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Abstract

Optical flow estimation is a fundamental and ill-posed
problem in computer vision. To recover a dense flow field,
appropriate spatial constraints have to be enforced. Recent
advances exploit higher order spatial regularization, and
achieve the top performance on the Middlebury benchmark.
In this work, we revisit learning-based approach, and pro-
pose a learned sparse model to patch-wisely regularize the
flow field. In particular, our method is based on multi-scale
spatial regularization, which benefits from first-order spa-
tial regularity and our learned, higher order sparse model.
To obtain accurate flow estimation, we propose a sequential
optimization scheme to solve the corresponding energy min-
imization problem. Moreover, as the errors in intermediate
flow estimates are usually dense with large variations, we
further propose flow-driven and image-driven approaches
to address the problem of outliers. Experiments on the Mid-
dlebury benchmark show that our method is competitive
with the state-of-the-art.

1. Introduction

Optical flow estimation is one of the fundamental prob-
lems in computer vision. It concerns with computing the
motion of pixels between consecutive image frames. Such
a dense correspondence problem arises not just in motion
estimation, but also in image registration, 3D reconstruc-
tion, and visual tracking. Similar to many computer vision
techniques, optical flow is inherently ill-posed due to the
aperture problem [3], i.e., using only data constraint leads
to an under-determined system of equations. To recover a
dense flow field, it is necessary to consider some sorts of
spatial regularization to constrain the flow varying patterns
in a plausible way.

In the past two decades, although the accuracy of opti-
cal flow estimation has been steadily improved, it remains
challenging especially when dealing with tough situations

∗This work is partly supported by the National Natural Science Foun-
dation of China (Grant No. 60903115).

in various natural image sequences. To this date, the chal-
lenges that dominate optical flow research includes: (1)
propagating the flow into untextured regions, (2) accurate
estimation at flow boundaries, and (3) preserving small-
scale motion structures in the estimated flow field.

Numerous optical flow techniques have been developed
to address these challenges. A large portion of them fol-
lowed the seminal work of Horn and Schunck (HS) [1],
which defined optical flow estimation as minimizing an en-
ergy functional. The energy functional consists of a data
term that assumes image intensities (or other advanced im-
age properties) do not change over time, and a spatial term
typically inducing a (piece-wise) smooth flow field. At the
time of HS, due to computational reasons, quadratic func-
tions were used to penalize deviations in both data and spa-
tial terms. The limitations are obvious as they cannot ro-
bustly handle data outliers and preserve discontinuities in
the flow field. Instead, Black and Anandan [2] proposed to
use robust, non-convex functions and greatly improved the
results. Later, different robust functions [4, 5, 6, 9] have
been explored that compromise between robustness, con-
vexity and differentiability. Among them, the TV-L1 frame-
work [11, 10] is a popular one, which used total variation
(TV) like regularization and a robust L1 norm in the data
term. Based on the observation that motion discontinuities
often coincide with object boundaries in images, some re-
searchers proposed to adapt the isotropic spatial regulariza-
tion to local image structures [13, 6]. For data similarity
measures, more advanced ones such as image gradient [4]
and normalized cross correlation [16, 17], have also been
proposed to improve over image intensities.

Learning-based approaches have been attempted in op-
tical flow literature. In particular, Roth and Black [18]
learned the spatial statistics of optical flow, which was
shown to be heavy-tailed. They used the learned prior
model to regularize flow estimation. In their work, they
considered spatial interactions up to 3 × 3 pixels. In [6],
Sun et al. further learned statistical models of both data
constancy error, and image structure-adaptive flow deriva-
tives, resulting in a complete probabilistic model of optical
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flow.

Recently, several works exploited higher order or non-
local spatial terms [19, 7, 17], and achieved the top per-
formance on the Middlebury optical flow benchmark [20].
Common to these approaches is a weighted non-local term,
which robustly (using L1 norm) penalizes the pairwise dif-
ferences of flow vectors in a local neighborhood. The
weight for each pair is determined based on bilateral fil-
tering [21] by combining information of color similarity,
spatial proximity, and/or occlusion condition. Although
the state-of-the-art results were obtained, however, they are
limited in: (1) still considering pairwise flow relations in
a local neighborhood, (2) using purely geometric spatial
priors, and (3) their regularization cannot be across flow
boundaries.

In this work, we revisit learning-based approach and pro-
pose a learned sparse model (LSM) to regularize the flow
field. Different from early attempts [18, 6], which typically
learn the statistics of first-order flow derivatives, our model
is higher order, i.e., we patch-wisely constrain how the flow
is expected to vary across the whole field. In particular, our
model is motivated by recent success in image restoration
[22, 23, 24], which used sparse representation over learned,
possibly over-complete image dictionaries (or basis func-
tions), and achieved the state-of-the-art in image denoising
and demosaicking [24]. In this work, we consider learning
an optical flow dictionary that adapts to the training ground
truth flow fields. For spatial regularization, our assumption
is that each flow patch can be encoded via a sparse rep-
resentation over the learned over-complete flow dictionary.
Note that by doing so, we actually solve the aperture prob-
lem in a way distinct from [1, 25]. Compared with [1, 25],
our model does not need to regularize smooth motions and
motion discontinuities separately.

Different from situations in image denoising, the noises
in intermediate flow estimates are in general dense with
large variations. We further propose a multi-scale spatial
regularizer, which benefits from first-order spatial regular-
ity and the learned, higher order sparse model. Multi-scale
spatial regularization stabilizes the estimation process, and
enable our model to be easily embedded in a coarse-to-
fine/warping framework [26, 27], to cope with large mo-
tions. Together with a robust data term, flow field recov-
ery is formulated as an energy minimization problem. We
propose to decompose the optimization into a sequence of
simpler ones, with each alternating in satisfying data con-
straints, and spatial regularization via sparse coding. More-
over, except for dense noises, some intermediate flow es-
timates can be completely corrupted and become outliers,
which degrade the performance of learned sparse model. In
this work, we also propose flow-driven and image-driven
approaches to address the problem of outliers. Experi-
ments on the Middlebury benchmark show that our method

is competitive with the state-of-the-art.
Note that we are not the first to introduce sparsity priors

into optical flow estimation. In [28], Shen and Wu assumed
that flow field can be estimated by finding its sparsest rep-
resentation in other domains. They showed plausible re-
sults in subsampled image frames with small motions. Our
method is different from [28] in the following aspects.

1. We propose a learned sparse model, and get improved
performance over generic ones such as wavelet or
DCT, which were used in [28].

2. To robustify higher order spatial regularization, we
propose flow-driven and image-driven approaches to
address the problem of outliers. Experiments show the
effectiveness.

3. We propose multi-scale spatial regularization and a se-
quential optimization scheme. We adapt the learned
sparse model in a coarse-to-fine/warping framework,
and obtain accurate results on the original frame size
with large motions. Our results are competitive with
the state-of-the-art.

The rest of this paper is organized as follows. In Section
2, we present in details our learned sparse model and its
multi-scale extension. Section 3 introduces robust higher-
order spatial regularization. Our sequential optimization
scheme will be explained in Section 4. Section 5 presents
experiments, followed by conclusion and future works in
Section 6.

2. Flow field regularization using the learned
sparse model

Optical flow estimation is commonly formulated as an
energy minimization problem. The objective function is

E(u) = ED(u) + λES(u), (1)

where u = [u, v]� ∈ �2N is the vectorized flow field to
be estimated, N is the number of image pixels, and λ is a
regularization parameter. 1 For a given u, the data term
ED(u) =

∑
x ψD(I1(x)− I2(x+ux)) measures the simi-

larity between two consecutive image frames I1 and I2, ψD

is a properly chosen penalty function, and x = [x, y]� in-
dexes the image coordinates. When the unknown motion u
is in a small proximity of a given point u0, we can linearize
the image residual ρ(x) = I1(x)−I2(x+ux), which leads
to the classical optical flow equation ρ(x) = ∇I�2 (ux −
u0
x)+It, where ∇I2 denotes the horizontal and vertical par-

tial derivatives at x + u0
x, and It = I2(x + u0

x) − I1(x) is
the temporal derivative. Since optical flow is highly under-
determined if only based on the assumption of intensity

1Throughout this paper, we will use spatially discrete and vectorized
representation to denote the optical flow field.

2392



constancy, i.e., it suffers from the aperture problem. Ad-
ditional constraints are needed in order to obtain a dense
and accurate flow field. This brings the spatial term ES(u)
in, which essentially constrains how the flow is expected to
vary across the image. Originating from the HS model [1],
most of the spatial terms proposed in literature take the form
like ES(u) =

∑
x ψS(∇ux), which favors a smooth flow

field, and is edge-preserving by using some robust penalty
function ψS [2]. Alternatively, Lucas and Kanade [25] ad-
dressed the aperture problem by assuming that the flow vec-
tors are constant in a local neighborhood. However, this
assumption fails in regions with multiple motions.

As introduced in Section 1, Shen and Wu [28] recently
proposed to use a sparsity prior to regularize the flow field.
They assumed a flow patch can be described via a sparse
representation over some basis functions. From the perspec-
tive of compressive sensing, this amounts to recover a dense
flow field from much fewer measurements, thus solving the
aperture problem. As pointed out in [28], although the flow
patterns may be complex and varying across the whole field,
they are much simpler compared with those of natural im-
ages. By assuming the sparsity of local flow patches, ideally
we can unify the different treatments of smooth or discon-
tinuous motions, and various motion models such as affine
transformation and rotation.

In [28], generic basis functions (dictionaries) such as
Wavelet and DCT are used for sparse coding. Motivated by
the success of learned dictionaries over off-the-shelf ones
in image restoration [22, 23, 24], in this work, we consider
learning an adapted, possibly over-complete, optical flow
dictionary using training ground truth flow fields. We ex-
pect through learning, the dictionary can encode more flow
statistics and as a consequence, leads to a sparser and more
accurate representation. Specifically, we propose to regular-
ize the flow field using a learned sparse model. Adapting
the sparsity assumption with the learned dictionary in an
energy model, we get

E(u) =
∑
x

ψD

(
ρ(x)

)
+ λ‖T h

xu−Dhahx‖22 + βψS(a
h
x),

(2)
where T h

x ∈ �2n×2N is a binary operator that extracts the
flow patch centering at position x from u, n is the size
of the patch. Dh = [Dh

u 0;0D
h
v ] ∈ �2n×2p represents

the learned flow dictionary with the dictionary size p, and
ahx ∈ �2p is the sparse coefficient vector when decompos-
ing T h

xu on Dh, β is a sparsity inducing parameter. Here
we want to emphasize that, different from most of existing
first-order spatial terms that typically penalize the differ-
ence between neighboring flow vectors, and some recently
proposed higher order spatial terms that adaptively and ro-
bustly penalize the difference among non-local flow vectors
in an expanded neighborhood [19, 17, 7], the spatial term in
(2) assumes some prior on the spatially varying pattern of

(a) AAE=3.026, AEPE=0.222 (b) AAE=3.014, AEPE=0.221

(c) AAE=2.828, AEPE=0.206 (d) AAE=2.775, AEPE=0.198
Figure 1. Effectiveness of the learned sparse model on the
“Grove2” sequence of Middlebury training set. (a) Initialization.
(b) Result using HS method [1]. (c) Result using higher order
sparse model with a DCT dictionary. (d) Result using the learned
sparse model. Average angular error (AAE) and average end-point
error (AEPE) are shown below each color coded image result.

local flow patches, and such a pattern can be sparsely en-
coded and reconstructed by the learned flow dictionary. In
this work, we follow [7] and use a generalized Charbonnier
data penalty functionψD(x) = (x2+ε2)γ , and set γ = 0.45
to make it slightly non-convex. ε is fixed as 0.001. The spa-
tial penalty can be chosen as ψS(·) = ‖ · ‖1.

To learn the flow dictionary Dh = [Dh
u 0;0D

h
v ], we

simplify the problem by treating the horizontal and verti-
cal motions separately. We will use Dh

u as an example to
present how the flow dictionary can be learned, and Dh

v is
learned similarly. Given a large training set of ground truth
flow data {ziu}, with each ziu ∈ �n represents an extracted
patch of horizontal flow fields, the learning of Dh

u ∈ �n×p

amounts to solve the following optimization problem

min
{Dh

u,{ai
u}}

∑
i

1

2
‖ziu −Dh

ua
i
u‖22 + β‖aiu‖1

s.t. ‖dh
u,j‖22 ≤ 1 ∀ j = 1, . . . , p, (3)

where aiu ∈ �p is the sparse coefficient vector of ziu to
be optimized, and dh

u,j ∈ �n represents a dictionary atom
which is a column of Dh

u and constrained to be unit norm.
Note the objective function (3) is not convex w.r.t. Dh

u, but
it is convex w.r.t. Dh

u or {aiu} when the other one is fixed.
To optimize, we follow the sparse coding literature [31], and
use an iterative approach that alternates between the sparse
coding stage (solving {aiu}) and the dictionary update stage
(updating Dh

u). In this work, we choose the LARS algo-
rithm [32] for sparse coding, and Lee et al.’s Lagrange dual
method [31] for dictionary learning.

Note that when the data penalty functionψD is chosen as
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a L2 norm, the first two terms in (2) can be merged, yielding
a standard sparse coding problem, which is equivalent to the
optical flow formulation as proposed in [28]. For any flow
patch centering at x, let Bx ∈ �n×2n be the diagonalized
matrix representation of the horizontal and vertical deriva-
tives ensemble {∇I2(x + u0

x)} of the pixels in this patch,
andyx ∈ �n be the vectorized ensemble {∇I�2 u0

x−It(x)},
sparse coding amounts to minimize

‖yx −BxD
hahx‖22 + β‖ahx‖1. (4)

When optimal sparse coefficient vectors {ahx} for all flow
patches are obtained, which normally overlap each other, a
common way to reconstruct the flow field is by computing

u =
1

n

∑
x

Rh
xD

hahx, (5)

whereRh
x ∈ �2N×2n is a binary operator which places each

flow patch at its proper position in the flow field. This pro-
cess essentially averages flow patches at overlapping pix-
els. In Figure 1, we demonstrate the effectiveness of learned
sparse model starting from an initialization u0. And yx and
Bx at each position x are computed based on u0. We solve
equation (4) to get {ahx}, and use equation (5) to reconstruct
the estimated flow field. The size of flow patch is 5×5. Fig-
ure 1 shows that the learned sparse model is generally better
than those using generic dictionaries such as DCT.

2.1. Multi-scale spatial regularization

The learned sparse model in (2) exploits higher order
spatial regularization. It works when either an initial flow
field estimate u0 is given, or the displacements between
frames I1 and I2 are small. However, in optical flow com-
putation, the errors in intermediate flow estimates are nor-
mally dense with large variations. In fact, as the data term
in (2) relies on the assumption of intensity constancy, which
can be easily violated due to sensor noises, illumination
changes, reflections, and shadows. Any advanced alterna-
tives [4, 16] may only alleviate, but not eliminate the prob-
lem. When the flow noises become dense and large, higher
order spatial terms generally suffer from instability and be-
ing trapped in local minima, neither learned dictionaries nor
generic ones can provide a good constraint. This is a funda-
mental difference from image denoising if we look optical
flow estimation as a flow field denoising process.

In order to stabilize the flow estimation process, and
also to enable our model to cope with large displacements,
we extend the model (2) and propose a multi-scale spatial
term to regularize the flow field. The new spatial term is
composed of a purely geometric first-order regularizer and
our higher order learned sparse model. To derive the new
model, we start from the commonly taken spatial regularity
form ES(u) =

∑
x ψS(∇ux). If we choose ψS(·) = ‖ · ‖1

as used in the TV-L1 framework [4, 10], this is equivalent
to let the flow gradient field being sparse. In fact, if we use
simple horizontal and vertical kernels [1− 1] and [1− 1]�,
we can approximate the flow gradient computation as a lin-
ear combination of the flow field. We thus can get a variant
of the TV like energy model as

E(u) =
∑
x

ψD

(
ρ(x)

)
+λ‖T l

xu−Dlalx‖22+β‖alx‖1, (6)

where T l
x is defined similarly as in (2), Dl denotes the

pseudo-inverse of the linearized first-order derivative oper-
ator, it applies to a flow patch T l

xu centering at position x.
Combining with our proposed learned sparse model, we ar-
rive at the following energy function to minimize

E(u) =
∑
x

{
ψD

(
ρ(x)

)
+

∑
s∈{l,h}

λs‖T s
xu−Dsasx‖22 + βs‖asx‖1

}
. (7)

Note that the new model exploits statistics of different
spatial scales, which may complement each other. Indeed,
while the structure of a flow patch can be sparsely rep-
resented by the learned flow dictionary, flow vectors in-
side the patch is not necessary to be (piece-wise) smooth,
which can be ensured by the added first-order sparsity con-
straint. Moreover, first-order spatial constraint stabilizes
optical flow estimation process, and makes it easier to adapt
into a coarse-to-fine/warping framework, which has proven
itself to be very effective in optical flow estimation. Based
on a sequential optimization scheme and robust higher or-
der regularization (will be introduced in the following sec-
tions), our method can produce high quality results compet-
itive with the current state-of-the-art.

3. Robust higher order spatial regularization

In Section 2.1, we have discussed the types of noises
generally encountered in optical flow estimation, which are
dense and large, the estimates at some pixels may be com-
pletely corrupted. We have thus introduced the first-order
spatial regularizer to stabilize the estimation process. To-
gether with a robust penalty function, it can reduce the
errors at most of the pixels. However, due to data con-
straint violations caused by illumination changes, it in-
evitably leaves gross errors or outliers at some pixels, which
can degrade the performance of the learned sparse model.

On the other hand, sparse signal recovery with dense and
large errors is still an open problem in sparse coding litera-
ture. Among those relevant methods, Wright et al. [29] first
showed that when the corrupted measurements are sparse,
accurate recovery can be achieved via an extended L1 min-
imization. They further proved that the same approach is
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possible to cope with dense corruption [30]. However, their
proving conditions on a highly correlated dictionary, which
is in general true in face recognition [29], but not applicable
in both image restoration and optical flow estimation using
learned dictionaries. In this work, we take a more direct
approach to address the problem of outliers. That is, we
consider identifying those more reliable pixels and in each
flow patch, we use them to do sparse coding regularization.
Since flow patches, no matter smooth or discontinuous, al-
ways have simple structures and are indeed sparse signals,
accurate recovery using partial measurements is the inbuilt
property of sparse coding.

Our approach is based on the observation that optical
flow is in general piece-wise smooth. Both flow estimates
deviating from their surrounding ones in smooth regions,
and flow boundary estimates are less reliable and can be
treated as outliers. Formally, for each estimated flow vec-
tor ux, we compute an associated weight wx based on nor-
malized flow similarities and spatial distances w.r.t. its sur-
rounding pixels

wx =
1

m

∑
x̃∈N (x)

exp
{
− ‖ux − ux̃‖2

2σ2
1

− ‖x− x̃‖2
2σ2

2

}
, (8)

where N (x) denotes a neighborhood of x, m is the size
of N (x), σ1 and σ2 are tuning parameters. When doing
higher order spatial regularization, for each flow patch T h

xu
with n pixels, we use those αn(0 < α < 1) pixels hav-
ing the top weights to perform robust partial sparse coding,
and get an optimal ahx. Then all pixels of this patch are
updated as Dhahx. The expression (8) is motivated from bi-
lateral filtering [21], but it is flow-driven, and is embedded
in a learned and robust sparse model. Moreover, it can treat
both smooth regions and regions having multiple motions.
In Figure 2, we demonstrate the effectiveness of robust reg-
ularization on the “RubberWhale” sequence in the Middle-
bury training set.

We have introduced the common way to update the flow
field as in (5), which averages flow patches at overlapping
pixels. However, motivated by recent optical flow works
using non-local spatial regularization [17, 7], we find it is
better to consider local image structures when reconstruct-
ing the flow field. More specifically, for each patch in
higher order spatial regularization, we compute a weight
mask Mh

x ∈ �2n based on color similarity

Mh
x (x

′) = exp{−‖I1(x)− I1(x
′)‖2/2σ2

3}, (9)

where x′ is a pixel of the patch centering at x, and σ3 is
a tuning parameter. The color value I1(·) is measured in
the Lab space. The following weighted flow reconstruction
scheme generally improves performance

u = diag
(∑

x

Rh
xM

h
x

)−1 ∑
x

Rh
xdiag(M

h
x )D

hahx. (10)

(a) (b)

(9.700/0.330) (9.646/0.330) (8.969/0.318)

(5.261/0.132) (5.171/0.129) (4.999/0.125)
(c) (d) (e)

Figure 2. Effectiveness of the proposed robust approach for higher
order spatial regularization. (a) is a color coded intermediate flow
estimate of the “RubberWhale” sequence in [20]. Two local re-
gions of (a) are plotted in (c). Their corresponding weight maps
(computed by (8)) are shown in (b), where darker points are less
reliable. Results in (d) are based on standard sparse coding. Resuls
in (e) are based on the proposed robust approach. Average angu-
lar error (AAE) and average end-point error (AEPE) are shown in
bracket below each plot (AAE/AEPE).

4. Sequential optimization

Due to a robust penalty function used in the data term and
sparsity priors for multi-scale spatial regularization, the en-
ergy function (7) is neither convex nor continuously differ-
entiable. To optimize, we propose to decompose the prob-
lem into a sequence of simpler ones, while each subproblem
involves alternating updates and iterating until convergence,
similar to the quadratic splitting scheme commonly used in
recent optical flow works [11, 13, 14]. Specifically, our al-
gorithm proceeds with the initial u = u0 and the following
iterations:

• For u being fixed, solve a sparse coding problem for
each flow patch centering at x

λl‖T l
xu−Dlalx‖22 + βl‖alx‖1. (11)

Optimal {alx} can be computed using LARS [32] or
Lee et al.’s method [31]. To update the whole field
u, we simply average the reconstructed flow patches
{Dlalx} at overlapping pixels, similar to the equation
(5) as for the higher order case.
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• For {alx} being fixed, minimize

∑
x

ψD(∇I�2 (ux − u0
x) + It) + λl‖T l

xu−Dlalx‖22.
(12)

Since function (12) is differentiable, we follow [6] and
pursue a local minimum by setting its derivative zero
w.r.t. u, and solve the corresponding linear system of
equations.

When the optimization concerning first-order spatial reg-
ularity is stable, our algorithm continues with the following
iterations:

• For u being fixed, solve a robust partial sparse coding
problem as proposed in Section 3, using the learned
dictionary Dh 2

λh‖T h
xu−Dhahx‖22 + βh‖ahx‖1. (13)

Again, Lee et al.’s method or LARS can be used to
compute {ahx}. The updating of whole field u is based
on the proposed weighted flow reconstruction scheme
(10).

• For {ahx} being fixed, minimize

∑
x

ψD(∇I�2 (ux − u0
x) + It) + λh‖T h

xu−Dhahx‖22,
(14)

which can be solved similarly as (12).

Our algorithm proceeds with a sequence of iterative
steps, and alternates in minimizing functions (11), (12) and
(13), (14) until convergence. Similar to [11], the parame-
ters λl in (12) and λh in (14) are initially set small to allow
warm starting, and then logarithmically increased in their
iterations.

Note that by writing the energy model as the form (7)
and optimizing using (13), we implicitly assume that the
overlapping flow patches are independent from each other,
this is obviously questionable. However, this approximation
makes the optimization easier and in practice, leads to im-
proved performance. It is also interesting to compare with
the popularly used TV-L1 framework [11, 9]. While their
spatial regularization steps can be interpreted as total varia-
tion based noise removal, our model and optimization step
in (13) borrow ideas from learning adapted, sparse and re-
dundant image models, which is currently most competitive
in image restoration.

2Equation (13) does not explicitly account for partial sparse coding to
keep consistent with the main energy function (7).

4.1. Implementation

To allow for illumination changes between image
frames, we pre-process the images using the structure-
texture decomposition proposed in [12]. Our method is em-
bedded in a coarse-to-fine/warping framework to cope with
large displacements. We use a downsampling factor of 0.8
when constructing image pyramids. On each pyramid level,
we perform 10 warping steps. In each warping step, the
parameters λl in (12) and λh in (14) are logarithmically in-
creased from 10−4 to 102. For sparse coding regularization,
βl/λl in (11) is set as 0.1. Instead of fixing βh/λh in (13),
we set the number of nonzero elements for each ahx in (13)
as 10, i.e., ‖ahx‖0 = 10.

First-order spatial regularization is applied on 8 × 8
blocks of the flow field, then results are averaged at over-
lapping pixels. Following [11, 7], we perform a 5 × 5 me-
dian filtering after each step of first-order regularization.
For higher order regularization, we use 5 × 5 (n = 25)
flow patches. The horizontal and vertical flow dictionar-
ies are separately trained, with the size of 4 times over-
completeness, thus p = 100 and Dh ∈ �50×200. Currently
we only apply higher order regularization on the pyramid
level of original frame size. For the proposed robust ap-
proach, we consider a 9 × 9 neighborhood, thus m = 81
in (8). The tuning parameters σ1 and σ2 are set as 0.5 and
4 respectively, and α = 0.8 for partial sparse coding. Fi-
nally, we fix the weighted flow reconstruction parameter as
σ3 = 10.

5. Experiments

In this section, we quantitatively evaluate our proposed
contributions for optical flow estimation. We used the Mid-
dlebury benchmark [20], which provides a training set with
given ground truth flow fields, and an evaluation set for
comparison between different methods. Since our method
is based on learning, when comparing with other methods
on the evaluation set, we used all 8 ground truth flow fields
in the training set to learn the flow dictionary. When test-
ing on the training set, we used “leave-one-out” methodol-
ogy. That is, we used 7 ground truth flow fields to learn the
dictionary, and used the left one for evaluation. In the fol-
lowing, we will first give separate evaluation of key contri-
bution factors proposed in this work. We then show overall
performance on the evaluation set of the Middlebury bench-
mark. Throughout these evaluations, parameters were set as
in Section 4.1 for all testing sequences.

5.1. Contribution evaluation

In Table 1, we use the Middlebury training set to show
the contribution of higher order spatial regularization for ac-
curate flow estimation. Accuracies in terms of average an-
gular error (AAE) are presented. While results using multi-
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Measure DCT Dict. Learned Dict. Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

AAE × × 2.505 2.132 6.169 1.795 2.682 2.572 4.629 4.150

AAE v × 2.511 2.063 6.043 1.774 2.672 2.498 4.633 4.123

AAE × v 2.481 2.012 6.011 1.758 2.629 2.481 4.630 4.095

Table 1. Evaluation results on the Middlebury training set. Comparisons are made between methods using first-order spatial regularity
only (first row), first-order plus higher order using DCT dictionary, and first-order plus higher order using learned dictionary. Measure is
in terms of the average angular error (AAE).

Measure RobustLSM Weighted Recon. Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

AAE v × 2.551 1.595 5.112 1.811 2.300 2.036 2.685 3.357

AAE v v 2.541 1.511 5.005 1.803 2.285 2.004 2.599 3.297

Table 2. Evaluation results on the Middlebury training set. Results in both rows are based on robust higher order regularization using
learned dictionary. Using a weighted flow reconstruction scheme, the results in the second row are further improved. Measure is in terms
of the average angular error (AAE).

Dimetrodon Grove2 Grove3 Hydrangea
(2.541/0.129) (1.511/0.105) (5.005/0.473) (1.803/0.151)

RubberWhale Urban2 Urban3 Venus
(2.285/0.072) (2.004/0.221) (2.599/0.375) (3.297/0.235)

Figure 3. Color coded flow results of the 8 sequences in the Mid-
dlebury training set. Average angular error (AAE) and average
end-point error (AEPE) are given in brackets below each image
(AAE/AEPE).

scale spatial regularization are generally better than those
using first-order spatial regularity only, our results based on
learned flow dictionaries further improve over those using
DCT. Note that in these experiments, we have not used the
proposed robust higher order regularization yet, the effec-
tiveness of which is demonstrated in Table 2. From Table
2 we can see that robust partial sparse coding indeed re-
duces the influence of outliers and improves performance.
Finally, the image-driven, weighted flow field reconstruc-
tion scheme pushes the accuracies a step further. Figure 3
gives the color coded flow results of the 8 Middlebury train-
ing sequences.

5.2. Overall performance

Figure 4 compares our method with other methods us-
ing screenshots from the Middlebury evaluation homepage,
where our method is denoted as LSM. Only top-performing
methods are shown for comparison. At the time of publica-
tion, our results rank third for AAE and fourth for average
EPE, among the methods listed there. Figure 4 shows that
under all three criteria, i.e., the whole flow field (all), flow
boundaries (disc), and smooth regions (untext), our method

is highly competitive with the state-of-the-art.
The first ranking method, MDP-Flow2 [15], exploited

extended flow initialization on each image scale to pre-
serve small-scale motion structures, which are often lost
in traditional coarse-to-fine/warping framework. The sec-
ond method, Layers++ [8], proposed a probabilistic layered
model that can address occlusions between different mo-
tion layers. We have not addressed these problems in this
paper. Nevertheless, we mainly aim to show the effective-
ness of learning-based sparse representation for optical flow
estimation. Our method gives better results than both pre-
vious learning-based approaches [6, 18], and those recently
proposed methods using higher order spatial regularization
[19, 17, 7]. The techniques in [15, 8] may be combined with
ours to further improve performance, we leave these issues
for future research.

6. Conclusion

In this work, we showed the effectiveness of learned
sparse representation for accurate optical flow estimation.
Our method is based on multi-scale spatial regularization,
which benefits from first-order spatial regularity and our
proposed, learned sparse model. We used a sequential op-
timization scheme to solve the energy minimization prob-
lem. To address the problem of outliers in intermediate
flow estimates, we further proposed flow-driven and image-
driven approaches for robust spatial regularization. Experi-
ments show that accuracies are significantly improved. Cur-
rently we have not addressed the recovery of small-scale
motion structures. In future research, we plan to combine
our method with extended flow initialization on each image
scale, to further improve the accuracy.
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