large-sized foreground objects.

Also, the proposed RDL approach outperforms conven-
tional dictionary learning methods K-SVD in the sense that
it builds a much better background model when the training
samples contain outliers. The resultant difference between
the two methods is illustrated in Figure 7 where each atom
is linearly stretched to [0, 255] for display. As can be seen,
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(a) Original (b) Ground truth (c) MoG[2]

(d) Robust Kalman[5] (e) DGS [14] (f) Ours

Figure 10: Results on the sequence “Water”.

Algorithm: Robust Dictionary Learning
Parameters: J (no. of iterations), K (number of dictionary atoms), λ (Lagrange multiplier)
Initialization: Initialize D by K randomly selected samples
Loop: Repeat J times
(i) Robust Sparse Coding:

Fix D, and compute coefficient vector αm for each sample xm by solving(11)
(ii) Robust Dictionary Update:

Fix all αm, and for each dictionary atom dk., k ∈ 1, 2, . . . ,K ,
(a) Select the set of samples relevant to the atom via thresholding αk

(b) Update dk by iterating between (16) and (17) until convergence:
Output:

Optimized dictionary D

Algorithm 1: Description of proposed robust dictionary learning algorithm.

the dictionary atoms learned by K-SVD is corrupted at the
places where outliers (foreground vehicles) are present. In
comparison, our method can reliably detect and prune out
the outliers as long as they are not dominant, that is, they do
not persistently appear at the colocation of all the training
frames.

5.2. Nonstructured High-frequency Changes. In practice,
besides local and sudden background changes, there can be
high-frequency changes caused by rain, tree shaking, or water
waves especially for outdoor surveillance. These changes
are different in nature from those caused by appearance of
foreground objects, since they are much less structured. In
this experiment, we perform foreground segmentation on
the dataset [5] and compare its performance with [2–5, 14].
The parameters for our method are exactly the same with
those used in Section 5.1. The results produced by other

Table 2: Quantitative comparisons on dataset [5].

Ocean Rain Water

FN FP Total FN FP Total FN FP Total

Ours 0.73 0.21 0.94 2.91 2.13 5.04 5.88 0.16 6.04

DGS 0.10 1.61 1.71 1.93 2.86 4.79 5.31 0.10 5.41

MOG 0.26 4.32 4.58 12.7 2.39 15.09 2.92 15.9 18.82

KDE 0.10 8.85 8.95

KAL 15.1 0.05 15.15

methods are directly drawn from http://paul.rutgers.edu/∼
jzhuang/. The comparison is shown in Figures 8, 9, and 10
and Table 2.

As can be observed, our method performs better than
conventional methods [2–5] in handling less-structured and
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high-frequency background changes. It performs compar-
atively well as DGS [14], since the background has only
one configuration for each sequence, and both DGS and
our method can correctly model it. The main difference is
that DGS is based on L0-norm, while ours on L1-norm.
As mentioned in Section 5.1, our method does not involve
either manually setting or exhaustively searching the proper
size of foreground objects, which is practically convenient.

5.3. Discussions. While the proposed algorithm works well
in background subtraction, there is a need hereby to review
the key assumptions and some requirements for its successful
application.

(a) The Background can be Represented as a Linear Combi-
nation of Basis Vectors (Dictionary Atoms). This constraint
applies to scenarios that, as discussed in Section 3, the
background undergoes global illumination variation or local
sudden changes which have a limited number of configura-
tions. It cannot work if the background changes cannot be
modeled likewise. For example, when the video is captured
by a moving hand-held camera, the movement of the scene
makes the linear representation assumption violated.

(b) The Foreground should Cover Minority Pixels of a Frame.
Our algorithm requires the foreground to be sparse so as
to perfectly recover it. This constraint guarantees theoretic
equivalence between L0-norm and L1-norm. However, we
find it can be relaxed in practice. In both the background
modeling step and the foreground detection step, we find the
algorithm successfully detects foreground pixels and builds a
correct dictionary as long as the outliers are not dominant.
It seems that foreground pixels can be segmented even if it
covers almost the whole frame. The empirical evidence is as
similar as that reported in [17]. Notice that, even when the
constraint is not perfectly satisfied, L1-norm still enjoys the
benefits mentioned in Section 3.2.

(c) Background Changes, Except those which can be Modeled
as Linear Combination of Dictionary Atoms, should be at
High-Frequency and Less Structured than Foreground Objects.
When this constraint is met, we can employ 4-connected,
8-connected, or more sophisticated model to successfully
discover the foreground objects from a sparse candidate
frame.

6. Conclusion

In this paper, we proposed a learning-based method for
BGS. The method exploits a novel robust dictionary learning
approach for background modeling, and segments fore-
ground objects by optimizing an L1-measured and L1-
regularized problem. We tested the performance of the
method in qualitative and quantitative comparison with
existing methods. It outperforms these methods in back-
ground modeling and foreground detection when the back-
ground exhibits sudden and local changes as well as high-
frequency changes.

The proposed robust dictionary learning method can
also be applied to solving other problems, for example,
motion segmentation [23, 24] where outliers are essentially
problematic. It removes the outliers during the learning stage
and generates a clean dictionary for sparse representation.
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