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ABSTRACT
This paper presents a system that can automatically segment ob-
jects in large scale 3D point clouds obtained from urban ranging
images. The system consists of three steps: The first one involves a
ground detection process that can detect relatively complex terrain
and separate it from other objects. The second step superpixelizes
the remaining objects to speed up the segmentation process. In the
final step, a manifold embedded mode seeking method is adopted to
segment the point clouds. Even though the segmentation of urban
objects is a challenging problem in terms of accuracy and problem
scale, our system can efficiently generate very good segmentation
results. The proposed manifold learning effectively improves the
segmentation performance due to the fact that continuous artificial
objects often have manifold-like structures.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Segmentation—
Pixel classification

General Terms
Algorithms, Experimentation

Keywords
3D point cloud, clustering, mode seeking, manifold

1. INTRODUCTION
3D models with geographical locations and semantical labels

are the key for urban modeling that is widely used in a variety
of applications, such as urban planning, simulation and visualiza-
tion. Compared to modeling with traditional tedious and time-
consuming CAD tools to create and visualize 3D digital urban mod-
els, many methods have been developed in recent years to obtain
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Figure 1: An example of urban object segmentation. (a) Mean
shift segmentation. (b) Segmentation obtained by our system
with manifold embedded mode seeking, which improves the re-
sult in (a) significantly.

3D information automatically. With these methods, it becomes pos-
sible that large scale 3D data can be obtained and processed.

As a common method to obtain 3D information, systems equipped
with LIDAR (light detection and ranging) sensors are widely used.
The obtained data, also called ranging images, can be represented
by 3D point clouds. However, a cloud as a whole reveals only lim-
ited structure of the urban scene and is far from being an informa-
tive visualization. To further utilize it, a necessary step is to label
and categorize the points in the cloud object by object.

Object segmentation plays a crucial role in the point cloud pro-
cessing routine. By segmentation, the points composing an object
is extracted from the scene for recognition and a semantical tag is
then attached to it. Despite the abundant previous works, only a
few are related to large scale urban scene object localization [5].
Most methods are designed for a much confined scenario, such as
focusing on a specific class of objects like roads [6], vehicles [4,
10], trees [15, 14, 9], and buildings [7, 3, 11]. In these cases, either
the scenario is relatively simple that contains only a few objects
[8], or the input objects have been segmented from the scene. The
theme of these papers is mainly related to recognition and recon-
struction of a specific class of objects where object recognition (or
classification) techniques play a central role.

The urban object recognition system proposed in [5] uses nor-
malized cuts [13] and min cut [1] to localize and partition point
cloud objects. Other graph partitioning methods such as graph cut
[2] are also useful tools for partitioning a set of points into sub-
groups. Our data, however, consist of much more complicated ur-
ban scenes, which render these methods fail in our experiments.
The major challenge is basically twofold: First, point clouds typi-
cally consist of complicated, densely aligned objects with large size
variation. Second, the inherent computation consuming nature of
segmentation further leads to difficulties in dealing with large scale
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problems, reducing the practicality of a method. In this paper, we
develop a system that can automatically segment objects in a 3D
cloud of a large scale urban scene that contains billions of points.
An example of the segmentation using our system is illustrated in
Fig. 1(b). It is worth mentioning that Golovinskiy et al. [5] and
Lim et al. [8] also developed a system for similar purpose. The
differences between our work and theirs include that 1) our sys-
tem can extract complicated terrain maps, while [5] and [8] assume
relatively simple, flat terrains. Without accurate terrain extraction,
segmentation of some objects is easy to fail, 2) buildings that later
can be used for further mesh reconstruction are included and seg-
mented, 3) our data are highly noisy and heterogeneous due to the
data acquisition and preprocessing method1, and 4) the objects in
our data are highly occluded since the data are generated by going
through the streets once.

2. THE PROPOSED METHOD
Fig. 2 shows how our method works. The three main steps,

ground (terrain) detection, superpixelization, and object segmenta-
tion, are described as follows.

2.1 Terrain Detection
The first step of our system is to detect terrain from a point cloud.

The terrain of a scene is related to the resolution we consider:

DEFINITION 2.1. Let C = {pi = (xi, yi, zi)|i = 1...N} be
a perfectly captured scene without occlusion and noise where N is
the number of points in C, and Δ be the resolution with which each
pixel on a terrain map represents a Δ×Δ square in the real scene.
The terrain map TΔ with resolution Δ is defined as:

TΔ(k, l) = min
{p∈C|(xΔ(p),yΔ(p))=(k,l)}

z(p), (1)

where z(p) is the function to have the z-coordinate, along with
xΔ(p) and yΔ(p) being the functions that retrieve the grid indices
along the x-axis and the y-axis respectively when the xy-plane is
masked with a Δ×Δ grid.

It is not difficult to develop a simple algorithm to generate the
terrain map based on the definition if a perfectly captured scene is
given. In real cases, however, occlusion and noise are ubiquitous.
For example, parts of the ground hidden under cars cannot be de-
tected. We use the following techniques to overcome this problem:
1) a maximum threshold is set to detect an abrupt change of the
local minimum of heights for points, 2) paved road detection, and
3) expansion from paved road to obtain a better terrain.

The ground extraction algorithm is a two-pass process consist-
ing of rough ground extraction and further refinement. In the first
step, we divide the xy-plane into regular grids of size Δ ×Δ. For
each grid, we eliminate points higher than the lowest point with a
height difference larger than Thre1. Mathematically, we define the
roughly extracted ground as a set of extracted points satisfying the
following condition:

TΔ
1 (k, l) = {z(q)|q ∈ C, (xΔ(q), yΔ(q)) = (k, l),

z(q)− min
{p∈C|(xΔ(p),yΔ(p))=(k,l)}

z(p) ≤ Thre1}, (2)

1The ranging images are obtained by driving a vehicle loaded with
LIDAR censors on the street. Due to the local traffic, the objects in
the scene, such as vehicles and working people, are not stationary,
causing some objects distorted. Another reason for low quality of
the data is that our scene covers a much larger urban area, with the
spanning about 10 kilometers. So the density of the data at many
locations is low where it is hard to define objects.

The first step can effectively remove the majority of the objects
while preserving uneven portions of the ground. Since we set Δ to
1.5 and Thre1 to 1.7 in this paper, our system can tolerate incli-
nation up to approximately 40 degrees. The method can also elim-
inate vertical structures with abrupt rise. Most of these structures
correspond to building facades, walls, overpass pillars and trunks
and should be considered as objects.

The second step aims at eliminating undesired object residues.
Since the detected point clouds show an elongated shape along
the road, we perform principal component analysis (PCA) with the
cloud points on the xy-plane and select the eigenvector correspond-
ing to the largest eigenvalue to indicate the road direction. We then
divide the points into stripes of width Δs along the road direction,
using multiple hyperplanes perpendicular to the road. Within each
stripe, the points are further divided into grids of size Δg ×Δs.

Suppose we use lk to indicate the lkth grid in the k stripe, T k
1

to indicate the point set in the kth stripe, and T k,lk
1 to indicate the

point set corresponding to the lkth grid. To locate the expansion
starting point, the grid containing the paved road in the kth stripe
is detected as:

lRoad = argmin
lk

1

|T k,lk
1 |

∑
p∈T

k,lk
1

(z(p)− zRoad)
2, (3)

where the road height zRoad is defined as:

zRoad = mean({z(q)|q ∈ T k
1 , z(q) ∈ Binmax(q)}) (4)

and the maximum bin Binmax is defined as the largest bin of the
histogram of point heights ranging from minp∈Tk

1
(z(p)) to

minp∈Tk
1
(z(p))+Thre2. Experiments show that most road points

are well detected, with similar heights densely concentrated in the
height histogram to form the largest bin. Thus it is reasonable to
estimate the road height by calculating the mean of the largest bin.

The detected grid is taken as the starting point. We eliminate
points within this grid that are higher than the lowest point with
height difference more than Thre3 and mark this grid as "refined".
We then propagate the refinement from the starting grid in a spa-
tially continuous manner along the stripe. For each unrefined grid,
we refer to the highest point that is identified as the ground in the
previously refined grid and denote it as the reference point. Each
unidentified point in the unrefined grid is compared with the refer-
ence point. Those higher with height differences larger than Thre3
are eliminated and the rest are identified as ground. The highest
among these points is selected as the new reference point. If there
are no newly identified ground points, the reference point is not
changed. The above process is repeated until all grids are refined
in the map. We select Δs, Δg , Thre2 and Thre3 respectively as
10, 1, 10 and 1 and set the bin size as 1.

2.2 Point Cloud Superpixelization
The residual C − T by removing the detected terrain T from

a given cloud C is to be segmented. In order to solve large scale
segmentation problem, a necessary step prior to the segmentation
of objects is superpixelization. We first use mean shift overseg-
mentation with a bandwidth 5. The obtained clusters are further
refined by recursively performing cluster split using 2-cluster k-
means clustering, until each cluster contains less than 300 points.

2.3 Segmentation of Objects
Since the number of objects in a given urban scene is unknown,

a clustering algorithm that needs this number known is not suitable
for such a task. Mode seeking methods such as mean shift can
serve as an appropriate tool. Besides the ability to automatically
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Figure 2: An example illustrating the segmentation process. From left to right are figures of the original point cloud, ground (in red)
detection, superpixelization and object segmentation.

determine the cluster number and the potential for parallelization,
mode seeking can accurately detect many objects (such as trees)
even though they are densely aligned. We observe that these objects
tend to have high point density at their centers while showing low
density at their boundaries, which particularly favors such method.

Our method is closely related to mean shift but has many addi-
tional features that prove to be essential for obtaining good segmen-
tations: 1) a directional biased kernel bandwidth with z axis sup-
pression, 2) minimum panning tree (MST) embedded mode seek-
ing [16] that can detect compact structures and favor point connec-
tivity with manifold-like point clouds, and 3) a large size prior for
buildings with adaptive kernel size.

The observation for introducing the first feature is that points
tend to have larger correlation along the vertical direction than hor-
izontal directions. It inspires us to increase the kernel bandwidth
along the vertical direction to strengthen point connectivity. This is
equivalent to suppressing the z-axis coordinates for all the points
and performing subsequent operations including MST construction
and mode seeking in the z axis suppressed coordinate space. In this
paper, we suppress the z coordinates with a ratio of 0.5.

Suppose the superpixels of a point cloud are represented by a
set V = {vi|i = 1, . . . , N,vi ∈ Rd}, where N is the total
number of superpixels. The dimensionality d equals 3 in our case
and vi is the mean z-suppressed space coordinate of the points
belonging to the ith superpixel. For a given set of superpixels,
we construct its full connection graph G = (V,E) where E =
{ei,j |i, j = 1, ..., N, i �= j} and |ei,j | = ‖vi − vj‖. Using
Kruskal algorithm we are able to extract the minimum spanning
tree (MST) S = (V,ES), which is a connected graph of G with
ES ⊆ E, |ES| = N − 1. For any node pair (i, j), i �= j, there
exists a unique path Eij such that Eij ⊆ ES, i and j are connected
sequentially by elements of Eij and deleting any one of the ele-
ments results in the disconnection of i and j. In addition, we define
Eij to be ∅, if i = j.

We propose to use a joint representation of the MST distance
space (“MST space” for short) and the feature space (the coordinate
space) to define the density estimator. Consider the simplest case
where the MST space kernel center is located exactly at a tree node
vj . Then the density estimator can be written as follows:

f(v) = c0
∑
i

k

(
d(vj ,vi)

2

h2
1

)
k

(∥∥∥∥v − vi

h2

∥∥∥∥
2)

, (5)

where d(vj ,vi) is the cumulative length of the path connecting
node vi and vj , defined as:

d(vj ,vi) =
∑

em,n∈Eij

min
pk∈Vm,pl∈Vn

||pk − pl||. (6)

In (6), pk is the single point coordinate of the kth point and Vm

represents the set of points belonging to the mth superpixel. We
use the above form instead of d(vj ,vi) =

∑
em,n∈Eij

||vm − vn||
defined in [16] to further reward attraction along manifolds. In (5),

v is the feature space kernel center, h1 and h2 are the bandwidth
parameters controlling the window size, c0 is a constant determined
by the sample size and bandwidth, and k(x) = exp(− 1

2
x) is the

profile of a normal kernel.
The inference of mode seeking for the tree-embedded density

estimator is well described in [16]. We employ the fast approxima-
tion of the mode seeking process by iteratively shifting the MST
space kernel and the feature space kernel, which is described in
[16]. We also employ an adaptive bandwidth, utilizing a large size
prior for buildings. We re-cluster superpixels from clusters con-
taining at least one superpixel higher than the road height for 7.5
in the z axis suppressed space, with the same superpixel set and
MST structure as those in the previous step, but the bandwidths for
re-clustered superpixels are enlarged to 7.2 and 12, which are six
times the original bandwidths. Combining the cluster label for low
altitude superpixels together with the re-clustered result, we can
obtain the final cluster label for each point in the point clouds.

Finally, we emphasize again that our method can automatically
label different objects without object recognition after the terrain
detection. One example is given in Fig. 2(d), and more can be seen
in the next session.

3. EXPERIMENTS
We conduct comprehensive experiments to test the proposed sys-

tem on a data set containing 176 images obtained by scanning some
streets of our city. To better illustrate its performance, the results
are compared with results obtained by mean shift, a standard seg-
mentation method widely adopted in the literature for point cloud
segmentation [5, 12]. The mean shift algorithm is operated on the
same object superpixels obtained through the first and second steps
of our method. It also uses adaptive bandwidth in the our experi-
ments, with the same parameter adaptivity settings to our method.

3.1 Qualitative Evaluation
We randomly illustrate some ranging images with representative

urban scenes and perform ground detection and segmentation. The
results indicate our system can generate very good segmentation
under a variety of complicated scenes. The scenes illustrated in
Figs. 1 and Fig. 2 contain complex terrain which is hard to extract.
Our system can accurately extract the majority of the ground. It is
also worth mentioning that the embedding manifold structure helps
to improve segmentation on spanning objects, particularly over-
passes and buildings, as illustrated in Fig. 1, Fig. 4(a) and Fig.
4(d). Notice that for the data illustrated in Fig. 1, there is no way
for mean shift to segment the whole bridge without erroneously in-
cluding nearby objects (the pylon on the right). Fig. 4(e) illustrates
our segmentation result on a challenging task where large buildings
are densely aligned while the scanned points are sparse on these
buildings. The buildings are difficult to separate but our system can
generate very accurate segmentation. Fig. 3(f) and Fig. 3(g) con-
tains densely aligned trees difficult to separate. Our method works
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(a) (b) (c) (d) (e) (f) (g)

Figure 3: A portion of the segmentation results obtained by our system. The test data contains typical urban scenes.

(a) (b) (c)

(d) (e) (f)

Figure 4: A comparison of segmentations obtained by our sys-
tem and mean shift. The second row contains better results
obtained by our system, while results obtained by mean shift
contain both serious oversegmentation and oversmoothing.

well on such kind of data. Tested on the whole data set containing
hundreds of scenes similar to the above illustrated ones, the visual
examination suggests that our system has similar performance to
the illustrated ones. In all our experiments, the bandwidth for mean
shift is set to 4 and the two bandwidths h1 and h2 for our method
are respectively set to 1.2 and 2. These parameters are empirically
selected to optimize the performance of the two methods.

3.2 Quantitative Evaluation
We compare each automatic segmentation against the ground

truth 2 segmentation by finding (a) how much of the automatic seg-
mentation contains the whole object (precision), and (b) how much
of the object is not oversmoothed with other objects (recall). The
result is illustrated in Fig. 5. Results show that our method signifi-
cantly outperforms mean shift.

4. DISCUSSION AND CONCLUSION
In this paper, we have developed a system that can automatically

segment objects in complicated urban scenes. The system can sepa-
rate single, relatively small objects while preserving the connectiv-
ity of large, spanning ones. It provides good initial interpretations
of the urban scenes, based on which 3D object reconstruction, vi-
sualization and recognition can be carried out.

5. ACKNOWLEDGEMENTS
This work was supported by grants from Introduced Innovative R&D

Team of Guangdong Province (Robot and Intelligent Information Technol-

2Since the work load is huge, we only label a portion of the data
set and select objects that are easy to label.

0.85 0.9 0.95 1
0.4

0.6

0.8

1

Precision

Re
ca

ll

 

 

Building, with mean shift
Building, with our method
Bridge, with mean shift
Bridge, with our method

Figure 5: A quantitative comparison of segmentations obtained
by our system and mean shift.

ogy), Natural Science Foundation of China (61005011, 60975029, 61070148),
and Science, Industry, Trade and Information Technology Commission of
Shenzhen Municipality, China (JC201005270358A, JC201005270350A,
JC200903180635A, JC201005270378A, ZYC201006130313A).

6. REFERENCES
[1] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image

segmentation. IJCV, 70(2):109–131, 2006.
[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy

minimization via graph cuts. IEEE T-PAMI, 23(11):1222–1239, 2002.
[3] J. Chen and B. Chen. Architectural modeling from sparsely scanned

range data. IJCV, 78(2):223–236, 2008.
[4] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing

objects in range data using regional point descriptors. ECCV, 2004.
[5] A. Golovinskiy, V. Kim, and T. Funkhouser. Shape-based recognition

of 3d point clouds in urban environments. ICCV, 2009.
[6] A. Jaakkola, J. Hyyppa, H. Hyyppa, and A. Kukko. Retrieval

algorithms for road surface modelling using laser-based mobile
mapping. Sensors, 8(9):5238–5249, 2008.

[7] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny.
Building reconstruction from a single DEM. CVPR, 2008.

[8] E. Lim and D. Suter. Conditional random field for 3D point clouds
with adaptive data reduction. Int’l. Conf. on Cyberworlds, 2007.

[9] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana.
Automatic reconstruction of tree skeletal structures from point
clouds. ACM Transactions on Graphics, 29(5), 2010.

[10] E. Meier and F. Ade. Object detection and tracking in range image
sequences by separation of image features. IEEE International
Conference on Intelligent Vehicles, 1998.

[11] L. Nan, A. Sharf, H. Zhang, D. Cohen-Or, and B. Chen. SmartBoxes
for interactive urban reconstruction. ACM SIGGRAPH, 2010.

[12] X. Shao, K. Katabira, R. Shibasaki, and Z. H.J. Multiple people
extraction using 3D range sensor. SMC, 2010.

[13] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
T-PAMI, 22(8):888–905, 2002.

[14] Y. Wang, H. Weinacker, and B. Koch. A lidar point cloud based
procedure for vertical canopy structure analysis and 3D single tree
modelling in forest. Sensors, 8:3938–3951, 2008.

[15] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Transactions on Graphics,
26(4):19, 2007.

[16] Z. Yu, O. Au, K. Tang, and C. Xu. Nonparametric Density
Estimation on A Graph: Learning Framework, Fast Approximation
and Application in Image Segmentation. CVPR, 2011.

1300




