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Abstract

Recovering 3D geometry from a single view of an object
is an important and challenging problem in computer vi-
sion. Previous methods mainly focus on one specific class
of objects without large topological changes, such as cars,
faces, or human bodies. In this paper, we propose a novel
single view reconstruction algorithm for symmetric piece-
wise planar objects that are not restricted to some object
classes. Symmetry is ubiquitous in manmade and natural
objects and provides rich information for 3D reconstruc-
tion. Given a single view of a symmetric piecewise planar
object, we first find out all the symmetric line pairs. The ge-
ometric properties of symmetric objects are used to narrow
down the searching space. Then, based on the symmetric
lines, a depth map is recovered through a Markov random
field. Experimental results show that our algorithm can ef-
ficiently recover the 3D shapes of different objects with sig-
nificant topological variations.

1. Introduction
3D object reconstruction from a 2D image is an impor-

tant and challenging problem in computer vision. It has
wide applications in virtual reality, 3D object retrieval, and
object detection. Many methods have been proposed to re-
cover 3D models from images taken from known camera
viewpoints, known as multi-view stereo [9], [23], and some
have achieved very good results. However, its applications
are limited by the multi-view requirement. It is often dif-
ficult to have multiple images that satisfy the multi-view
setting for reconstruction. Besides, the majority of images
on the internet and in personal photo albums are single
views. Generally, recovering 3D shape from a single im-
age is an ill-posed problem, and additional information (or
constraints) is needed to handle it. Methods in [6], [28],
and [11] try to solve this problem with the help of user’s in-
put, which often requires intensive manual effort. In order
to automatically recover 3D shapes from single views, some
strong constraints on object shapes or pre-trained models

Figure 1. Examples of symmetric and piecewise planar objects.

are introduced in [1], [13], [15], [24], and [27]. These meth-
ods obtain good results on a specific object class such as
faces [1], human bodies [24], and cars [15], or on some
specific scenes like indoor scenes with planar walls, a ceil-
ing, and a floor [13], and planar surfaces with repetitive pat-
terns [27]. However, a method focusing on one class can-
not be used to deal with another class. Therefore, finding
good constraints for single view reconstruction is a neces-
sary step. Ideal constraints should be as general as possible
to fit for more objects and also be as strict as possible to
make the problem well-posed.

In this paper, we propose to recover 3D shapes from sin-
gle views of reflectionally symmetric1 and piecewise pla-
nar objects. Symmetry is a good constraint for single-view
object reconstruction, because it ubiquitously exists in not
only manmade but also natural objects. The “piecewise pla-
nar” constraint also exists in many manmade objects such
as those in Figure 1. These two constraints introduce useful
information to handle the reconstruction problem.

It should be mentioned that there is much work on sym-
metry detection from 2D images such as [4], [14], and [18].
These algorithms focus on objects lying on a single plane
and do not take the 3D geometry of the objects into consid-
eration. They cannot be applied to 3D object reconstruction.

The rest of this paper is organized as follows. Section 2
gives the assumptions and the camera model used in this
work. Section 3 describes useful geometric properties of
symmetric objects. Based on these properties, an algorithm
for plane and symmetric lines detection is presented in Sec-
tion 4. Depth map estimation with a Markov random field
(MRF) is proposed in Section 5. Section 6 shows our exper-
imental results, and Section 7 concludes this paper. Figure 2
illustrates the main steps of our method.

1In the rest of this paper, we simply use symmetry to denote reflectional
symmetry for conciseness.
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Figure 2. Reconstruction flowchart. Given a 2D image (a), line segments (see (b)) are first extracted from the image. Then, a set of
symmetric line pairs (marked with the same colors in (c)) and planes (see (d)) are detected. Next, each pixel is assigned to one plane
through a MRF (plane labeling (e)), and a depth map (f) is recovered based on the labeling result. The last image (g) is a rendering result
of the 3D object in a novel view.

2. Assumptions and Camera Model
2.1. Assumptions

In addition to the assumption that an object is symmetric
and piecewise planar, we assume that the object is photoed
from a generic view, which means that no plane of the ob-
ject is projected to a line in the image and the image plane is
not perpendicular to any dominant axis of the object. We as-
sume that the object structure satisfies the Manhattan world
assumption, which has been used in many recent works
related to 3D reconstruction such as [8] and [10]. In the
original Manhattan world assumption, objects should con-
tain three dominant and mutually orthogonal directions and
most of the object planes are perpendicular to one of these
directions. In this work, we use a weaker assumption that
allows the planes to deviate from the main directions but
less than 25◦.

Same as most prior works, in this paper, we do not ad-
dress the issue of object segmentation. For experiments, we
use images of objects, without the background, which are
abundant on the internet, such as those in Flickr and Google
image. For objects with background, some interactive seg-
mentation algorithms [20] can be used to obtain the clear
objects.

2.2. Camera Model

We use a simplified camera model in this work. The
camera has zero skew and does not have radial distortion,
and the aspect ratio of the pixel equals 1. In this model, the
projection matrix is:

M = [K|0], K =

 −f 0 u0

0 −f v0
0 0 1

 , (1)

where f is the focal length of the camera and (u0, v0) is
the position of the principle point in the camera coordinate
system.

In the rest of the paper, a bold upper-case letter (say, X)
denotes the homogeneous coordinate of a 3D point, and its
2D projection on the image plane is denoted by the corre-
sponding bold lower-case letter x. A plane nxx + nyy +

nzz + d = 0 is represented by π = (nx, ny, nz, d)
⊤ =

(n⊤, d)⊤, where n = (nx, ny, nz)
⊤ is the normal of the

plane. If not specified, homogeneous coordinates are used,
and variables in Euclidean coordinates are represented by
letters with a tilde above them, such as X̃.

3. Single View Geometry of Symmetric Objects
In this section, we show properties used to reduce the

searching space in symmetry detection. One is that the sym-
metric point of a given point must lie on a special line called
epipolar line. The other is that the position of the symmetry
plane of the object does not affect the reconstruction result
as long as the normal of the plane is not changed. We first
define the epipole and epipolar lines in Definition 1. Note
that these two terms have often appeared in 3D geometry re-
lated literature in computer vision [9], [21]. For complete-
ness and easy understanding of our work, we show their
definitions again here.

Definition 1. Let π = (n⊤, d)⊤ be the symmetry plane of a
symmetric object. The epipole is the vanishing point of the
lines parallel to n. The epipolar lines are the lines passing
through the epipole.

Figure 3 gives an example of the epipole and epipolar
lines. The following Property 1 is well known [21] and used
in our work to find pairs of symmetric points.

Property 1. Let x′ be the symmetric point of a point x in
a 2D image. Then x′ must lie on the epipolar line passing
through x.

For the detection of pairs of symmetric lines, we use the
angle span defined as follows:

Definition 2. Let O be the epipole, A and B be the end-
points of a line l, and tan θ1 and tan θ2 be the slopes of
lines OA and OB. The angle span span(l) of l is defined
as the interval [θ1, θ2] if θ1 > θ2 or [θ2, θ1] if θ2 ≥ θ1.

Property 2. Two symmetric lines have the same angle span.
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Figure 3. Illustration of an epipole, epipolar lines, and angle spans.
O is the epipole and the three blue lines passing through O are
epipolar lines. The symmetric point v′ of v lies on the epipolar
line passing through v. Symmetric lines l and l′ have the same
angle span.

Figure 3 illustrates the angle span of l with endpoints A
and B. Property 2 is a direct corollary of Property 1. In
Section 4.5, we will discuss how to exploit this property to
find a set of possible pairs of symmetric lines.

From [9], the vanishing point of a line l is at Knl in the
image plane, where nl is the direction of l. In our case, this
vanishing point is the epipole and nl = n. Thus the epipole
is at Kn. For a pair of symmetric points x and x′, they are
collinear with the epipole, and if x ̸= x′, it is easy to prove
that there exist unique α and β such that Kn = αx+ βx′.

Before showing that the position of the symmetry plane
does not affect the reconstruction result if its normal n is
fixed, we prove the following property.

Property 3. Let M = [K|0] be the projection matrix, π =
(n⊤, d)⊤ be the symmetry plane, and x and x′ (x ̸= x′)
be a pair of symmetric points in the 2D image plane. If
Kn = αx + βx′, then the corresponding 3D points of x
and x′ in Euclidean coordinates are:

X̃ =
αdK−1x

1/2− βn⊤K−1x′ , (2)

X̃′ = − βdK−1x′

1/2− βn⊤K−1x′ . (3)

Proof. Let X⊤ = (X⊤
xyz, Xr) and X′⊤ = (X′⊤

xyz, X
′
r).

Since MX = x, MX′ = x′, and M = [K|0], we have

Xxyz = K−1x, X′
xyz = K−1x′. (4)

As X and X′ are a pair of symmetric points with respect
to the plane π = (n⊤, d)⊤, according to [22], there is a
scalar h such that{

hXxyz = X′
xyz − 2nn⊤X′

xyz + 2dX ′
rn,

hXr = X ′
r.

(5)

Suppose that ||n|| = 1. Then, (4) and (5) lead to

Kn =
hx

2dX ′
r − 2n⊤K−1x′ −

x′

2dX ′
r − 2n⊤K−1x′ . (6)

From (5), (6) and Kn = αx+ βx′, we obtain:

X̃ =
1

Xr
Xxyz =

αdK−1x

1/2− βn⊤K−1x′ , (7)

X̃′ =
1

X ′
r

X′
xyz = − βdK−1x′

1/2− βn⊤K−1x′ . (8)

Suppose that the projection matrix M = [K|0] is given
and the normal n of symmetry plane is fixed. Given a set of
pairs of symmetric points, the 3D positions of these points
can be calculated with (2) and (3). Furthermore, from (2)
and (3) we can see that, if the symmetry plane moves along
its normal direction n (only d changes in this case), the
3D coordinates of these points will only proportionally in-
crease/decrease (i.e., the shape of the object changes only
up to a scale). Therefore, we can arbitrarily choose d.

4. Plane Detection
In our method, detecting a set of planes on the object

consists of four steps: 1) line segment extraction, 2) van-
ishing point detection and camera calibration, 3) symmetric
line pair detection and hypothesis plane generation, and 4)
real plane selection from the set of hypothesis planes. The
details of the steps are described in the following.

4.1. Line Segment Extraction

We first use the bilateral filter [26] to reduce the noise in
the input image. Then we generate the edge map of the fil-
tered image with Canny edge detector [19]. Line segments
are extracted from the edge map through the Matlab toolbox
by Kovesi [12]. Short edges and duplicated edges (edges
that are very close to each other) are eliminated. Line seg-
ments on the boundary of the object are also extracted using
the algorithm in [12].

4.2. Vanishing Point Detection and Camera
Calibration

The camera calibration matrix K (see Section 2.2) is es-
timated through vanishing points. Under the Manhanttan
world assumption, there are three dominant and mutually
perpendicular directions in the object. Each dominant di-
rection correspond to a vanishing point. We use the method
in [25] to detect the three vanishing points corresponding
to the three dominant directions. Based on the vanishing
points, K is calculated using the method in [9].

4.3. Position of the Symmetry Plane

To find the position of the symmetry plane π = (n, d),
we only need to derive its normal n, as d does not affect the
reconstruction result (Property 3). Based on the Manhat-
tan world assumption, n is parallel to one of the dominant
directions. For each of the three dominant directions, we
apply our reconstruction algorithm under the assumption
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Figure 4. (a) A potential pair of symmetric lines. (b) Illustration of
the detection of hypothesis planes perpendicular to the symmetry
plane. (c) Illustration of the detection of planes not perpendicular
to the hypothesis planes.

that n is parallel to this direction, resulting in three recon-
structed 3D objects. Then the best object is selected. This
selection process will be explained at the end of Section 5.
Without loss of generality, in Sections 4.4, 4.5, and 5, we
present our reconstruction algorithm based on the assump-
tion that n is parallel to the z axis.

4.4. Hypothesis Plane Detection

We first find out all the line pairs which have the poten-
tial to be pairs of symmetric lines. According to Property 2,
if two lines are symmetric, their angle spans are the same in
the ideal case. Considering the inaccuracy of line extraction
and occlusion, all the line pairs with large overlapping an-
gle spans are considered to be potential pairs of symmetric
lines. The overlapping ratio of the angle spans of two lines
li and lj is computed by:

overratio(li, lj) = 2
|span(li) ∩ span(lj)|
|span(li)|+ |span(lj)|

, (9)

where |span(l)| is the length of the interval span(l).
For each potential pair (li, lj), their 3D coordinates are

deduced as follows: First, two rays from the epipole which
pass through the endpoints A and C of li are added, and
these rays intersect lj or its extension at B and D in the
2D image plane, as shown in Figure 4(a). According to
Property 1, the symmetric points of A and C are B and D,
respectively. Then, we calculate the 3D coordinates of A,
B, C, and D using Property 3, which are coplanar in the 3D
space. Notice that when li or lj passes through the epipole
(which means that the length of the angle span of li or lj
is zero), we cannot determine its 3D position. Therefore,
those lines with small angle spans are not considered in the
detection of symmetric line pairs.

Each pair found by the above method determines a hy-
pothesis plane perpendicular to the symmetry plane. For
example, in Figure 4(b), there are two pairs of symmetric
lines: (l1, l2) and (l3, l4), which determine planes π1 and
π2, respectively, and π1 and π2 are perpendicular to the
symmetry plane. How to find planes not perpendicular to
the symmetry plane will be discussed at the end of Sec-
tion 4.5.

Algorithm 1 Detection of potential symmetric line pairs
and hypothesis planes perpendicular to the symmetry plane
Input: A set of line segments L
Initialization: The set of planes Π← ϕ, the set of symmetric line
pairs P ← ϕ

1. for l ∈ L

2. Remove l from L if |span(l)| < Tspan

3. for each line pair (li, lj) in L

4. if D(li, lj) > Tdis and overratio(li, lj) > Tover

5. Calculate the 3D positions of li and lj (with Property 3)
and the plane π = (n, d) passing through li and lj .
Add (li, lj) to P

6. if ⟨n,nx⟩ < 25◦ or ⟨n,ny⟩ < 25◦, then add π to Π

7. Cluster the hypothesis planes in Π using mean-shift to obtain
the groups of the planes

Return P and the set of the representative hypothesis planes (cen-
ters of the groups)

The procedure of the detection of potential symmetric
line pairs and hypothesis planes perpendicular to the sym-
metry plane is listed in Algorithm 1. In step 2, lines with
small angle spans are removed. In step 4, two lines which
have a large overlap in angle spans and are not close to each
other are considered to be potential symmetric lines. Here,
we require two lines not to be close, otherwise an inaccurate
hypothesis plane may be generated from them. D(li, lj) is
the average distance between lines li and lj . In step 6, nx

and ny are the directions of the x and y axes, and ⟨·, ·⟩ de-
notes the angle between two vectors. Based on the weak
Manhattan world assumption, the planes perpendicular to
the symmetry plane do not deviate too much from the x or
y axis (recall that the symmetry plane is assumed to be per-
pendicular to the z axis). Those planes that do not satisfy
this constraint are removed in step 6. In step 7, we clus-
ter the hypothesis planes through mean-shift [7] to remove
duplicated planes.

4.5. Hypothesis Plane Selection

To select real planes from the set of hypothesis planes
found by Algorithm 1, we first assign each potential pair of
symmetric lines to one hypothesis plane, and select the real
pairs of symmetric lines based on this assignment. Then
those hypothesis planes containing at least one such pair are
considered as real planes. The detail is described as follows.

In the symmetric line pair assignment, to decide whether
a pair should be assigned to a hypothesis plane, we first
project the two lines of the pair from the 2D image plane
back to the 3D hypothesis plane. If the two projected lines
are symmetric with respect to the symmetry plane π, we
assign this pair to this plane. For example, suppose there are
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Figure 5. An example of hypothesis plane selection. (a) Input im-
age with four line segments l1−4 shown in red (other line segments
are not shown for clarity). Two lines pointed by a two-way arrow
is a pair of potential symmetric lines. (b) Another two potential
pairs of symmetric lines. (c) Geometry of the imaging and line pair
assignment, where a point denotes a line in (a) or (b). The assign-
ment result is {(l1, l2,π1), (l3, l4,π2), (l1, l4,π3), (l2, l3,π3)}.

three hypothesis planes π1−3 from the image in Figure 5(a)
or (b). The geometry of the imaging is shown in Figure 5(c).
If l1 and l2 are projected from the 2D image plane back
to π1, they are assigned to π1 because they are symmetric
with respect to the symmetry plane π. However, they are
not assigned to π2 or π3, since they are not symmetric on
π2 or π3 with respect to π. Similarly, l3 and l4 are assigned
to π2, l2 and l3 to π3, and l1 and l4 to π3.

The following function is used to judge whether li and
lj are symmetric when they are projected on a hypothesis
plane πk:

wπk
(li, lj) = exp(−D(sym(lki ), l

k
j )

2), (10)

where lki is the projected line of li on πk, sym(lki ) is the
computed symmetric line of lki with respect to the symme-
try plane, and D(·, ·) is the average distance between two
3D lines. If wπk

(li, lj) is larger than a threshold T , we as-
sign (li, lj) to πk, and if there are more than one hypothesis
plane with wπk

(li, lj) > T , we assign (li, lj) to the plane
with the maximum value.

In what follows, each potential line pair together with
their assignment is denoted by (li, lj ,πk), and the set of all
these line pairs with their assignments are denoted by P .
Besides, P r ⊂ P is used to denote a subset that contains
real symmetric line pairs. How to find P r is described in
the following.

The real symmetric line pairs in P r should not contain
two pairs that have a common line, as one line can only
have one symmetric line. For example, (l1, l4,π3) and
(l1, l2,π1) should not coexist in P r. Based on this con-
straint, the selection of real symmetry line pairs is formu-
lated as the following optimization problem:

max
P ′⊂P

(( ∑
(li,lj ,πk)∈P ′

wπk
(li, lj)

)
− α|plane(P ′)|

)
, (11)

subject to: no common lines in any two pairs ∈ P ′,

where plane(P ′) =
∪

(li,lj ,πk)∈P ′{πk} contains all the hy-
pothesis planes that line pairs in P ′ are assigned to, and α
is a weighting factor. The first term in (11) requires the
lines in each pair are as symmetric as possible. The second
term is to minimize the number of planes in the object. This
is consistent with the human visual system, as human be-
ings usually try to interpret an object as simple as possible.
For example, in Figure 5, P ′

1 = {(l1, l4,π3), (l2, l3,π3)}
is better than P ′

2 = {(l1, l2,π1), (l3, l4,π2)}, because the
symmetry line pairs in P2 are assigned to two planes π1

and π2, while the symmetric line pairs in P1 are assigned
to only one plane π3.

Finding the optimal solution to (11) is an NP-hard prob-
lem. To find a convex relaxation of (11), we introduce two
variables xi and yk, where xi = 1 if the ith symmetric line
pair is selected and xi = 0 otherwise; yk = 1 if plane πk is
selected and yk = 0 otherwise. Then (11) is reformulated
as:

max
{xi,yk}

(( ∑
(lai

,lbi ,πci
)∈P

xiwπci
(lai , lbi)

)
− α

K∑
k=1

yk

)
,

subject to:

1. ∀j,
∑

(lai
,lbi ,πci

)∈P, where lai
=lj or lbi=lj

xi ≤ 1

2. ∀k, i, such that πci = πk, yk ≥ xi,

3. xi ∈ {0, 1}, yk ∈ {0, 1}. (12)

Different from previous notation, a triple (lai , lbi ,πci)
is used in (12). Note the only non-convex constraint is the
third one. So we first remove this constraint and the prob-
lem (12) becomes a linear programming, which can be ef-
ficiently solved by the simplex method [5]. Suppose the
solution to this relaxed problem is {x̃i} and {ỹk}. Then
an approximate solution to the original problem (12) is ob-
tained by setting xi = 1 if x̃i > 0.5 and xi = 0 otherwise,
with yk obtained the same way.

The planes not perpendicular to the symmetry plane is
detected as follows. First, the 3D positions of the line pairs
in P r are calculated by projecting them from the 2D im-
age plane to the planes they are assigned to. Then from
every two pairs (li, lj) and (lm, ln) in P r, we have four
sets {li, lm}, {li, ln}, {lj , lm}, and {lj , ln}. If any of these
sets can approximately form a plane in the 3D space, this
plane is added to the real plane set Πr. For example, in Fig-
ure 4(c), suppose {l1, l2} and {l3, l4} are two line pairs in
P r. Then planes π3 and π4 are formed by the sets {l1, l3}
and {l2, l4} and added to Πr. Planes deviated from the z
axis more than 25◦ are not added to Πr due to the weak
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Manhattan world assumption. Besides, duplicated planes
are removed by mean-shift (see step 7 in Algorithm 1).

5. Depth Map Generation
Given a set of 3D planes Πr found by the method in Sec-

tion 4, we assign each foreground (object) pixel a label in-
dicating which plane the pixel belongs to (background is
ignored). Then the depth map is computed by projecting
these pixels from the 2D image plane to the planes they are
assigned to. Finding the best labels for the pixels is formu-
lated as a minimization problem with an MRF. The energy
function to be minimized is defined as:

E =
∑
p

Ed(π
p) +

∑
(p,q)∈N4

Els(π
p,πq) +

∑
(p,q)∈Ns

Es(π
p,πq),

(13)

where πp ∈ Πr is the plane pixel p is assigned to, N4 is
the 4-neighborhood system, Ns is another pixel set defined
in Section 5.3, and the three terms, Ed (data term), Els (lo-
cal smoothness term), and Es (symmetry term), will be de-
scribed in Sections 5.1–5.3, respectively.

5.1. Data Term

This term is used to determine which plane a pixel should
be assigned to. Let p be a pixel in the image plane (see
Figure 6(a)). Suppose p is assigned to plane πp. Then the
projection P of p on πp is computed. With the symmetry
plane π and P , we can find the symmetric point P ′ of P
in the 3D space. Then P ′ is projected to the image plane,
resulting in p′. The similarity between p and p′ reflects the
possibility of p belonging to πp. Let

Ed(π
p) = αdcEdc(π

p) + αdeEde(π
p), (14)

where αdc and αde are weighting factors, and Edc(π
p) and

Ede(π
p) are color and edge consistency terms, respectively,

defined as:

Edc(π
p)=

{
R(||Ip − Ip′ ||/50), if p′ ∈ IF ,

2, otherwise,
(15)

Ede(π
p)=


R(g(p′)/15), if p ∈ IE and p′ ∈ IF ,

2, if p ∈ IE and p′ ̸∈ IF ,

0, otherwise,
(16)

where IF is the set of all foreground pixels, IE is the set
of all edge pixels, Ip is a 3D vector representing the RGB
values of p, g(p′) is the the distance between p′ and its
nearest edge pixel, and R is a kernel function defined as
R(x) = min{x2, 1}. In these two terms, we assign an ex-
tra punishment 2 if p′ is not on the object. In this paper,
αdc = 1 and αde = 600, where αdc is much larger due to
two reasons: First, the edge consistency term is only eval-
uated on the edge pixels while the color consistency term
is evaluated on all pixels. Second, the edge information is
more reliable than the color information because the colors
of two symmetric points are not always the same.

5.2. Local Smoothness Term

The local smoothness constraint enforces neighboring
2D pixels of the object are also close in the 3D space. The
local smoothness term used in this paper is similar to the
one in [8]. The detail is omitted here to save space.

5.3. Symmetry Term

If the symmetric pixel of a pixel p is q, then the sym-
metric pixel of q is also p. To enforce this constraint, the
symmetry term is used to punish inconsistent pairs, defined
as:

Es(π
p,πq) =


αs, if p′ = q and q′ ̸= p,

αs, if p′ ̸= q and q′ = p,

0, otherwise,
(17)

where αs = 10 is the punishment constant, p′ and q′ are
found by the method described in Section 5.1 (also see Fig-
ure 6). Ns in (13) contains all the pixel pairs that have the
potential to be symmetric, i.e., Ns = {(p, q) | p′ = q or q′ =
p for at least one plane}.

The minimization of E in (13) is solved through graph
cuts [2]. After labeling all the pixels of the object, the depth
map is computed by projecting each pixel to its assigned 3D
plane.

As discussed in Section 4.3, we obtain three 3D objects
under the assumption that the symmetry plane is perpendic-
ular to the x, y, and z axes, respectively. Finally, we choose
the object with the minimum energy.

6. Experiments
In this section, a set of examples is presented to demon-

strate the performance of our algorithm. We have collected
a number of images of symmetric piecewise planar objects,
such as chairs and cabinets, etc. Our algorithm is imple-
mented in Matlab, and tested on a PC with 2.4GHz Intel
Core 2 CPU. The average reconstruction time is 45 seconds
per object (not including segmentation). The objects, their
recovered depth maps, and rendering results on novel views
are shown in Figure 7. We can see that the depths of almost
all of the object pixels are correctly recovered.
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Table 1. Plane detection and depth map recovery
A B C D E F G H I J K L M N O P Q

# of planes 4 7 7 6 4 9 5 4 5 8 3 6 6 7 4 4 9

# of errors 0 1 0 0 0 1 0 0 1 1 0 0 0 2 0 0 3

# of planes 3 4 5 4 3 6 3 3 4 5 3 4 4 4 3 2 4

# of errors 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Plane

Detection

Depth

Recvoery

Object

Table 1 gives the details of plane detection and depth
map recovery. The first and the second rows show the num-
bers of all planes and incorrect planes found in the plane
detection, respectively. The third and fourth rows are the
numbers of all planes and incorrect planes used in the depth
map recovery, respectively (here a used plane is a plane with
at least one pixel assigned to it). On average, for each ob-
ject, there are 5.8 planes found in plane detection with 0.53
incorrect plane. After the depth map recovery, the number
of incorrect planes per object drops to 0.24.

Reconstructing 3D shapes from single view images is a
challenging problem. Some of our results are not so perfect.
Figure 8(b) shows the incorrect plane of object B found in
plane detection which affects a small part (patch) of the ob-
ject. Another problem is that when some parts of an object
have multiple explanations, our algorithm may obtain an in-
correct result in these parts. For example, the leg marked by
a red circle in Figure 8(c) should belong to the plane for the
high back of the chair, but our algorithm assigns this leg to
the front vertical plane. This is because assigning this leg
to the front plane does not affect the symmetry of the object
(note that this leg is considered as located on the symmetry
plane in this case).

7. Conclusions and Future Work
We have proposed to tackle the problem of 3D object re-

construction from single-view images using the symmetric
and piecewise planar constraint. Our algorithm mainly con-
sists of two steps: plane detection and depth map recovery.
Several geometric properties are presented to help find the
planes of the object and the depth map is recovered using
MRFs. Experimental results show that our algorithm can
deal with different 3D objects with significant topological
variations, without the need of specific object shape priors.

In the future, we plan to extend this approach to handling
general symmetric objects by approximating the curved sur-
face of an object with a piecewise planar surface. Another
way of dealing with more complex symmetric objects is to
add some user interactions, such as combining this work
with shape from line drawings [3], [16], [17].
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