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Abstract—Three-dimensional object reconstruction from a single 2D line drawing is an important problem in computer vision. Many

methods have been presented to solve this problem, but they usually fail when the geometric structure of a 3D object becomes

complex. In this paper, a novel approach based on a divide-and-conquer strategy is proposed to handle the 3D reconstruction of a

planar-faced complex manifold object from its 2D line drawing with hidden lines visible. The approach consists of four steps:

1) identifying the internal faces of the line drawing, 2) decomposing the line drawing into multiple simpler ones based on the internal

faces, 3) reconstructing the 3D shapes from these simpler line drawings, and 4) merging the 3D shapes into one complete object

represented by the original line drawing. A number of examples are provided to show that our approach can handle 3D reconstruction

of more complex objects than previous methods.

Index Terms—3D reconstruction, divide and conquer, internal face, line drawing, manifold.
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1 INTRODUCTION AND RELATED WORK

Aline drawing is the 2D projection of the wireframe of an
object. Humans have no difficulty in perceiving the 3D

geometry from a 2D line drawing. Emulating this ability is
an important research topic in both computer vision and
graphics. Line drawings discussed in this paper are with
hidden lines visible. These line drawings can be generated
by sketching on the screen with a mouse or a tablet PC pen
and on paper with a pen. Though it takes more effort for the
user to draw such line drawings compared with line
drawings without hidden lines, they allow the reconstruc-
tion of complete and more complex objects. Much work
concerning line drawings with hidden lines has been
published in the computer vision literature [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12] and in CAD and graphics
[13], [14], [15], [16], [17], [18], [19], [20], [21]. The applications
of 3D reconstruction from this kind of line drawings include:

1. providing a flexible sketching interface in current
CAD systems [14], [16], [18],

2. providing a 2D sketch query interface for 3D object
retrieval from large databases or from the internet
[19], [22], [23],

3. interactive generation of 3D models from images [9],
[17], [20],

4. automatic conversion of existing industrial wire-
frame models to solid model [13], [14], and

5. building rich databases for object recognition sys-
tems and reverse engineering algorithms for shape
reasoning [13], [14].

The earliest work toward 3D reconstruction from single
line drawings is line labeling, which focuses on finding a set
of consistent labels from a line drawing to test the
correctness and/or realizability of the line drawing [3],
[4], [5], [16], [24], [25], [26], [27], [28], [29], but it does not
explicitly recover a 3D object from a line drawing. Most 3D
reconstruction methods from a line drawing assume that
the face topology of the line drawing is known in advance.
This information can greatly reduce the complexity of the
reconstruction. Face identification is not a trivial problem,
and many methods have been proposed to find faces from a
line drawing [1], [6], [7], [8], [12], [13], [14], [30].

Three-dimensional reconstruction from line drawings is
usually formulated as an optimization problem. Marill
proposed a criterion of minimizing the standard deviation
of the angles in the reconstructed object so that a 2D line
drawing can be inflated into a 3D shape [2]. Later, more
criteria, such as line parallelism, face planarity, object
symmetry, and so on, were proposed to do 3D reconstruc-
tion [1], [9], [11], [15], [18], [20], [21], [31], [32], [33]. The
methods in [26], [34], and [35] use line labeling and shading
information to recover the visible surfaces of 3D polyhedra
in images from the edges of these polyhedra. Recently,
some attempts [32], [33], [36] were made to recover a
complete solid from a line drawing with visible lines only,
but these methods are only applicable to simple objects.
Almost all previous work on 3D reconstruction from line
drawings focuses on planar-faced objects.
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In previous optimization-based methods, the variables of
the objective functions are the missing depths of the vertices
of a line drawing. These methods work well for simple objects
with a small number N of the variables. As N grows,
however, it is very difficult for them to find expected objects.
This is because, with the nonlinear objective functions in a
space of large dimension N , the search for optimal solutions
can easily get trapped into local minima. To handle this
problem, Liu et al. proposed finding much lower dimensional
search spaces where desired objects can be found more easily
[9]. This method can tackle 3D reconstruction of more
complex objects than previous methods. From [9], we know
that the size (dimension) of the search space depends on the
degree of reconstruction freedom (DRF) of a line drawing,
and the DRF usually increases when the number of the
internal faces (see the next section for its definition) of the
object increases. In a high-dimensional space, the search for
desired objects becomes difficult [9]. Our experiments show
that the algorithm in [9] still often fails to obtain an expected
3D object from a line drawing when the geometry of the object
becomes more complex with many faces and internal faces.

In this paper, we propose a divide-and-conquer strategy
to handle the 3D reconstruction of complex planar-faced
manifold objects from line drawings, which is the compre-
hensive version of our preliminary work published in [10].
In addition to the contents in [10], we discuss how to find
internal faces, prove the existence and uniqueness of the
partition of a line drawing along an internal face, and
provide more experiments. Manifolds belong to a class of
most common solids, the definition of which is given in the
next section. This approach is based on the fact that a
complex object1 is in general the combination of less
complex objects, each of which is easier to recover. Fig. 1
shows an example where a line drawing is decomposed into
four simpler ones. Obviously, the 3D reconstruction from
each of them is an easier task than the reconstruction from
the original line drawing. Our approach includes four steps:

1. identifying the internal faces of an input line drawing,
2. decomposing the line drawing into less complex

ones based on the internal faces,
3. reconstructing the 3D shape from each of these

simpler line drawings, and
4. merging these 3D shapes into a complete object.

The rest of this paper is organized as follows: Section 2
states the assumptions for the reconstruction problem and
defines terms that are frequently used in the paper. In
Section 3, we propose our method for the decomposition of
a complex line drawing into simpler ones. Section 4
presents the reconstruction algorithm for merging the 3D
objects that are recovered from the simpler line drawings.
Our experimental results are shown in Section 5, and
finally, Section 6 concludes the paper.

2 ASSUMPTIONS AND TERMINOLOGY

In this paper, we focus on a class of common solids, called
manifolds, with planar faces. A line drawing, represented by
a single edge-vertex graph with the known x and
y coordinates of the vertices, is the parallel or near-parallel
projection of the edges of a manifold in a generic view where
all of the edges and vertices of the manifold are visible. The
generic view assumption means that the topology of the line
drawing is preserved under small variations of the view-
point, which is the assumption made in most previous
related work. We also assume that all of the faces of the
manifold have been identified from its input line drawing.
Face identification from line drawings with hidden lines
visible has been studied extensively [1], [6], [7], [8], [12], [13],
[14], [30], and the algorithms developed in [7] and [30] can be
used to find the faces from a line drawing. For better
understanding of the contents in the following sections, we
here summarize the terms that appear in the rest of the paper.
Many of them are illustrated with the line drawings in Fig. 1.

. Manifold. A manifold, or more rigorously two-
manifold, is a solid where every point on its surface
has a neighborhood topologically equivalent to an
open disk in the 2D euclidean space [37]. This paper
considers such manifolds that are made up of flat
surfaces. A basic property of a manifold is that each
edge is shared by exactly two faces [38].

. Face (real face). A face is one of the flat surfaces that
make up a manifold. In what follows, we call it a real
face to distinguish it from an internal face.

. Internal face. An internal face is an imaginary face
lying entirely inside a manifold M with only its
edges visible on the surface. It is not a real face, but
can be considered as two coincident real faces of
identical shape belonging to two manifolds or two
parts of the same manifold which have been glued
together to build M.

. Edge. An edge of a line drawing is the intersection of
two noncoplanar real faces. An edge e is also denoted
by fve1; ve2g, where ve1 and ve2 are two vertices of e.

. Artificial line. An artificial line is a line used to
indicate the coplanar relationship of two cycles.

. Cycle. A cycle is formed by a sequence of vertices
v0; v1; . . . ; vn, where n � 3, v0 ¼ vn, the n vertices are
distinct, and there exists an edge connecting vi and
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Fig. 1. Decomposition of a line drawing and illustration of some terms.
(a) Cycle ð1; 3; 4; 1Þ is a real face. The four shadowed cycles f�1�4 are
internal faces. Edges f10; 16g and f8; 14g are two artificial lines
indicating the coplanarity of cycles ð6; 7; 9; 11; 6Þ and ð12; 13; 15; 17; 12Þ.
Edge f1; 2g is a chord of cycle ð1; 5; 2; 3; 1Þ. Two real faces ð1; 3; 4; 1Þ and
ð1; 2; 5; 1Þ are connected. Edge f5; 4g and the real face ð1; 3; 4; 1Þ are
connected. (b) Four simpler line drawings are decomposed from the four
internal faces f�1�4 in (a).

1. The complexity of an object is an ambiguous term. In this paper, we
say that a manifold object is complex if it has both more than 30 faces and
nontrihedral vertices, which causes internal faces or holes.



viþ1 for i ¼ 0; 1; . . . ; n� 1. A cycle is denoted by
ðv0; v1; . . . ; vnÞ. Since the boundary of a face is a cycle,
a face is denoted the same way as a cycle.

. Chord. A chord of a cycle is an edge that connects
two nonadjacent vertices of the cycle.

. Vertex set of a cycle. The vertex setV erðCÞof a cycleC
is the set of all the vertices of C.

. Edge set of a cycle. The edge setEdgeðCÞof a cycleC is
the set of all the edges of C.

. Connected faces. Two faces fa and fb are called
connected if V erðfaÞ \ V erðfbÞ 6¼ ;.

. Connected edge and face. An edge e ¼ fve1; ve2g is
called connected to a face f if fve1; ve2g \ V erðfÞ 6¼ ;
and e 62 EdgeðfÞ.

. Partition of a set. Given a nonempty set S, a partition
PS ¼ fS1; S2g is a set of two nonempty subsets S1 and
S2 of S such that S1 [ S2 ¼ S and S1 \ S2 ¼ ;.

An internal face is where two separate manifolds (or two
parts of one manifold) are glued together. It may be
nonplanar. However, we treat all of the internal faces as
planar in this paper, which is true for most manifolds with
internal faces. The advantage of this treatment is that when
an object is separated along an internal face, this internal
face becomes a real planar face and the decomposed line
drawings still represent planar-faced manifolds.

3 DECOMPOSITION OF A LINE DRAWING

There are many ways to separate the edge-vertex graph of a
line drawing into multiple smaller graphs. However, these
graphs are meaningless if they do not represent real objects.
Obviously, it is desirable that each of the separated line
drawings still represents a manifold. We have this as a
requirement to design our method for line drawing
decomposition. By observing numerous complex objects,
especially man-made objects, we can see that most of them
are formed by gluing two or more smaller objects together,
resulting in internal faces. Therefore, our strategy is to find
the internal faces from a line drawing first and then
decompose it along the internal faces.

3.1 Classification of Internal Faces

Let an internal face f� be generated by gluing two real faces f1

and f2. Let C1 and C2 be the two cycles corresponding to f1

and f2, respectively, in the original line drawing. We can
classify f� into one of the two types: 1) C1 and C2 have no
contact, and 2) C1 and C2 have contact (partly or
completely). Fig. 1a shows four examples of internal faces,
in which f�1 belongs to type 1 and f�2 , f�3 , and f�4 belong to
type 2. For f�4 , C1 and C2 merge into one in the line drawing.

3.2 Decomposition along Internal Faces of Type 1

When f� belongs to type 1, since C1 and C2 do not touch,
additional information must be used to indicate the
coplanarity of C1 and C2 so that correct face identification
and reconstruction from the line drawing are possible. Using
artificial lines to indicate this coplanarity is the simplest and
most straightforward way, which has been used in solid
modeling [7], [13]. Two artificial lines connecting two edges
of C1 to two edges of C2 are added by the user who designs
the line drawing. Note that, in general, one artificial line is

not enough to indicate the coplanarity because each edge is
shared by two real faces in a manifold.

For an internal face of type 1, if we can detect the two
artificial lines, then we can remove them and thus
decompose the line drawing along this internal face. In
fact, the detection of artificial lines is not difficult, as
described below.

Let fv; vag, fv; vbg, and fv; vcg be the three edges
connected to a vertex v of degree 3, as shown in Fig. 2. If
fv; vag and fv; vbg are collinear, then fv; vcg is an artificial
line. This statement is easy to verify.

Assume, on the contrary, that fv; vcg is not an artificial
line but an edge. Since the line drawing denotes a manifold,
every edge is passed through by two real faces and, hence,
three real faces f1, f2, and f3 pass through v (see Fig. 2).
According to the assumption that the line drawing is the
projection of a manifold in a generic view, the three vertices
va, v, and vb are also collinear in 3D space. Thus, the straight
line vavvb and vertex vc define a plane in 3D space, implying
that f2 and f3 are coplanar, which contradicts the definition
that an edge is the intersection of two noncoplanar real
faces. Therefore, fv; vcg is an artificial line.

After artificial lines are detected, they are removed from
the line drawing. Note that when an artificial line is
removed, its two vertices in the original line drawing are
also removed. For example, when the artificial line f10; 16g
in Fig. 1a is removed, the two collinear edges f11; 10g and
f10; 9g become one edge f11; 9g. An internal face of type 1
turns out to be a real face in the decomposed line drawing.
The face ð6; 7; 9; 11; 6Þ in Fig. 1b is such an example.

3.3 Detecting Internal Faces of Type 2

Even with the real faces known from a line drawing,
detecting internal faces of type 2 is not a trivial problem. In
this paper, the detection is performed through a cycle-
searching scheme. Since exhaustive searching is computa-
tionally expensive, we here develop properties related to
internal faces of type 2 so that most cycles that cannot be
such an internal face can be eliminated during the search.

In the rest of Section 3, we only consider internal faces of
type 2. For concision, we simply use “internal face(s)” to
denote “internal face(s) of type 2”. When we say two cycles
overlap, we mean that their enclosed regions overlap on the
2D line drawing plane. The first two properties below come
from the definition and observation of common internal faces.
They are useful to develop other subsequent properties. The
assumption that all internal faces are planar is also implied.

Property 1. An internal face except its boundary is invisible from
any viewpoint.

Property 2. Two coplanar internal faces do not overlap.

Property 3. A self-intersecting cycle is not an internal face.
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Fig. 2. Part of a line drawing with an artificial line fv; vcg.



Proof. Since the projection of the boundary of a planar face
cannot form a self-intersecting cycle [7], an internal face,
which is formed by gluing the real faces of two planar
manifolds, cannot be self-intersecting either. tu

Property 4. If two cycles share two or more noncollinear edges

and overlap, then they cannot both be internal faces.

Proof. Since the two cycles share two or more noncollinear
edges, they must be coplanar if they are internal faces.
From Property 2, they cannot both be internal faces. tu

Property 5. A cycle cannot be an internal face if the cycle has a

chord that is completely or partially enclosed inside the cycle.

Proof. If this cycle is an internal face (see Fig. 3), the chord is
obviously on the same plane with the cycle. An edge of a
line drawing lies on the surface of the manifold and is
visible from a certain viewpoint in 3D space. Hence, it
causes an interior part of the internal face to be visible,
which contradicts Property 1. tu

Property 6. A cycle cannot be an internal face if this cycle and a

real face share two or more noncollinear edges and they have an

overlapping region.

Proof. If this cycle is an internal face and shares two or more
noncollinear edges with a real face, then the cycle and
the real face lie on the same plane. If they further have an
overlapping region in the line drawing, then this region
is visible, which contradicts Property 1. tu

Property 7. A cycle cannot be an internal face if this cycle and a

real face share two or more noncollinear edges and they have

edges intersecting in the line drawing.

Proof. If this cycle is an internal face and shares two or
more noncollinear edges with a real face, then the cycle
and the real face lie on the same plane. If they further
have intersecting edges, then part of the real face must
be enclosed by the internal face, which contradicts
Property 1. tu
Fig. 4 shows several cases where a cycle and a real face

share two noncollinear edges and they have an overlapping
region in the line drawing. In fact, Property 7 is a special case
of Property 6. It is stated explicitly as a separate property
because it can be used to reduce fruitless search for internal
faces before a path becomes a cycle. For other cases such as
Figs. 4b, 4c, and 4d, where the cycle and the real face have no
intersecting edges, the cycle can be determined not to be an
internal face after the cycle is formed.

Property 8. A cycle cannot be an internal face if 1) this cycle

shares two or more noncollinear edges with a real face and

shares another two or more noncollinear edges with another

real face, and 2) the two real faces share an edge or they have an

overlapping region.

Proof. Let the cycle, the two real faces, be C, f1, and f2,
respectively. Assume, on the contrary, thatC is an internal
face. From the first condition, we know thatC, f1, and f2 all
lie on the same plane. If f1 and f2 share an edge, as shown
in Fig. 5a, the definition that an edge is the intersection of
two noncoplanar real faces is violated. In another case, f1

andf2 overlap, as shown in Fig. 5b. However, two coplanar
real faces of an manifold must not overlap in the line
drawing. Therefore, C cannot be an internal face. tu
With these properties, we can develop an algorithm to

detect the internal faces of a line drawing, which is
summarized in Algorithm 1. It is a depth-first search
algorithm with the properties incorporated to guide the
search. The properties can cut most fruitless branches during
the search, and thus considerably speed up the algorithm.

Algorithm 1. Depth-first search of internal faces.

Input: An line drawing L ¼ ðV; E;FÞ where V, E, and F are

the sets of vertices, edges, and real faces, respectively, the

adjacency lists AdjListðvÞ for every vertex v 2 V, a 2D array

Shortestðv1; v2Þ indicating the length of the shortest path
between any two vertices v1 and v2, and the maximum

search depth Dmax.

1) Initialization: F�  ;; LabelðvÞ  0, for every vertex

v 2 V;

2) for every edge fu; vg 2 E do

a) index 1; LabelðuÞ  1; LabelðvÞ  1;

b) Pathð0Þ  v; Pathð1Þ  u;

c) for every vertex w1 2 AdjListðuÞ and w1 6¼ v
do INTERNALðu;w1Þ;

d) Pathð0Þ  u; Pathð1Þ  v;

e) for every vertex w2 2 AdjListðvÞ and w2 6¼ u
do INTERNALðv; w2Þ;

3) Detect if there are incompatible internal faces in F�
according to Property 4;

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 1, JANUARY 2011

Fig. 3. (a) A cycle C1 ¼ ðf; a; b; . . . ; c; d; e; . . . fÞ with a chord fa; dg
enclosed completely by C1. (b) Another cycle C2 ¼ ðf; a; b . . . c; e; d;
g; . . . fÞ with a chord fa; dg enclosed partially by C2.

Fig. 4. Several cases where a cycle C and a real face f share two
noncollinear edges and they have an overlapping region in the line
drawing. (a) C and f have intersecting edges. (b)-(d) C and f have an
overlapping region without intersecting edges.

Fig. 5. A cycle C sharing two noncollinear edges with two real faces f1

and f2. (a) f1 and f2 having a common edge fa; bg. (b) f1 and f2

overlapping.



Output: The set of internal faces in F� if there are no

incompatible internal faces, or the sets of internal faces if

there are incompatible internal faces.
procedure INTERNALðu; vÞ

4) index indexþ 1; LabelðvÞ  1;

5) PathðindexÞ  v;

6) Check if edge fu; vg intersects any previous edges in

Path (according to Property 3). If yes, goto 9;

7) With the set of real faces that share two or more

edges with the current path in Path, check if this path

can form an internal face according to Properties 7
and 8. If no, goto 9;

8) for every vertex w 2 AdjListðvÞ and w 6¼ u do

a) if LabelðwÞ ¼ 0 and indexþ ShortestðPathð0Þ; wÞ
� Dmax, then extend the path by calling

INTERNALðv; wÞ;
b) else if w ¼ Pathð0Þ (a cycle is obtained in this

case) then

i) Check if edge fv; wg intersects any previous
edges in Path (according to Property 3). If yes,

goto 9;

ii) With all the chords of the cycle in Path, check

if this cycle can form an internal face according

to Property 5. If no, goto 9;

iii) With all the real faces, check if this cycle can

form an internal face according to Property 6.

If no, goto 9;
iv) Put this cycle into F� if it is not a real face and

is not in F� yet;

9) index index� 1; LabelðvÞ  0;

end of INTERNAL.

In the algorithm, an array Path is used to keep the

vertices in the current search path; the variable index gives

the position of the last-added vertex in Path during the

search. A binary label LabelðvÞ is used for every vertex v to

denote whether v is in Path or not. In practical applications,

we can often set the maximum length Dmax of internal faces

to avoid fruitless search. Dmax is used with a 2D array

Shortest in step 8(a), which indicates the smallest number

of edges in a path between any two vertices.
The algorithm starts the search from every edge in the

line drawing (see step 2), and calls the procedure

INTERNAL recursively to detect possible internal faces.

Obviously, this search does not miss any internal faces. In

addition, all of our experiments show that the cycles output

are indeed internal faces, which suggests that the properties

not only speed up the search but also effectively distinguish

internal faces from other cycles. The complexity of the
algorithm depends on the structure of a line drawing and is
exponential in the worst case. However, our experiments in
Section 5 indicate that its computational time is acceptable
even for complex line drawings.

For some line drawings, there exist incompatible internal
faces, resulting in multiple solutions from a line drawing
(see step 3 and “Output” in the algorithm). One example is
shown in Fig. 6, which has 15 real faces. From this line
drawing, Algorithm 1 finds three internal faces, C1 ¼ ð1; 2;
3; 4; 5; 6; 7; 8; 1Þ, C2¼ð1; 2; 3; 4; 5; 8; 1Þ, and C3¼ð5; 8; 9; 10; 5Þ.
Since C1 and C2 are incompatible according to Property 4,
the algorithm finally outputs two solutions: One is C1 and
C3 and the other is C2 and C3. Note that when C1 is an
internal face, C1 and the real face ð5; 6; 7; 8; 5Þ are on the
same plane; when C2 is an internal face, C2 and this real face
are on different planes.

The reader may wonder why C3 in Fig. 6 is also an
internal face. In fact, holes and cavities may also generate
internal faces, but the definition of internal faces needs to be
extended a little. Here, a hole is one that passes through the
surface of a manifold while a cavity does not. The manifold
in Fig. 1 has a hole, while the manifold in Fig. 6 has a cavity.
Next, we discuss this extension with two simple objects in
Figs. 7a and 7c.

In Section 2, we define an internal face as a face inside a
manifold only with its edges visible on the surface, and it is
formed by gluing two manifolds together. One such example
is shown in Fig. 7a, where C1 (denoted by the bold cycle) is
the internal face. Obviously, the object in Fig. 7a can be
considered as the union (gluing) of the two smaller objects in
Fig. 7b. In another case, the object shown in Fig. 7c can be
considered as the subtraction of the smaller object from the
bigger object shown in Fig. 7d. Comparing the two line
drawings (a) and (c), we can see that they have very similar
structures and the same topology. The region enclosed by C1

is invisible and is the common part of the two separate
objects in Fig. 7b. There is also such a region enclosed by C2
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Fig. 6. An example where multiple solutions exist.

Fig. 7. Union and subtraction that generate internal faces. (a) A
manifold. (b) Two manifolds whose union results in the manifold in (a).
(c) Another manifold. (d) Two manifolds with which the subtraction of the
smaller one from the bigger one results in the manifold in (c). C1 and C2

are two internal faces.



(the bold cycle) that is invisible since it is not a real face and is
the common part of the two objects in Fig. 7d. Therefore, we
also call C2 an internal face. Note that Algorithm 1 also finds
it as an internal face because Properties 1-8 do not prevent it
from being so. Now we see that an internal face can be
formed either by gluing two manifolds together or by cutting
a manifold from another. On the other hand, it is easy to
know that gluing two manifolds or cutting a manifold from
another may not necessarily result in an internal face.

The cycle C3 ¼ ð5; 8; 9; 10; 5Þ in Fig. 6 is similar to the
cycle C2 in Fig. 7c. In Fig. 6, since C3 is compatible with both
C1 and C2 while C1 and C2 are incompatible, Algorithm 1
obtains the two solutions fC1; C3g and fC2; C3g. Both of them
are valid but lead to different decompositions of the line
drawing, which is discussed at the end of the next section.

3.4 Decomposition along Internal Faces of Type 2

From an internal face, we decompose the line drawing by
recovering the two touching faces that form the internal
face. Given a line drawing and its identified real and
internal faces, it is not a trivial problem to decompose the
line drawing. The main difficulties are: 1) the 3D geometry
of the manifold is not available yet, 2) in the 2D projection,
the lines connecting to an internal face can be in any
direction with respect to the internal face, and 3) when a
line drawing is decomposed into two sides along an
internal face, for a line that is connected to the internal face
in the original line drawing, it is not obvious to which side
this line should be connected. For example, the correct
decomposition of the line drawing along the shadowed
internal face in Fig. 8a is given in Fig. 8b. If the edge fa; bg is
not connected to a1 but to a2, then a wrong decomposition
occurs because the real face ða; b; c; d; aÞ is broken after such
a decomposition.

Through the observation of numerous line drawings, we
find that the human decomposition of a line drawing along an
internal face f� always satisfies the following two properties:

Property 9. All of the real faces connected to f� are partitioned
into two sets, F 0ðf�Þ and F 1ðf�Þ.

Property 10. Two real faces sharing a common edge connected to
f� (not including any edge of f�) both appear in either F 0ðf�Þ
or F 1ðf�Þ.

These two properties are easy to verify based on the
definition of an internal face. Since f� is formed by two

parts of one manifold or two manifolds, F 0ðf�Þ and F 1ðf�Þ
contain the real faces connected to f� of the two parts,
respectively. Besides, two real faces sharing a common edge
connected to f� belong to one of the two parts instead of
belonging to both parts.

From the decompositions of the line drawings in Fig. 1a
and Fig. 8a, it is easy to see that the resulting line drawings
in Fig. 1b and Fig. 8c satisfy the two properties. Mathema-
tically, we formulate such a decomposition in the following
definition and call it a partition along an internal face.

Definition 1. Let f� be an internal face,Fðf�Þ ¼ ffigmi¼1 be the set
of all them real faces connected to f�, and Eðf�Þ ¼ feigni¼1 be the

set of all the n edges connected to f�. A partition along f� is to

find a face set partition PFðf�Þ ¼ fF 0ðf�Þ;F 1ðf�Þg and an edge

set partition PEðf�Þ ¼ fE0ðf�Þ; E1ðf�Þg simultaneously such
that for any e 2 Esðf�Þ, it holds that e 62 EdgeðfÞ; 8f 2
F 1�sðf�Þ, where s ¼ 0; 1. This partition along f� is denoted

by Pf� ¼ ðPFðf�Þ; PEðf�ÞÞ.

The following Property 11 shows that such a partition
along an internal face is unique, and the proof of it leads to
an algorithm to find this partition.

Property 11. The partition along an internal face of a line

drawing representing a manifold exists and is unique.

Proof. Let f� ¼ ðv1; v2; . . . ; vt; v1Þ be the internal face with
t vertices. LetN vi , 1 � i � t, be a neighborhood around vi
on the surface of the manifold such thatN vi is topologically
equivalent to a 2D open disk and is small enough so that
only the edges connected to vi are contained in N vi .
According to the definition of a manifold, everyN vi can be
stretched into a 2D disk where the real faces passing
through vi are located side by side around vi and do not
overlap, as shown in Fig. 9. Next, we show four properties
after all the N vi have been stretched into 2D disks.

1. At vi, 1 � i � t, the two edges of f� partition the
real faces passing through vi into two nonempty
sets F 0ðviÞ and F 1ðviÞ. This is because f� is
formed by gluing two manifolds or two parts of
one manifold (or cutting one from another) and
the real faces in F 0ðviÞ and F 1ðviÞ belong to the
two manifolds (parts), respectively.
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Fig. 8. An example of decomposing a line drawing along its internal
faces. (a) The line drawing with one internal face shadowed. (b) The
correct partition along this internal face. (c) Partitions along the four
internal faces. The hidden edges are shown in dashed lines for easier
observation. Fig. 9. Part of a line drawing where the internal face f� is denoted by the

bold solid and dashed edges, and all of the neighborhoods N vi ,
1 � i � t, are stretched into 2D disks.



2. When all of theN vi , 1 � i � t, are stretched into 2D
disks and drawn in the 2D plane, f� separates the
2D plane into inside and outside regions (see Fig. 9).
The two faces both passing through edge fvi; viþ1g
in the same region are the same face where 1 � i � t
and vtþ1 ¼ v1. Without loss of generality, consider
v1 and v2 in Fig. 9. We will prove that f2 ¼
ðv2; v1; b; . . . ; v2Þ and f 02 ¼ ðv1; v2; d; . . . ; v1Þ are the
same face, and so are f1 ¼ ða; v1; v2; . . . ; aÞ and
f 01 ¼ ðc; v2; v1; . . . ; cÞ. Since each edge is shared by
exactly two real faces, f2 can only pass through
edge fv2; dg or edge fv2; cg. However, f2 cannot
pass through fv2; cg because if we walk clockwise
on the surface of the object along the edges of a
planar real face, the region enclosed by these edges
is always on our right-hand side. Thus, f2 and f 02 are
the same face, and so are f1 and f 01.

3. If all of the real faces and the edges connected to
f� in the outside region form two sets, F 0ðf�Þ and
E0ðf�Þ, respectively, and all of the real faces and
the edges connected to f� in the inside region
form another two sets, F 1ðf�Þ and E1ðf�Þ, respec-
tively, then Pf� ¼ ðPFðf�Þ; PEðf�ÞÞ with PFðf�Þ ¼
fF 0ðf�Þ;F 1ðf�Þg and PEðf�Þ ¼ fE0ðf�Þ; E1ðf�Þg is a
partition along f�. From Fig. 9, it is easy to see that
every edge connected to f� (not including the
edges of f�) appears in two real faces that both
belong to the same face set, either F 0ðf�Þ or
F 1ðf�Þ. This fact and the above property 1 that
indicates F 0ðf�Þ 6¼ ; and F 1ðf�Þ 6¼ ; verify this
property 3, which shows the existence of a
partition Pf� along f�.

4. The partition Pf� defined above is unique. Let us
consider whether there are other partitions along
f�. If one or more but not all of the real faces are
removed fromF sðf�Þ and put intoF 1�sðf�Þ, where
s ¼ 0; 1, we can see from Fig. 9 that at least two
edges connected to f�will violate Property 10 that a
partition along f� should satisfy, i.e., the two faces
sharing such an edge do not both appear in either
F 0ðf�Þ orF 1ðf�Þ. If all of the real faces connected to
f� are put in F 0ðf�Þ or F 1ðf�Þ, this does not form a
partition along f�. tu

After the partition along f�, f� becomes a new real face in

the two parts separated from f�. It is easy to see from Fig. 9

that every point on the edges of f� has a neighborhood that is

topologically equivalent to an open disk in the 2D euclidean

space. For example, for a point in the middle of edge fv1; v2g
in Fig. 9, the disk is formed by points in f2 and the new real

face f�. It is also true for every point inside f�. Therefore, we

have the following property:

Property 12. After the partition along an internal face, the line

drawing (line drawings) still represents (represent) a manifold

(manifolds).

The proof of Property 11 with Fig. 9 already provides all

of the elements for developing a simple algorithm to find

the partition Pf� ¼ ðPFðf�Þ; PEðf�ÞÞ along an internal face f�.

The outline of the algorithm is given in Algorithm 2.

Algorithm 2. Partition along an internal face.

1) Set F 0ðf�Þ, F 1ðf�Þ, E0ðf�Þ, and E1ðf�Þ to be empty sets;

2) Put all the real faces connected to f� into F 1ðf�Þ;
3) Remove any one face from F 1ðf�Þ and put it into

F 0ðf�Þ;
4) for every f 2 F 1ðf�Þ do

5) if f and any real face in F 0ðf�Þ share an edge

connected to f� (not including the edges of f�)

then

6) Remove f from F 1ðf�Þ, put it into F 0ðf�Þ,
and goto 4;

7) Put all the edges that are connected to f� and in the

faces in F 0ðf�Þ and F 1ðf�Þ into E0ðf�Þ and E1ðf�Þ,
respectively.

Since there may be more than one internal face in a line
drawing, the algorithm is run repeatedly until all the internal
faces have been split. For the line drawing in Fig. 8a, four
partitions along the four internal faces decompose it into four
simpler line drawings as shown in Fig. 8c.

In Fig. 10, an example is given to show how to decompose
a line drawing of an object with a hole passing through an
internal face. The hole passes through the object and the
internal face ð1; 2; 3; 4; 1Þ. Two artificial lines fa; bg and fc; dg
indicate that two cycles ð5; 6; 7; 8; 5Þ and ð9; 10; 11; 12; 9Þ are
coplanar. Our algorithm can decompose the line drawing
into three simpler ones, as shown in Fig. 10b. Note that when
the “hole object” (the right one in Fig. 10b) is removed from
the original line drawing, there is no hole in the internal face
ð1; 2; 3; 4; 1Þ.

Now let us see what decomposition results look like
when Algorithm 1 finds multiple solutions from a line
drawing. Take the line drawing shown in Fig. 6 as an
example in which fC1; C3g and fC2; C3g are two solutions
with C1 ¼ ð1; 2; 3; 4; 5; 6; 7; 8; 1Þ, C2 ¼ ð1; 2; 3; 4; 5; 8; 1Þ, and
C3 ¼ ð5; 8; 9; 10; 5Þ. For convenient observation, it is re-
drawn in Fig. 11a.

Consider the first solution fC1; C3g and suppose that
Algorithm 2 does the partition beginning with C1. Then the
result is shown in Fig. 11b. Note that sinceC3 has been broken
in Fig. 11b, a partition based on it is impossible. Furthermore,
since the two line drawings in Fig. 11b have no internal faces,
the result in Fig. 11b is final. Now suppose that Algorithm 2
starts withC3 instead ofC1. The first partition result is shown
in Fig. 11c. Again C1 has been broken after the first partition
and a partition based on it is impossible. However, from the
bigger line drawing in Fig. 11c, Algorithm 1 can find an
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Fig. 10. (a) A line drawing with a hole passing through the internal face
ð1; 2; 3; 4; 1Þ. (b) The decomposition result of the line drawing.



internal face C4 ¼ ð1; 2; 3; 4; 1Þ. Therefore, Algorithm 2 per-
forms the second partition along C4 and the final result is
given in Fig. 11d.

Consider the second solution fC2; C3g and suppose that
Algorithm 2 carries out the partition alongC2 first. The result
is shown in Fig. 11e. Since C3 is not broken in the upper line
drawing in Fig. 11e, further partition along it is performed
and the final result is generated as shown in Fig. 11f. If
Algorithm 2 starts the partition along C3 first and then along
C2, the same final result as the one in Fig. 11f will be obtained.

From this example, we can see that even though we have
proven that the partition along any internal face is unique,
we may obtain multiple decompositions of a line drawing
when the line drawing has more than one internal face. In
this example, since the results in Figs. 11d and 11f are the
same, there are only two different decomposition results, as
shown in Figs. 11b and 11d. It should be mentioned that
although we have two different decompositions from this
line drawing, after combining the manifolds reconstructed
from these separate line drawings by our 3D reconstruction
method described in the next section, the two combined 3D
manifolds based on the two decompositions can be
expected to have similar 3D shapes.

4 3D RECONSTRUCTION

After decomposing a line drawing along its internal faces of
type 1 or 2 (see Section 3.1), we obtain several simpler line
drawings, each representing a part of the 3D manifold. Our
strategy to obtain the manifold is to reconstruct the 3D
shapes from these simpler line drawings first and then
merge these 3D shapes together.

As most of the previous methods for 3D reconstruction
from a line drawing, we consider that a line drawing is a
parallel or near parallel projection of the edges and vertices of
a 3D manifold in a generic view. Thus, thex and y coordinates
of each vertex are already known, and only the depth
(z coordinate) needs to be derived. Since the cycles of the real

faces are already available too, the surface of the 3D manifold

is recovered if the depths of all the vertices are obtained.
The five steps to reconstruct a complete object from a line

drawing are listed in Algorithm 3. Among previous

methods, the one in [9] can handle 3D reconstruction from

simple line drawings most efficiently. So we use it to carry

out steps 3 and 5, with five regularities used for the 3D

geometry reconstruction, which are minimizing the stan-

dard deviation of angles in the reconstructed object, face

planarity, line parallelism, isometry, and corner orthogon-

ality [1], [2], [9], [18]. Step 5 is performed on the complete

object with the merged object as the initial shape. Our

experiments show that using this step usually generates a

better result. When there are multiple decompositions of a

line drawing, as discussed in Section 3.4, we can either do

the reconstruction from all of these decompositions and

output multiple complete manifolds, or just pick any one

decomposition to carry out the 3D reconstruction. In the

remainder of this section, we give the details of step 4.

Algorithm 3. 3D reconstruction from a line drawing.

1) Find all the internal faces of an input line drawing;

2) Decompose the line drawing along the internal

faces;

3) Reconstruct the 3D objects from these decomposed
line drawings independently;

4) Merge these 3D objects to form a complete object;

5) Fine-tune the complete object.

When all of the 3D simple manifolds are available, the

next step is to combine them in an appropriate way so that a

complete 3D object is obtained. The basic idea of our merging

process is to well match two manifolds’ real faces that

correspond to one internal face of the original line drawing.

Suppose that two 3D manifolds Oa and Ob share an

internal face f� with K vertices in the original line drawing,

the depths of all Oa’s vertices are za1; za2; . . . ; zaNa
, and the

depths of all ofOb’s vertices are zb1; zb2; . . . ; zbNb
. Without loss

of generality, also suppose that za1; za2; . . . ; zaK are the depths

of f�’s vertices in Oa, and zb1; zb2; . . . ; zbK are the depths of

f�’s vertices in Ob, where zai corresponds to zbi, 1 � i � K.

SinceOa andOb are reconstructed independently, we usually

have a large difference between zai and zbi, 1 � i � K, and

different sizes of f� inOa andOb. We align them according to

the depth means (�a and �b) and the standard deviations (�a
and �b) of f� in Oa and Ob, where

�j ¼
1

K

XK
i¼1

zji; j ¼ a; b; ð1Þ

�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
i¼1

ðzji � �jÞ2
vuut ; j ¼ a; b: ð2Þ

While fixing Ob, we modify the depths of all the vertices of

Oa by

z0ai ¼ �b þ
�b
�a
ðzai � �aÞ; i ¼ 1; 2; . . . ; Na: ð3Þ
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Fig. 11. (a) The original line drawing. (b) Partition result along C1 from
(a). (c) Partition result along C3 from (a). (d) Further partition result along
C4 from (c). (e) Partition result along C2 from (a). (f) Further partition
result along C3 from (e).



Finally, Oa and Ob are merged by forcing their correspond-
ing vertex depths of f� to be the same:

z00ai ¼ z00bi ¼
z0ai þ zbi

2
; i ¼ 1; 2; . . . ; K: ð4Þ

Our visual system can interpret a line drawing as a 3D
object in two ways, which is well known as the Necker cube
reversal perception, and this phenomenon also exists in 3D
reconstruction from a line drawing [2]. One example is shown
in Fig. 12, where the lower line drawing in Fig. 12b may lead to
one of the two 3D objects Oa1 in Fig. 12c and Oa2 in Fig. 12d.
Incompatible combination of Oa1 and Ob happens. To solve
this problem, we can turn Oa1 into Oa2 by multiplying by �1

all the depths of the vertices ofOa1. Before doing this, we need
to check if two objects Oa and Ob are compatible. Let

s ¼ sgn

�XK
i¼1

ðzai � �aÞðzbi � �bÞ
�
: ð5Þ

If s ¼ 1, Oa and Ob are compatible; if s ¼ �1, Oa and Ob are
not. Step 4 can be generalized to the case in which Oa and
Ob share more than one internal face.

It is not difficult to understand adding objects together.
In the last section, we also talk about subtracting one object
from another. One example is in Fig. 7d. In fact, the
subtraction and the addition of objects in 3D reconstruction
work the same way. We always merge objects from their
common faces (internal faces). Since we already know the
face topology from the original line drawing, we can show
the surface of the reconstructed 3D object correctly. For the
object in Fig. 7c, the area enclosed by the cycle C2 is not on
the surface of the object because it is not a face.

5 EXPERIMENTAL RESULTS

This section shows a set of examples to demonstrate the
performance of our approach. The algorithms are imple-
mented using Visual C++, running on a PC with an Intel
Core(TM)2 Quad CPU Q6600 @ 2.4 GHz (only one CPU is
used). The maximum search depth Dmax in Algorithm 1 is
set to 10.

For some line drawings, there are multiple decomposi-
tions. Let us take the one in Fig. 11a as an example. Fig. 13
shows the two reconstruction results (each displayed in
three views) based on the two decompositions in Figs. 11b
and 11f. Although the two decompositions are different, the
two final complete objects, as expected, do look similar.

The two objects in the views in Figs. 13a and 13d result in
the same projection (the original line drawing), which is
called the original view. Even though the two shapes look
similar, they are not exactly the same. We may use the
following formula to measure the difference between them in
their original view:

�ðOa;ObÞ ¼ min
"

�
1

n

Xn
i¼1

jzai � ðzbi þ "Þj
�
; ð6Þ

where Oa and Ob denote the two objects, n is the number of
vertices of each object, and zai’s and zbi’s are the z coordinates
(depths) of the two objects, respectively, with zai correspond-
ing to zbi, 1 � i � n. Since the corresponding x and
y coordinates of the objects in their original view are the
same, we only need to compare the differences between their
corresponding z coordinates. Note that if a line drawing
comes from the projection of an objectOðz1; z2; . . . ; znÞ, then it
is also the projection of the object shifted along the z axis by
some amount ", i.e., Oðz1 þ "; z2 þ "; . . . ; zn þ "Þ. This is why
the " in (6) is used. To compute �, the range of " is easy to
determine according to the ranges of the z coordinates of the
two objects.

For the two objects in Figs. 13a and 13d, the size of their
projections (i.e., the line drawing in Fig. 11a) is 161� 185.
The average difference � of their z coordinates is 6.3.

Fig. 14 shows a set of complex line drawings. There is only
one decomposition from line drawing (a), (e), (f), or (g), but
there are 8, 4, 8, and 4 decompositions from line drawings (b),
(c), (d), and (h), respectively. In Fig. 14, only one decomposi-
tion of each line drawing is given, together with the
reconstructed 3D object displayed in two views. From these
results, we can see that our algorithm successfully decom-
poses the line drawings and generates desired 3D objects. It
should be emphasized that the objects in Fig. 14 are more
complex than the objects given in the previous related papers,
in terms of the numbers of real faces and internal faces.

The method in [9] can do 3D reconstruction of more
complex objects than other previous methods. However, it
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Fig. 12. (a) A line drawing. (b) Two decomposed line drawings.
(c) Incompatible objects Oa1 and Ob. (d) Compatible object Oa2 and Ob.

Fig. 13. (a)-(c) The reconstruction result based on the decomposition in
Fig. 11b, displayed in three views. (d)-(f) Another reconstruction result
based on the decomposition in Fig. 11f, displayed in three views.



is still unable to handle these complex line drawings due to
too many real and internal faces in each object. From [9], we
know that the dimension of the object search space depends
on the number of the internal faces of an object. A high
dimensional search space renders the search for desired
objects more difficult [9]. For example, from the line
drawing (e) in Fig. 14, the algorithm in [9] generates an

unexpected result as shown in Fig. 15. On the contrary, the
3D objects are easy to reconstruct from the decomposed
simple line drawings, and the combination of them into one
is not difficult.

From the 3D reconstruction results in Fig. 14, we can see
that some are not perfect. For example, in the two second
views of the results reconstructed from Figs. 14g and 14h, the
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Fig. 14. A set of complex line drawings and their decomposition and reconstruction results.



four walls of the castle are a little twisted and the two ends of

the base of the house are not of the same thickness. These
imperfections come from several factors: inaccurate sketches

of line drawings, the superstrictness problem in this

reconstruction problem [9], approximately optimal solutions
obtained by the optimization algorithm used in steps 3) and 5)

in Algorithm 3, and the imperfect regularities used to
construct the objective function for 3D reconstruction [9], [18].

Common man-made objects such as those in Fig. 14 are

usually symmetric or regular with parallel or perpendicular

faces. Our algorithm can also cope with irregular objects.

Fig. 16a shows the line drawing of such an object. The

decomposition and reconstruction results are shown in

Figs. 16b, 16c, 16d, and 16e.
The computational time of Algorithm 3 varies with

different drawings, depending on their complexity. The

main computational cost comes from steps 1 and 5. Table 1
lists the times taken by these two steps for all the line

drawings in Fig. 14.

The next experiment is to show how the computational
time of Algorithm 1 varies for line drawings of increasing
size. In Fig. 17, seven objectsO1�7 (line drawings) are denoted
by seven loops with Oi � Oiþ1, 1 � i � 6. They are shown
this way to save space. The time used to find the internal faces
of each object is plotted in Fig. 18. It can be seen that the time
is not an exponential function of the size for these line
drawings, indicating the usefulness of the proposed proper-
ties and the efficiency of Algorithm 1 for internal face
identification, even though the numbers of non-self-inter-
secting cycles (potential internal faces) of these line drawings
increase exponentially. ForO1�5, these numbers are 79, 5,310,
368,465, 4,479,584, and 50,108,386, respectively.

There are two kinds of objects that Algorithm 1 cannot
decompose: objects without internal faces, such as the one in
Fig. 19a, and objects whose internal faces are self-intersect-
ing, such as the one in Fig. 19b with the self-intersecting
internal face ð1; 2; 3; 4; 1Þ. Here, we explain more about the
second case. In this paper, we reconstruct 3D planar-faced
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Fig. 15. A failed result in two views reconstructed from the line drawing
(e) in Fig. 14 by the algorithm in [9].

Fig. 16. (a) The line drawing of an irregular object. (b) Decomposition
result. (c)-(e) Reconstruction result displayed in three views.

Fig. 17. Seven line drawings of increasing size denoted by seven loops.

Fig. 18. The time used by Algorithm 1 to find the internal faces of the line
drawings in Fig. 17.

TABLE 1
Times (Seconds) Taken by Searching

for the Internal Faces (T1) and Fine-Tuning
the Complete Objects (T2) for the Line Drawings in Fig. 14



manifold objects from line drawings. It is reasonable to
assume that internal faces are also planar and thus non-self-
intersecting. If internal faces are allowed to be self-intersect-
ing, two problems will occur: 1) Without the non-self-
intersecting constraint, many more cycles in a complex line
drawing can be the candidates of internal faces and it is
difficult to determine the internal faces. 2) When a line
drawing is decomposed, their internal faces become real
faces in the decomposed line drawings. These self-intersect-
ing real faces may cause previous 3D reconstruction methods
to fail because they are based on planar non-self-intersecting
faces. In Figs. 19c, 19d, and 19e, the internal faces ð1; 2; 3; 4; 1Þ
are not self-intersecting and our algorithm can handle them
easily. Dealing with the cases as in Figs. 19a and 19b is part of
the future work.

6 CONCLUSION

In this paper, we have proposed a novel divide-and-
conquer approach to complex 3D planar-faced manifold
reconstruction from single line drawings. Our strategy is to

1. identify the internal faces of an input line drawing,
2. decompose the line drawing into simpler ones along

its internal faces,
3. reconstruct the 3D shapes from these simpler line

drawings, and
4. merge the shapes into a complete object.

The experiments show that our approach can handle more
complex objects than previous methods.

Future work includes 1) the improvement of the
computational efficiency of the approach, 2) the beautifica-
tion of the reconstructed objects, and 3) the extension of the
work to handle more general planar-faced objects and
objects with curved faces.
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