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Abstract

Automatic face photo-sketch recognition has important
applications for law enforcement. Recent research has fo-
cused on transforming photos and sketches into the same
modality for matching or developing advanced classifica-
tion algorithms to reduce the modality gap between features
extracted from photos and sketches. In this paper, we pro-
pose a new inter-modality face recognition approach by re-
ducing the modality gap at the feature extraction stage. A
new face descriptor based on coupled information-theoretic
encoding is used to capture discriminative local face struc-
tures and to effectively match photos and sketches. Guided
by maximizing the mutual information between photos and
sketches in the quantized feature spaces, the coupled en-
coding is achieved by the proposed coupled information-
theoretic projection tree, which is extended to the random-
ized forest to further boost the performance. We create the
largest face sketch database including sketches of 1, 194
people from the FERET database. Experiments on this large
scale dataset show that our approach significantly outper-
forms the state-of-the-art methods.

1. Introduction
Face photo-sketch recognition is to match a face sketch

drawn by an artist to one of many face photos in the
database. In law enforcement, it is desired to automati-
cally search photos from police mug-shot databases using
a sketch drawing when the photo of a suspect is not avail-
able. This application leads to a number of studies on this
topic [26, 27, 28, 31, 9, 14, 6]. Photo-sketch generation and
recognition are also useful in digital entertainment industry.

The major challenge of face photo-sketch recognition is
to match images in different modalities. Sketches are a con-
cise representation of human faces, often containing shape
exaggeration and having different textures than photos. It
is infeasible to directly apply face photo recognition algo-
rithms. Recently, great progress has been made in two di-
rections. The first family of approaches [27, 18, 31] fo-
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Figure 1. A CITP tree with three levels for illustration purpose.
The local structures of photos and sketches are sampled and cou-
pled encoded via the CITP tree. Each leaf node of the CITP tree
corresponds to a cell in the photo vector space and in the sketch
vector space. The sampled vectors in the same cell are assigned the
same code, so that different local structures have different codes
and the same structures in different modalities have the same code.

cused on the preprocessing stage and synthesized a pseudo-
photo from the query sketch or pseudo-sketches from the
gallery photos to transform inter-modality face recognition
into intra-modality face recognition. Face photo/sketch syn-
thesis is actually a harder problem than recognition. Imper-
fect synthesis results significantly degrade the recognition
performance. The second family of approaches [17, 15, 14]
focused on the classification stage and tried to design ad-
vanced classifiers to reduce the modality gap between fea-
tures extracted from photos and sketches. If the inter-
modality difference between the extracted features is large,
the discriminative power of the classifiers will be reduced.

In this paper, we propose a new approach of reducing
the modality gap at the feature extraction stage. A new face
descriptor is designed by the coupled information-theoretic
encoding, which quantizes the local structures of face pho-
tos and sketches into discrete codes. In order to effectively
match photos and sketches, it requires that the extracted

513



codes are uniformly distributed across different subjects,
which leads to high discriminative power, and that the codes
of the same subject’s photo and sketch are highly correlated,
which leads to small inter-modality gap. These require-
ments can be well captured under the criterion of maximiz-
ing the mutual information between photos and sketches
in the quantized feature spaces. The coupled encoding is
achieved by the proposed randomized coupled information-
theoretic projection forest, which is learned with the maxi-
mum mutual information (MMI) criterion.

Another contribution of this work is to release CUHK
Face Sketch FERET Database (CUFSF)1, a large scale face
sketch database. It includes the sketches of 1, 194 people
from the FERET database [22]. Wang and Tang [31] pub-
lished the CUFS database with sketches of 606 people. The
sketches in the CUFS database had less shape distortion.
The new database is not only larger in size but also more
challenging because its sketches have more shape exagger-
ation and thus are closer to practical applications. Exper-
iments on this large scale dataset show that our approach
significantly outperforms the state-of-the-art methods.

1.1. Related work

To synthesize pseudo photos (sketches) from sketches
(photos), Tang and Wang [27] proposed to apply the eigen-
transform globally. Another global approach proposed by
Gao et al. [9] was based on the embedded hidden Markov
model and the selective ensemble strategy. Liu et al. [18]
proposed patch-based face sketch reconstruction using lo-
cal linear embedding based mapping. The sketch patches
were synthesized independently ignoring the spatial rela-
tionship. Wang and Tang [31] used a multiscale Markov
random field (MRF) to model the dependency of neighbor-
ing sketch patches. Photos and sketches were matched once
they were transformed to the same modality.

In order to reduce the inter-modality gap at the classifi-
cation stage, Lin and Tang [17] mapped features from two
modalities into a common discriminative space. Lei and
Li [15] proposed coupled spectral regression (CSR). CSR
was computationally efficient in learning projections to map
data from two modalities into a common subspace. Klare et
al. [14] proposed local feature-based discriminant analysis
(LFDA). They used multiple projections to extract a dis-
criminative representation from partitioned vectors of SIFT
and LBP features.

There is an extensive literature on descriptor-based face
recognition [1, 32, 36], due to its advantages of computa-
tional efficiency and relative robustness to illumination and
pose variations. They are relevant to our coupled encoding.
However, those handcrafted features, such as LBP [1] and
SIFT [19], were not designed for inter-modality face recog-
nition. The extracted features from photos and sketches

1Available at http://mmlab.ie.cuhk.edu.hk/cufsf/.

may have large inter-modality variations.
Although information-theoretic concepts were explored

in building decision trees and decision forests for vector
quantization [2, 21, 23] in the application of object recogni-
tion, these algorithms were applied in a single space and did
not address the problem of inter-modality matching. With
the supervision of object labels, their tree construction pro-
cesses were much more straightforward than ours.

2. Information-Theoretic Projection Tree
Vector quantization was widely used to create discrete

image representations, such as textons [20] and visual
words [24], for object recognition and face recognition. Im-
age pixels [5, 23], filter-bank responses [20] or invariant de-
scriptors [24, 33] were computed either sparsely or densely
on a training set, and clustered to produce a codebook by
algorithms such as k-means, mean shift [12], random pro-
jection tree [5, 8, 33] and random forest [21, 23]. Then with
the codebook any image could be turned into an encoded
representation.

However, to the best of our knowledge, it has not been
clear how to apply vector quantization to cross-modality ob-
ject matching yet. In this section, we present a new cou-
pled information-theoretic projection (CITP) tree for cou-
pled quantization across modalities. We further extend the
CITP tree to the randomized CITP tree and forest. For clar-
ity of exposition, we present the method in the photo-sketch
recognition scenario.

2.1. Projection Tree

A projection tree [8] partitions a feature space RD into
cells. It is built in a recursive manner, splitting the data
along one projection direction at a time. The succession
of splits leads to a binary tree, whose leaves are individual
cells in RD. With a built projection tree, a code is assigned
to each test sample x, according to the cell (i.e. leaf node)
it belongs to. The sample is simply propagated down the
tree, starting from the root node and branching left or right
until a leaf node is reached. Each node is associated with a
learned binary function f(x) = sign(wTx − τ). The node
propagates x to its left child if f(x) = −1 and to its right
child if f(x) = 1.

2.2. Mutual Information Maximization

Since quantization needs to be done in both the photo
space and the sketch space, we extend a projection tree to
a coupled projection tree. In a coupled projection tree, vec-
tors sampled from photos and sketches share the same tree
structure, but are input to different binary functions fp(xp)
and fs(xs) at each node. A vector xp sampled from the
neighborhood of a photo pixel is quantized with fp and a
vector xs sampled from the neighborhood of a sketch pixel
is quantized with fs. Then the sampled photo vectors and
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sketch vectors are mapped to the same codebook, but their
coding functions represented by the tree are different, de-
noted by Cp and Cs, respectively.

To train a coupled projection tree, a set of vector pairs
X = {(xp

i ,x
s
i ), i = 1, ..., N} is prepared, where xp

i ,x
s
i ∈

RD. In this paper, xp
i and xs

i are the normalized vectors
of sampled gradients around the same location2 in a photo
and a sketch of the same subject, respectively. Denote that
Xp = [xp

1, ...,x
p
N ], Xs = [xs

1, ...,x
s
N ]. Since xp

i and xs
i are

sampled from the same subject at the same location, it is
expected that they are quantized into the same code by the
coupled projection tree. In the meanwhile, in order to in-
crease the discriminative power, it is expected that the codes
of Xp and Xs are uniformly distributed across different
subjects. To achieve these goals, our coupled information-
theoretic projection (CITP) trees are learned using the max-
imum mutual information (MMI) criterion (see Fig. 2).

Mutual information, which is a symmetric measure to
quantify the statistical information shared between two ran-
dom variables [7], provides a sound indication of the match-
ing quality between coded photo vectors and coded sketch
vectors. Formally, the objective function is as follows.3

I(Cp(Xp); Cs(Xs)) = H(Cp(Xp))−H(Cs(Xp)|Cp(Xs)).
(1)

To increase the discriminative power, the quantization
should maximize the entropy H(Cp(Xp)) so that the sam-
ples are nearly uniformly distributed over the codebook. To
reduce the inter-modality gap, the quantization should min-
imize the conditional entropy H(Cp(Xp)|Cs(Xs)).

2.3. Tree Construction with MMI

Similar to random projection tree [8], the CITP tree is
also built top down recursively. However, it is different in
that the CITP tree is not a balanced binary tree, i.e. the leaf
nodes are at different levels. So the tree building process
consists of searching for both the best tree structure and the
optimal parameters at each node.

Tree structure searching. We adopt a greedy algorithm
to build the tree structure. At each iteration, we search the
node whose splitting can maximize the mutual information
between the codes of sampled photo and sketch vectors.
The mutual information, given in Eqn. (1), can be eas-
ily approximated in a nonparametric way. All the sampled
photo and sketch vectors in the training set are quantized
into codes with the current tree after splitting the candidate
node, and the joint distribution of photo and sketch codes is

2We sample the gradients (i.e. the first-order derivatives in the hori-
zontal and vertical directions) Iu and Iv for an image I . Please refer to
Section 3 for details.

3The mutual information is originally defined between two random
variables Cp(xp

i ) and Cs(xs
i ). We use the empirical mutual information

estimated on the training set throughout this paper.
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Figure 2. An illustration of tree construction with MMI. In each
step, all current leaf nodes are tested and the one with the maxi-
mum mutual information is selected to split. For a leaf node, we
try to split it and obtain a tree to encode photo vectors and sketch
vectors. The selected leaf node should satisfy: (1) the codes are
uniformly distributed; (2) the codes of photo vectors and corre-
sponding sketch vectors are highly correlated. These requirements
can be well captured under the MMI criterion. In this example,
if we split node A, requirement (2) will not be satisfied, and if
we split node C, requirement (1) will not be satisfied. The cor-
responding mutual information I of both are relatively small. So
node B with the maximum mutual information is selected. The
histograms and joint histograms of photo and sketch codes are vi-
sualized. In joint histograms, the colors represent the joint proba-
bility densities.

computed to estimate the mutual information. A toy exam-
ple is shown in Fig. 2.

Node parameter searching. It is critical to search for
optimal parameters of binary functions fp(xp) and fs(xs)
to determine how to split the node. Formally, we aim at
finding projection vectors wp,ws and thresholds τp, τs for
node k4, such that

ypi = wT
p x

p
i − τp, ŷpi = sign(ypi ),

ysi = wT
s x

s
i − τs, ŷsi = sign(ysi ).

(2)

Then a binary value ŷpi (or ŷsi ) is assigned to each vector xp
i

(or xs
i ), to split the training data into two subsets and prop-

agate them to the two child nodes. The node propagates a
training vector pair (xp

i ,x
s
i ) to its children only if the binary

values ŷpi and ŷsi are the same. Otherwise, the vector pair is
treated as an outlier and discarded.

Suppose that the input of a node k is a set of vec-
tor pairs Xk = {(xp

ki
,xs

ki
), 1 ≤ i ≤ Nk}. Denote

that Xp
k = [xp

k1
, ...,xp

kNk
], Xs

k = [xs
k1
, ...,xs

kNk
], Yp

k =

[ypk1
, ..., ypkNk

], Ys
k = [ysk1

, ..., yskNk
], Ŷp

k = [ŷpk1
, ..., ŷpkNk

]

4We omit index k of the parameters, for conciseness.
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and Ŷs
k = [ŷsk1

, ..., ŷskNk
]. The node is split according to the

MMI criterion, i.e. maximizing

I(Ŷp
k; Ŷ

s
k) = H(Ŷp

k) +H(Ŷs
k)−H(Ŷp

k, Ŷ
s
k). (3)

Instead of solving the above maximization problem di-
rectly, an approximate objective I(Yp

k;Y
s
k) is maximized

first. Through maximizing I(Yp
k;Y

s
k), wp and ws are es-

timated without considering τp and τs. Assume that ypki

and yski
are jointly Gaussian distributed. The entropy of a

jointly Gaussian random vector g is 1
2 ln[det(Σg)] + const

[7], where Σg is the covariance matrix of g. Following this,
the mutual information can be rewritten in a simple form

I(Yp
k;Y

s
k) =

1

2
ln

(
det(Σp

k) det(Σ
s
k)

det(Σk)

)
+ const, (4)

where Σp
k, Σs

k and Σk are the covariance of Yp
k, Ys

k and
[(Yp

k)
T
, (Ys

k)
T
]T , respectively. According to Eqn (2),

Σp
k = wT

p C
p
kwp, Σ

s
k = wT

s C
s
kws,

Σk =

[
wT

p C
p
kwp wT

p C
p,s
k ws(

wT
p C

p,s
k ws

)T
wT

s C
s
kws

]
,

(5)

where Cp
k and Cs

k are the covariance matrix of Xp
k, Xs

k,
respectively, and Cp,s

k is the covariance matrix between Xp
k

and Xs
k.

Substituting Eqn. (5) into Eqn. (4), we find the equiv-
alence between maximizing (4) and the Canonical Correla-
tion Analysis (CCA) model

max
wp,ws

wT
p C

p,s
k ws√

wT
p C

p
kwpwT

s C
s
kws

. (6)

So the optimal wp and ws are obtained by solving CCA
(details are given later). CCA is found with good trade-off
between the scalability and performance, when the input set
is usually of a large size (about 2.5 million sample pairs in
our experiments).

To estimate the thresholds τp and τs, we use brute-force
search to maximize (3) in the region (τp, τs) ∈ [µ̂p −
σ̂p, µ̂p+ σ̂p]× [µ̂s− σ̂s, µ̂s+ σ̂s], where µ̂p = mediani(y

p
i )

and σ̂p = mediani(|ypi − µ̂p|) are the median and median
of absolute deviation of ypi , respectively, and µ̂s and σ̂s are
the median and median of absolute deviation of ysi , respec-
tively.

Canonical Correlation Analysis. CCA was introduced
by Hotelling for correlating linear relationships between
two sets of vectors [10]. It was used in some computer vi-
sion applications [34, 13, 25]. However, it has not been ex-
plored as a component of a vector quantization algorithm.
Blaschko and Lampert [4] proposed an algorithm for spec-
tral clustering with paired data based on kernel CCA. How-
ever, this method is not appropriate for quantization, as the

Algorithm 1 Algorithm of building a CITP Tree
1: Input: a set of vector pairs X = {(xp

i ,x
s
i ), i =

1, ..., N}, where xp
i ,x

s
i ∈ RD, and the expected num-

ber of codes (i.e. leaf nodes) nL.
2: Create an empty set S, and add the root node to S.
3: repeat
4: for each node k in S and its associated vector set Xk

do
5: Compute the possible node splitting:

(i) Generate projection vectors wp,ws and thresh-
olds τp, τs with Xk;
(ii) For its left child L and right child R,

XL ← {(xp
i ,x

s
i )|wT

p x
p
i ≤ τp,w

T
s x

s
i ≤ τs},

XR ← {(xp
i ,x

s
i )|wT

p x
p
i > τp,w

T
s x

s
i > τs},

(XL ⊂ Xk,XR ⊂ Xk);
6: end for
7: Select the best node splitting with the maximum mu-

tual information in Eqn. (1);
8: Split the node, remove the node from S and add its

child nodes to S;
9: until the number of leaf nodes is nL.

10: Output: the CITP tree with projection vectors and
thresholds at each node.

kernel trick causes high computational and memory cost
due to the very large size of the training set, and the near-
est centroid assignment may be unstable (there is no hard
constraint to require a pair of vectors in the same cluster).

To solve CCA in (6), let

Sm =

[
0 Cp,s

k

(Cp,s
k )

T
0

]
,Sn =

[
Cp

k Cp,s
k

(Cp,s
k )

T
Cs

k

]
,

and then w = [wT
p ,w

T
s ]

T can be solved as the eigenvec-
tor associated with the largest eigenvalue of the generalized
eigenvalue problem Smw = λ(Sn + εI)w, where ε is a
small positive number for regularization.

The whole algorithm for building a CITP tree is summa-
rized as Algorithm 1.

2.4. Randomized CITP Forest

Randomization is an effective way to create an ensem-
ble of trees to boost the performance of tree structured al-
gorithms [21, 23, 33]. The randomized counterpart of the
CITP tree includes two modifications on node splitting as
follows.

Randomization in sub-vector choice. At each node, we
randomly sample α percent (empirically α = 80) of the el-
ement indices of the sampled vectors, i.e. use a sub-vector
of each sampled vector, to learn the projections. To im-
prove the strength of generated trees, the random choice is
repeated for 10 times empirically at each node, and the one
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Figure 3. The pipeline of extracting CITE descriptors.

with the maximum mutual information in Eqn. (3) is se-
lected. The randomization at each node results in random-
ized trees with different tree structures and utilizing differ-
ent information from the training data. Therefore, the ran-
domized trees are more complementary.

Randomization in parameter selection. The eigenvec-
tors associated with the first d largest eigenvalues in the
CCA model are first selected. Then a set of n vectors are
generated by randomly linearly combining the d selected
eigenvectors.5 According to the MMI criterion in Eqn. (3),
the best one is selected from the set of n random vectors
and used as the projection vectors wp and ws. In our exper-
iments, we choose d = 3 and n = 20.

The creation of a random ensemble of diverse trees can
significantly improve the performance over a single tree,
which is verified by our experiments.

3. Coupled Encoding Based Descriptor
In this section, we introduce our coupled information-

theoretic encoding (CITE) based descriptor. With a CITP
tree, a photo or a sketch can be converted into an image
of discrete codes. The CITE descriptor is a collection of
region-based histograms of the “code” image. The pipeline
of photo-sketch recognition using a single CITP tree is
shown in Fig. 3. The details are given as follows.

Preprocessing. The same geometric rectification and
photometric rectification are applied to all the photos and
sketches. With affine transform, the images are cropped
to 80 × 64, and the two eye centers and the mouth cen-
ter of all the face images are at fixed positions. Then
both the photo and sketch images are processed with a
Difference-of-Gaussians (DoG) filter [11] to remove both
high-frequency and low-frequency illumination variations.
Empirical investigations show that (σ1, σ2) = (1, 2) is the
best in our experiments.

5The eigenvectors are orthogonalized with Gram-Schmidt orthogonal-
ization and normalized with L2-norm.

Sampling and normalization. At each pixel, its neigh-
boring pixels are sampled in a certain pattern to form a vec-
tor. A sampling pattern is a combination of one or several
rings and the pixel itself. On a ring with radius r, 8r pixels
are sampled evenly. Fig. 3 shows the sampling pattern of
r = 2. We denote a CITE descriptor by a sampling pattern
with rings of radius r1, ..., rs as CITEr1,...,rs .

We find that sampling the gradients Iu and Iv results in
a better descriptor than sampling the intensities [5]. The
gradient domain explicitly reflects relationships between
neighboring pixels. Therefore, it has more discriminat-
ing power to discover key facial features than the inten-
sity domain. In addition, the similarity between photos and
sketches are easier to compare in the gradient domain than
intensity domain [35].

After the sampling, each sampled vector is normalized
such that its L2-norm is unit.

Coupled Information-Theoretic Encoding. In the en-
coding step, the sampled vectors are turned into discrete
codes using the proposed CITP tree (Section 2). Then
each pixel has a code and the input image is converted
into a “code” image. The vectors sampled from photos and
sketches for training CITP tree are paired according to the
facial landmarks detected by a state-of-the-art alignment al-
gorithm [16].6 Specifically, a pixel in the sketch image finds
its counterpart in the photo image using a simple warping
based on the landmarks. Note that the pairing is performed
after sampling so that local structures are not deformed by
the warping.

CITE Descriptor. The image is divided into 7 × 5 lo-
cal regions with equal size, and a histogram of the codes
is computed in each region. Then the local histograms are
concatenated to form a histogram representation of the im-
age, i.e. the CITE descriptor.

6According to our observation, a general face alignment algorithm
trained on commonly used face photo data sets is actually also effective
for sketch alignment. We did not separately train a face alignment algo-
rithm for sketches.
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Figure 4. Examples of photos from the CUFSF database and cor-
responding sketches drawn by the artist.

Classifier. We use a simple PCA+LDA classifier7

[3, 29] to compute the dissimilarity between a photo and a
sketch. By learning a linear projection matrix on the train-
ing set, it projects CITE descriptors into a low-dimensional
space. Note that the descriptors are centered, i.e. the mean
of the training CITE descriptors is subtracted from them.
Then each projected CITE descriptor is normalized to a unit
L2-norm and the Euclidean distance between the normal-
ized low-dimensional representation of a photo and a sketch
is computed as their dissimilarity.

Fusion. We use a linear SVM to fuse dissimilarities by
different CITE descriptors. The different CITE descriptors
can be obtained by running the randomized CITP tree al-
gorithm repeatedly. To train the one-class SVM, we select
all the intrapersonal pairs and the same number of interper-
sonal pairs with smallest dissimilarities.

4. Experiments

In this section, we study the performance of our CITE
descriptors and CITP trees on face photo-sketch recogni-
tion task. We first compare the performance of our CITE
descriptor, with a single sampling pattern and single tree, to
popular facial features, including LBP [1] and SIFT [19].
The classifier is not used in this part to clearly show their
difference. Then we investigate the effect of various free
parameters on the performance of the system. Finally we
show that our method is superior to the state-of-the-art.

Datasets. The CUHK Face Sketch FERET Database
(CUFSF) is used for the experiments. There are 1, 194 peo-
ple with lighting variations in the set. Each person has a
photo and a sketch with shape exaggeration drawn by an
artist. Some examples are shown in Fig. 4. The CUFS
database [31] is also used as a benchmark. This dataset con-
sists of 606 persons, each of which has a photo-sketch pair.
The sketches were drawn without exaggeration by an artist
when viewing the photo.

On the CUFSF database, 500 persons are randomly se-
lected as the training set, and the remaining 694 persons
form the testing set. On the CUFS database, 306 persons
are in the training set and the other 300 persons are in the
testing set.

Evaluation metrics. The performance is reported
as Verification Rates (VR) at 0.1% False Acceptance

7A small regularization parameter is added to the diagonal elements of
the within-class matrix of LDA to avoid singularity.
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Figure 5. Comparison between CITE2 (single CITP tree), LBP and
SIFT. The dissimilarity between a photo and a sketch is computed
as the distance between descriptors extracted on them. The χ2

distance [1] is used for LBP and CITE2, and Euclidean distance
is used for SIFT. For simplicity, we give the length of a local his-
togram for each descriptor, instead of the length of the whole de-
scriptor, in brackets.

Rate (FAR) and Receiving Operator Characteristic (ROC)
curves.

4.1. Descriptor Comparison

We compare our descriptor with LBP [1] and SIFT [19].
The LBP is computed based on sampling points on a circle.
We explore different numbers of sampling points and dif-
ferent radiuses. We find that the LBP descriptors extracted
from DoG filtered images perform better than from original
images. The 128-dimensional SIFT has 4 × 4 spatial bins
of the same size and 8 orientation bins evenly spaced over
0◦ − 360◦. The vote of a pixel to the histogram is weighted
by its gradient magnitude and a Gaussian window with pa-
rameter σ centered at the center of the region. We explore
different sizes of the region and different σ. For our CITE
descriptor, we use the sampling pattern of a single ring with
r = 2 as shown in Fig. 3. We test on different numbers of
leaf nodes (i.e. different sizes of a local histogram).

The ROC curves are shown in Fig. 5. Even 32-
dimensional CITE2 (please refer to Section 3 for this no-
tation) significantly outperforms the 59-dimensional LBP
and 128-dimensional SIFT. The 256-dimensional CITE2

(68.58%) beats the best results of LBP (41.35%) and SIFT
(44.96%) by 20% on VR at 0.1% FAR.

4.2. Parameter Exploration

We investigate the effect of various free parameters on
the performance of the system, including the number of leaf
nodes, the projected dimension by PCA+LDA, the size of
randomized forest and the effect of using different sampling
patterns. We fix the other factors when investigating one
parameter.
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Figure 6. VR at 0.1% FAR vs. (a) number of leaf nodes; (b)
PCA+LDA dimension; (c) size of randomized forest; (d) compari-
son of ensemble of forests with different sampling patterns and the
forest with a single sampling pattern. In (a)–(c), The descriptor is
CITE2. In (a), the descriptors are compressed to 600 dimensional
using PCA+LDA, and a single CITP tree is used. In (b), we use
256 leaf nodes and a single CITP tree. In (c) and (d), we use 256
leaf nodes and 600 PCA+LDA dimensions.

Number of Leaf Nodes. We compare the effect of using
different numbers of leaf nodes in a CITP tree. The num-
ber is extensively studied from 32 (25) to 1024 (210). As
shown in Fig. 6(a), the VR initially increases, and does not
increase when the number is larger than 256. Due to small
performance gain and high computational cost of a large
leaf node number, we choose 256 leaf nodes as our default
setting.

PCA+LDA Dimension. The reduced dimension is an
important parameter of PCA+LDA. The VR has a fairly
large stable region and varies less than 1% from 500 to 950
(see Fig. 6(b)). We choose 600 PCA+LDA dimensions in
our final system.

Size of Randomized Forest. We vary the number of
randomized trees in the CITP forest from 1 to 9. Fig. 6(c)
shows that increasing the number of trees from 1 to 5 in-
creases the VR from 87.90% to 93.95%, with little improve-
ment beyond this. Hence, we fix the number of randomized
trees in a CITP forest to be 5.

Ensemble of Randomized Forests with Different
Sampling Patterns. Although the performance increases
slowly when the number of randomized trees is more than
5, using ensemble of randomized forests with different sam-
pling patterns can further boost the performance. Differ-
ent sampling patterns can capture rich information across
multiple scales. Fig. 6(d) shows that using five sampling
patterns improves the VR at 0.1% FAR from 93.95% to
98.70%.
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Figure 7. Comparison of the state-of-the-art approaches and our
method on the CUFSF database. ROC curves and VR at 0.1%
FAR are shown.

4.3. Experiments on Benchmarks

We compare our algorithm with the following state-of-
the-art approaches on the CUFSF database. The algorithms
are tuned to the best settings according to their paper.

• MRF-based synthesis [31]. Pseudo photos are synthe-
sized from query sketches, and random sampling LDA
(RS-LDA) [30] is used to match them to gallery pho-
tos. In addition, we test LE [5] on matching pseudo
photos and gallery photos.

• Kernel CSR [15]. The CSR model is trained to seek for
a common discriminative subspace, based on intensi-
ties, LBP and SIFT feature vectors separately.

• LFDA [14]. It fuses the LBP features with four dif-
ferent radiuses and the SIFT features with a discrim-
inative model. For each feature, multiple projection
vectors are learnt.

Fig. 7 shows that our method significantly outperforms
the state-of-the-art approaches. MRF-based synthesis re-
quires that there is no significant shape distortion between
photos and sketches in the training set, and also that train-
ing photos are taken under similar lighting conditions. This
method does not work well in this new data set because the
drawing style of the artist involves large shape exaggera-
tion and the photos in the FERET database are taken un-
der different lightings with large variations. Therefore, the
pseudo photos by MRF-based synthesis have artifacts such
as distortions. Such artifacts degrade the performance of
state-of-the-art face photo recognition algorithms including
RS-LDA and LE. The results of Kernel CSR on different
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Table 1. Rank-1 recognition rates on the CUFS database. The
recognition rates are averaged over five random splits of 306 train-
ing persons and 300 testing persons. We test our method with the
same configuration of training and testing splits as [31, 14].

MRF+RS-LDA [31] LFDA [14] Ours
96.30% 99.47% 99.87%

features verify that the inappropriate selection of features
will reduce the discriminative power of the classifier. SIFT
features have better results than LBP on the photo-sketch
recognition task. LFDA achieves a good result by fusing
five different kinds of features with two different spatial par-
titions. However, its error rate (9.22%) is much higher than
ours (1.30%) for 0.1% FAR.

Our method also has superior performance on the CUFS
database, a standard benchmark for face photo-sketch
recognition, as shown in Table 1. Apparently, this dataset
is now an easy one for the state-of-the-art methods.

5. Conclusions
We proposed a coupled information-theoretic encoding

based descriptor for face photo-sketch recognition. We
introduced coupled information-theoretic projection forest
to maximize the mutual information between the encoded
photo and encoded sketch of the same subject. Our system
significantly outperforms the state-of-the-art approaches. In
the future work, we would like to further investigate the sys-
tem with more cross-modality recognition problems.
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