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ABSTRACT 
 

In this paper, we propose to use the fingerprint valley 
instead of ridge for the binarization-thinning process to 
extract fingerprint minutiae. We first use several 
preprocessing steps on the binary image in order to 
eliminate the spurious lakes and dots, and to reduce the 
spurious islands, bridges, and spurs in the skeleton 
image. Finally, by removing all the bug pixels introduced 
at the thinning stage, our algorithm can detect a 
maximum number of minutiae from the fingerprint 
skeleton using the Rutovitz Crossing Number. 
 
 

1. INTRODUCTION 
 

Fingerprints are graphical flow-like ridges and valleys 
present on human fingers [1]. They are widely used for 
personal identification [2]. Various approaches for 
automatic minutiae extraction have been proposed in the 
literature. Most of the techniques [3,4,5,6] extract the 
minutiae from the skeleton of the fingerprint image. The 
skeleton is computed by thinning the binary image, which 
is obtained by adaptive thresholding of the gray scale 
fingerprint image.  

There are two types of minutiae, ridge endings and 
ridge bifurcations. Ridges are generally used for minutiae 
extraction, since most previous researches assume that the 
ridges and valleys in the fingerprint have a similar width 
and are equally spaced. In fact, this may not always be 
true for various fingerprints collected by different 
scanners. For example, the fingerprint images we 
collected using an optical scanner show that the average 
ridge width (typically 6 pixels) is thicker than the average 
valley width (typically 3 to 4 pixels), as illustrated in 
Figure 1. Since a thinner binary image is easier for 
skeleton computation, we propose to use the valley 
instead of ridge for minutiae extraction. We use valley 
endings and valley bifurcations as fingerprint minutiae. 

After the valley skeleton is extracted from the binary 
image, ideally, the width of the skeleton should be strictly 
one pixel. However, this is not always true, especially at 
the intersection points, thus producing spurious minutiae 
points. In this paper, we use a new algorithm to remove 
such pixels to improve minutiae extraction. 

 

   
 
Figure 1. Fingerprint images acquired using the StarTek 
FM100 sensor (White: valleys; Black: ridges). 
 

2. PREPROCESSING 
 

A critical step in an automatic fingerprint 
identification system (AFIS) is reliably extracting 
minutiae from the input fingerprint images. It generally 
consists of the following main steps: 

 
1. Use an adaptive thresholding algorithm to 

compute the binary image from the input gray 
scale fingerprint image, 

2. Use a thinning algorithm to compute the finger 
print skeleton from the binary image, 

3. Use Rutovitz crossing number to extract 
minutiae from the skeleton of fingerprint image. 

4. Post-processing the minutiae set according to 
some heuristic rules and the duality property. 

 
In this work, we propose several preprocessing 

techniques before thinning of the binary image: 
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1. Use a morphological operator to separate some 
linked parallel valleys, thus to eliminate spurious 
bridges and spurs in the skeleton, 

2. Fill in the small holes with an area (number of 
pixels) below a threshold Ta1, thus to eliminate 
the spurious lakes in the skeleton, 

3. Remove the dots (isolated pixels) and the islands 
(short lines) with an area below a threshold Ta2, 
thus to eliminate the spurious lakes, dots, and 
some islands in the skeleton. 

 
The thresholds should be selected appropriately. If Ta1 

and Ta2 are too small, the above spurious minutiae in the 
skeleton will not be eliminated completely. If they are too 
large, the skeleton will be distorted. In our experiments, 
we empirically set Ta1=11 and Ta2=9. Figure 2 shows the 
effects of the preprocessing steps. 

 
 

  

  
 
Figure 2. Examples showing the effect of the 
preprocessing steps. (Upper row: original skeleton 
images; lower row: skeleton images after preprocessing.) 
 
 

3. MINUTIAE EXTRACTION 
 

The concept of Crossing Number (CN) is widely used 
for extracting the minutiae [3,4,5]. Rutovitz’s definition 
[7] of crossing number for a pixel P is: 

 
P4 P3 P2 
P5 P P1 
P6 P7 P8  

 

 
where Pi is the binary pixel value in the neighborhood of 
P with Pi = (0 or1) and P1=P9. 

The skeleton image of fingerprint is scanned and all 
the minutiae are detected using the following properties 
of CN: 

 
CN Property 
0 Isolated point 
1 Ending point 
2 Connective 

point 
3 Bifurcation 

point 
4 Crossing point 

 
Ideally, the width of the skeleton should be strictly one 

pixel. However, this is not always true. Figure 3 shows 
some examples, where the skeleton has a two-pixel width 
at some bug pixel locations. 

We define a bug pixel as the one with more than two 
4-connected neighbors (marked by bold-italic 1 and 0). 
These bug pixels exist in the fork region where 
bifurcations should be detected, but they have CN =2 
instead of CN >2. The existence of bug pixels may (i) 
destroy the integrity of spurious bridges and spurs, (ii) 
exchange the type of minutiae points, and (iii) miss 
detecting of true bifurcations, as illustrated in Figure 4. 
Therefore, before minutiae extraction, we develop a 
validation algorithm to eliminate the bug pixels while 
preserve the skeleton connectivity at the fork regions. By 
scanning the skeleton of fingerprint image row by row 
from top-left to bottom-right, we delete the first bug pixel 
encountered and then check the next bug pixel again for 
the number of 4-connected neighbors. If the number of 4-
connected neighbors after the deletion of previous bug 
pixel is still larger than two, it will also be deleted; 
otherwise, it will be preserved and treated as a normal 
pixel. Some examples are shown in Figure 3. After this 
validation process, all the pixels in the skeleton satisfy the 
CN properties. Thus we can extract all the minutiae 
including true minutiae and false minutiae. The false 
minutiae can be eliminated at the post-processing stage. 
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Figure 3. Examples of bug pixels and their validation. 
(Bold-italic 0: deleted bug pixels, bold-italic 1: preserved 
bug pixels that are changed to normal pixels.) 
 

   
(a) (b) (c) 

 
Figure 4. Without validating the bug pixels, we may 
have: (a) four bifurcations (“x”) are missed; (b) two 
bifurcations are misdetected as two endings (“o”); (c) two 
bifurcations are missed including one true bifurcation. 
 

4. EXPERIMENTS 
 

To evaluate the performance of our algorithms, we 
randomly select 35 fingerprint images of medium quality 
from our fingerprint database. In the experiments, the 
scanned fingerprint images (256 x 256, 256 gray level, 
500 dpi) are cropped into 170 x 180 in size in order to 
remove the very noisy border areas.  

The valley skeleton and ridge skeleton are first 
obtained from the valley image and its dual ridge image 
respectively. The valley skeleton agrees rather well with 
the original valley image, while the ridge skeleton 
introduces a large number of spurious lakes and bridges. 
Consequently, the ridge skeleton will produce more 
spurious minutiae. Figure 5 shows a typical example. 

The accuracy rates of applying the minutiae extraction 
algorithm on ridge skeleton and valley skeleton before 
and after preprocessing are reported in Table 1 and Table 
2, respectively. In the tables, the total rate is calculated 
using the following formula: 
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where Et and Bt are the number of true endings and true 
bifurcations, Ee and Be are the number of extracted 
endings and bifurcations. 

From the results, we can see that after preprocessing 
the accuracy rate of bifurcation is improved significantly, 
especially for the ridge skeleton. It demonstrates that the 
preprocessing algorithm does eliminate a large number of 
spurious lakes, bridges, spurs, which introduce false 
bifurcations. However, the accuracy rate of endings is 
only increased slightly since the preprocessing algorithm 
only eliminates some spurious islands that introduce false 
endings. In fact, the spurious dots also introduce false 
endings and are eliminated efficiently in the 

preprocessing stage. However, there are only a small 
number of dots in the skeleton image. The improvement 
of the accuracy rate of ridge bifurcation is greater than 
that of valley bifurcation. This shows that the ridge 
skeleton introduces more spurious minutiae. In addition, 
the computation speed for valley thinning is much faster 
than ridge thinning. 

Table 3 shows some typical results of validating the 
bug pixels. From the results, we can see that the bug 
pixels exist in the fork region where bifurcations should 
be extracted. Some fingerprint skeletons may have more 
bug pixels and some may have none. 

 

 
(a) 

 
(b) 

 
Figure 5. (a) Valley skeleton, (b) ridge skeleton  (The 
skeleton is overlaid on the original gray scale fingerprint 
image). 
 

Table 1. Accuracy rates for ridge minutiae. 
 

 Before 
preprocessing 

After 
preprocessing 

Ending 10.84 % 10.92 % 

Bifurcatio
n 

20.24 % 51.32 % 

Total rate 13.54 % 17.08 % 

 
Table 2. Accuracy rates for valley minutiae. 
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 Before 
preprocessing 

After 
preprocessing 

Ending 12.39 % 12.87 % 

Bifurcatio
n 

16.35 % 26.58 % 

Total rate 13.27 % 16.57 % 

Table 3. Number of minutiae before and after validating 
bug pixels. 

 

After preprocessing After validating bug pixels 

Endings Bifurcations Endings Bifurcations 

67 47 67 47 

87 27 87 27 

55 123 55 125 

62 110 62 118 

77 55 75 57 

106 20 93 27 

 
 

5. CONCLUSION 
 

In this paper, we develop several simple and efficient 
preprocessing techniques for minutiae extraction from the 
valley instead of ridge of fingerprint. Our minutiae 
extraction algorithm can detect all the minutiae, including 
both true and false minutiae, using the simple Crossing 
Number (CN) on the skeleton images after validating all 
the bug pixels introduced at the thinning stage. This 
allows the true minutiae preserved and false minutiae 
removed in later post-processing stages. 
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