
Efficient Search of Faces from Complex Line Drawings

Jianzhuang Liu and Xiaoou Tang
Department of Information Engineering

The Chinese University of Hong Kong, Hong Kong, China
jzliu@ie.cuhk.edu.hk, xtang@ie.cuhk.edu.hk

Abstract

Single 2D line drawing is a straightforward method to il-
lustrate 3D objects. The faces of an object depicted by a line
drawing give very useful information for the reconstruction
of its 3D geometry. Each of the two recently proposed meth-
ods for face identification from line drawings involves two
combinatorial problems. When dealing with complex ob-
jects having more faces, the combinatorial explosion pre-
vents these methods from practical uses. This paper pro-
poses a new approach to tackling the face identification
problem by a variable-length genetic algorithm (GA) with
geometric constraints and a novel heuristic incorporated
for local search. The hybrid GA solves the two combina-
torial problems simultaneously. Experimental results show
that our algorithm can find the faces of a line drawing hav-
ing more than 30 faces much more efficiently.

1. Introduction

In computer vision, an important research area is to de-
velop algorithms that can understand a single 2D line draw-
ing representing an object and can reconstruct its 3D ge-
ometry. One application of this research is in CAD, where
tools are highly desirable that can convert a design sketch
into a 3D model directly. An object is made up by faces. If
the face configuration of an object is known, the complex-
ity of the 3D reconstruction will be reduced significantly.
Roughly speaking, the conversion problem can be divided
into two sub-problems: face identification and 3D geome-
try reconstruction. In this paper, we study the face identi-
fication problem only. For the 3D geometry reconstruction,
the reader is referred to references [1], [2], [3], [4].

A 2D line drawing in this paper is defined as the pro-
jection of a wireframe object where all the edges and ver-
tices of the object are visible and the drawing can be repre-
sented by a single edge-vertex graph. A drawing with hid-
den lines visible makes it possible to reconstruct its com-
plete 3D model. Fig. 1 shows such a line drawing together

Figure 1. A line drawing with ten faces.

with its faces. Much effort has been made in this face iden-
tification problem over the past two decades [5]. The recent
work presented in [6] and [7] can handle a larger range of
objects than previous methods. Both of them include two
steps: finding a set of circuits that may be potential faces
and searching for faces from this set. It needs to be empha-
sized that the two steps in each of the two methods corre-
spond to two combinatorial problems. The number of cir-
cuits is generally exponential in the number of edges of a
line drawing. In Section 4, it can be seen that the combi-
natorial explosion prevents the two methods from handling
a line drawing having many faces (> 30) within feasible
time.

Genetic algorithms (GAs) are a class of probabilistic
search algorithms that emulate natural evolutionary process
of human beings. GAs, if well designed, can often outper-
form traditional optimization methods. Many successful ap-
plications of GAs to various problems have been published
in the literature [8], [9]. In this paper, we design an effi-
cient GA with variable-length chromosomes to solve the
face identification problem. Geometric constraints on cir-
cuits of a line drawing and a heuristic called minimal edge
face phenomenon are developed and incorporated into the
operations of the GA. The proposed hybrid GA tackles si-
multaneously the two combinatorial problems involved in
the previous methods [6], [7]. Our experiments show that
the new algorithm reduces the computational complexity of
face identification from exponential to linear with respect to
the number of edges in line drawings.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

2. Two related methods

Among a number of published approaches in face identi-
fication [5], the two in [6] and [7] can handle a larger range
of objects (manifolds and non-manifolds as shown in Fig. 1
and in Section 4). These two methods are most related to the
work in this paper, and will be briefly described in the fol-
lowing. Before that, we list several terms here that will be
used in the rest of the paper.

• Circuit. A circuit is a closed trail in a graph where all
its vertices except the end vertices are distinct.

• Potential face. A potential face is a circuit without
edges intersecting.

• Minimal potential face (MPF). A MPF is a potential
face without an edge connecting its nonadjacent vertices.

• Degree. The degree of vertex v, d(v), is the number of
edges adjacent to v.

• Vertex rank. The rank of vertex v, R(v), denotes the
number of faces with boundaries passing through v.

• Edge rank. The rank of edge e, R(e), denotes the num-
ber of faces with boundaries passing through e.

Shpitalni and Lipson’s face identification method [6] is
built upon an observation on face configuration and a ba-
sic theorem called the face adjacency theorem. The obser-
vation, serving as the criterion for the problem, is that given
a line drawing, human beings tend to choose a face config-
uration in which there are as many edges as possible. The
face adjacency theorem states that two adjacent planar faces
may coexist in the same object if and only if their common
edges are collinear. The method can be formulated as fol-
lows.

Definition 1 Given n MPFs generated from a line drawing,
the maximum ranks R+(e) and R+(v) of all the edges and
vertices, and a binary matrix B = [bij]n×n, the face iden-
tification problem is to search for the subset x of the MPFs
such that

minimize:
∑

[R+(e) − R(e)] +
∑

[R+(v) − R(v)]
(1)

subject to: R(e) ≤ R+(e), ∀e (2)
R(v) ≤ R+(v), ∀v (3)
bij = 1, i �= j, i, j ∈ x (4)

where R(e) and R(v) are the respective actual edge and
vertex ranks in x, and B is obtained according to the face
adjacency theorem with bij = 1 (0) denoting that faces i
and j can (cannot) coexist in the same object.

In this formulation, (1) implies the criterion and (4) re-
flects the geometric constraint imposed by the face adja-
cency theorem. Shpitalni and Lipson calculated the maxi-
mum ranks R+(e) and R+(v) from a line drawing through
an iterative procedure (see [6] for details).

Liu and Lee [7] used the same criterion and face adja-
cency theorem to formulate the problem. They indicated
that the maximum edge ranks of a line drawing can be cal-
culated directly by

R+(e) = min{d(v1), d(v2)} − 1. (5)

We use (5) to compute the maximum edge ranks of a line
drawing in the GA implementation. The face identification
in [7] is formulated as follows.

Definition 2 Let w(i) be the number of edges of a circuit i.
Given a line drawing and the set of the MPFs, SMPF , gen-
erated from the drawing, the problem is to

maximize: f(x) =
∑

i∈x

w(i), x ⊂ SMPF (6)

subject to: bij = 1, i �= j, i, j ∈ x. (7)

Liu and Lee [7] proved that the two formulations in Def-
initions 1 and 2 are equivalent, and developed a much faster
algorithm to find the faces in a drawing based on Defini-
tion 2.

Each of the above-mentioned two methods involves two
combinatorial problems. The method in [6] generates the
MPFs by a circuit space approach, and uses the A∗ al-
gorithm to search for the optimal solution on a tree con-
structed by the MPFs. The method in [7] employs a depth-
first search algorithm to find the MPFs, and develops a max-
imum weight clique finding algorithm to solve the problem
in Definition 2. Our experiments show that neither method
works for line drawings with more than 30 faces within fea-
sible time.

3. A hybrid GA for face identification

In this section, we develop a GA with variable-length
chromosomes and a local search heuristic for the face iden-
tification. Incorporated into the local search algorithm are
the maximum ranks, geometric constraints imposed by the
face adjacency theorem, and a novel heuristic called mini-
mal edge face phenomenon. The hybrid GA is designed to
find solutions by direct search on a line drawing.

Standard GAs generally have these five basic compo-
nents [9]:

• A genetic representation of solutions to a problem.
• A scheme to create an initial population of solutions.
• A fitness function to evaluate how good a solution is.
• Genetic operators used to generate offspring.
• Parameters of GAs.

A GA searches some solution space by maintaining a
population P (t) of individuals (chromosomes) in each gen-
eration t. A solution is encoded into a chromosome. The
main advantage of maintaining a population is that with

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

many different solutions available, the search has greater
chances to find global optima. The overall quality (fitness)
of the solutions is improved generation after generation. In
each generation, some individuals undergo stochastic trans-
formations through genetic operators to create new individ-
uals (offspring) O(t). Two commonly-used operators are
crossover and mutation. A new generation is formed by the
selection of fitter individuals from P (t) and O(t). It is ex-
pected that the GA converges to the best solutions after a
number of generations. The framework of the standard GA
is rather general. A simple GA, however, does not usually
give satisfactory results for a difficult optimization problem.
In the following, we will design a GA to meet the nature of
the face identification problem and to solve it efficiently.

3.1. Genetic representation and fitness function

The first step to design a GA is to encode a solution
into a chromosome. A chromosome consists of a number
of genes. For the face identification, we use a gene to repre-
sent a MPF. Unlike fixed-length chromosomes in most GAs,
here the length of a chromosome is variable since the num-
ber of the faces of an object is unknown in advance. Fig. 2
shows a chromosome having m genes (MPFs) at some gen-
eration.

Given a line drawing with all the edges visible, human
beings tend to choose a face configuration in which there are
as many edges as possible. This is the criterion for our solu-
tion to the face identification problem (which is also the cri-
terion in [6] and [7]). The MPFs kept in a chromosome give
a possible solution to the problem. We define a fitness func-
tion used to evaluate a chromosome as follows.

Definition 3 The fitness of a chromosome k is evaluated by

fk(x) =
∑

i∈x

w(i) (8)

where x is the set of compatible MPFs currently stored in
the chromosome, and w(i) denotes the number of edges of
a MPF i.

Here maximizing fk(x) implies the criterion, and the
term compatible imposes a constraint on the MPFs. Obvi-
ously, the more MPFs are added into a chromosome, the
higher is its fitness. However, whether or not a new MPF can
be added into the chromosome is determined by the geomet-
ric constraint, the face adjacency theorem. In other words,
all the MPFs in a chromosome must be able to coexist in the
same object. We call these MPFs compatible.

C2C1 C3 Cm...

Figure 2. A chromosome having m genes.

1

2
3

4
5

6
7

8

9

10

Figure 3. A block with a hole, where hidden
edges are shown in dashed lines for easier
observation.

3.2. Minimal edge face phenomenon

A face of an object corresponds to a circuit constructed
by some edges in a line drawing. For an edge of a line draw-
ing with all the vertices of degree > 1, we can always find
a circuit passing through the edge and having fewest edges.
Such a circuit is called a minimal edge circuit. Through ex-
tensive observation, we have found that it is very likely for
a minimal edge circuit to stand for a face. Among all the
edges of the line drawings given in this paper and in the two
previous papers [6], [7], the percentage of a minimal edge
circuit being a face is as high as about 95%. We call this the
minimal edge face phenomenon.

Looking at the line drawing in Fig. 1, we can see that this
phenomenon applies to all the edges. However, not all such
circuits are faces of an object. An example can be seen from
the drawing shown in Fig. 3 depicting a block with a hole
passing through it. From edge (3, 4), we can find a minimal
edge circuit (3, 2, 1, 6, 5, 4, 3) in the drawing but it is not a
face. Moreover, not all faces are minimal edge circuits, such
as the two faces each with eight edges in Fig. 1, and the face
(1, 7, 8, 9, 10, 4, 5, 6, 1) in Fig. 3.

Although there are exceptions, the minimal edge face
phenomenon can apply to most cases. This heuristic leads
to a very effective local search scheme described in the next
section. Together with the GA, it efficiently solves the two
combinatorial explosion problems involved in the previous
methods [6], [7] simultaneously.

3.3. Local search scheme

Given a set of MPFs stored in a chromosome, the local
search scheme tries to extend the chromosome by adding
into it as many MPFs as possible. However, a new MPF, if
added into the chromosome, has to be compatible with all
the existing MPFs in it. Thus the following two conditions
will be used in the local search algorithm:

• Condition 1. The new MPF does not cause the rank of
any edge e in the line drawing to exceed the maximum edge
rank R+(e).

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

• Condition 2. It can coexist in the line drawing with all
the MPFs stored currently in the chromosome.

Now we discuss how to search for MPFs in order to fill
a chromosome. We define a new term first, which will be
used in Algorithm 1.

Definition 4 Given a set x of MPFs currently stored in a
chromosome, RR(e) = R+(e)−R(e) is called the remain-
ing edge rank of an edge e, where R(e) is obtained from
the MPFs.

When x = ∅, all the remaining edge ranks are equal to
their corresponding maximum edge ranks. In this case, any
MPF is allowed to appear in the chromosome. For an edge e,
when RR(e) = 0, no new MPF can pass through this edge.

A new MPF is searched from a line drawing based on
both the minimal edge face phenomenon and the remain-
ing edge ranks. Algorithm 1 describes the pseudo-code of
the local search algorithm.

Algorithm 1. (Extending a chromosome)
[To add more minimal edge MPFs into the set x of MPFs

currently stored in the chromosome by searching on the line
drawing with the edges numbered from 1 to |E|, given the
remaining edge ranks, RR(e), e = 1, 2, ...|E|.]

1. procedure Extension(x)
2. Generate a random permutation (r1, r2, ..., r|E|) where

ri �= rj for i �= j, and ri, rj , i, j ∈ {1, 2, ..., |E|}
3. for i = 1 to |E| do
4. if RR(ri) > 0 then
5. begin
6. Call FindingMinimalEdgeMPF (ri)
7. if there exists a new MPF and it can coexist

with all the MPFs currently in x then
8. Add it to x and update RR

9. end

In this algorithm, the search for more MPFs is done by
examining the edges one by one in a random way (Step 2)
when the procedure is called. The purpose is to reduce the
risk for the algorithm to get trapped in local maxima. Step 6
calls another procedure to search for one minimal edge MPF
passing through edge ri if the remaining rank RR(ri) > 0.
When there exists such a MPF, we have to test whether
Condition 2 is satisfied (Step 7). If yes, the MPF is added
into the chromosome and then the remaining edge ranks
recorded in the array RR have to be updated (Step 8).

FindingMinimalEdgeMPF () is a modified version
of Moore’s efficient breadth-first search algorithm for find-
ing a shortest path in a graph [10]. Due to the limit of space,
it is not given here. The interested reader may find the de-
tail in [11].

C1 C7C6C5C4C3C2

C7C6C5C4C3C2C1 C8
' '' ''' ''

a random cut-point

P1

P2

C1

C7C6C5

C4C3C2 C7C6C5

C4C3C2C1

C8

'

'

'

'

''

'' O1

O2

Figure 4. A single point crossover.

C1 C4C3C2 C7C6C5 C8
'' ''O1

C1 C4C3C2 C8C6
''

C1 C3 C7C65 C8
'' ''C

O1
1

O1
2

Figure 5. Two valid children from O1.

3.4. Mutation and crossover

Mutation and crossover are two commonly-used opera-
tors in GAs. It is worth noting that after an operation on
a chromosome, the MPFs in the chromosome must still be
able to coexist with each other in the line drawing.

The process of mutation makes the genes of a selected
chromosome undergo random changes with a small muta-
tion rate. The motivation behind it is to introduce a diversity
of solutions into the population. In our application of the
GA, mutation is performed by simply deleting some genes
(MPFs) in a chromosome with a small rate.

Crossover is the main operator in the GA. Its goal is to
mate good chromosomes to generate better offspring. With
a crossover rate, it operates on two selected chromosomes
by combining the genes of the two. We use a single point
crossover to produce two children O1 and O2 from two par-
ents P1 and P2, as shown in Fig. 4. However, the MPFs
in O1 or O2 may not be able to coexist in the same line
drawing. Let us take O1 as an example. Suppose each of
the three MPF pairs, C2 and C ′

5, C2 and C ′
7, and C4 and

C ′
7, cannot coexist in the drawing. To maintain valid chil-

dren, some MPFs must be deleted. Two valid children O1
1

and O2
1 from O1 are shown in Fig. 5, which are shorter and

have most compatible MPFs in O1. Similarly, we may ob-
tain two valid children O1

2 and O2
2 from O2.

It is common in GAs that two parents produce two chil-
dren in order to maintain the same population size. Here we
keep two best children out of O1

1 , O2
1 , O1

2 and O2
2 , which

can be seen from the hybrid GA given in the next section.

3.5. The hybrid GA

Combining the standard GA with the local search
scheme, we formulate the hybrid GA in Algorithm 2, where
MaxGeneration denotes the maximum generation the al-
gorithm will reach, and PopulationSize is an even in-
teger denoting the size of the population P (t). The local
search procedure Extension (Algorithm 1) is incorpo-

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

rated into the standard GA, always trying to add more faces
into chromosomes to make them fitter.

Algorithm 2. (Hybrid GA)

1. t ← 0
2. Initialize P (t) by calling Extension(x) with x = ∅

for each chromosome in P (t)
3. Calculate the fitness value of each chromosome in

P (t) using (8)
4. while t ≤ MaxGeneration do
5. begin
6. Rank the chromosomes in P (t) linearly based on

their fitness values
7. for i = 1 to PopulationSize/2 do
8. begin
9. Select two chromosomes j and k from P (t)

based on the ranking
10. Perform mutation on j and k with a mutation

rate, producing two chromosomes l and m

11. Perform single-point crossover on l and m
with a crossover rate, producing another two
chromosomes n and o

12. Delete incompatible MPFs in n and o,
producing four valid children n1, n2, o1 and o2

13. Call Extension to extend n1, n2, o1 and o2,
and keep the best extended two in O(t)

14. end
15. Form P (t + 1) by selecting PopulationSize/2

best chromosomes in P (t) and PopulationSize/2
best chromosomes in O(t)

16. t ← t + 1
17. end

4. Experimental results

A number of experiments have been conducted to
demonstrate that our hybrid GA can identify faces from
line drawings very efficiently and robustly. We also com-
pare the efficiency between the GA and the algorithm
in [7]. We do not compare with the algorithm in [6] be-
cause the algorithm in [7] is already much faster than it.
In what follows, LLA and HGA are short for the algo-
rithm in [7] and the hybrid GA, respectively.

All the algorithms are implemented using Visual C++,
running on a 1 GHz Pentium III PC. In HGA, the popula-
tion size, maximum generation, mutation rate and crossover
rate, are set to be 50, 15, 0.05 and 0.9, respectively, for all
the experiments.

The first set of line drawings for testing HGA come
from all the objects given in [6] and [7]. HGA finds the
same faces in each object as the other two algorithms, and
takes about 0.25 second each. It is not necessary to com-
pare the computational times between HGA and LLA on

Stairs 1
32 faces in Stairs 1

Stairs 2 Stairs 3 Stairs 4

Figure 6. Four stairs models.

Stairs 1 Stairs 4Stairs 3Stairs 2
Faces 32 36 38 39
Edges 90 102 108 114
MPFs 2561 8089 16428 48126

Memory in LLA > 6.5 10 6 > 6.5 10 7 > 2.6 10 8 > 2.3 10 9

Memory in HGA < 2.5 10 5 < 2.5 10 5 < 2.5 10 5 < 2.5 10 5

Time taken by LLA 9s 95s 1632s ?
Time taken by HGA 0.35s 0.43s 0.48s 0.50s

Table 1. Results for the four models in Fig. 6.

these objects with less than 30 faces because LLA is also
fast enough to handle them.

Next we show another set of objects each with more than
30 faces. In Fig. 6, four stairs models with increasing faces
are shown. The 32 faces in Stairs 1 found by HGA are also
shown. Table 1 summarizes the results for the four stairs.
It is obvious that the number of MPFs grows exponen-
tially with the number of edges, which causes both mem-
ory and computational time taken by LLA to increase expo-
nentially. Let us consider the memory requirement first. In
LLA (also in the algorithm in [6]), most memory consump-
tion is due to the generation of the matrix B = [bij]n×n

with n being the number of MPFs (see Definitions 1 and
2). When there are 48126 MPFs in Stairs 4, LLA needs at
least 48126 × 48126 � 2.3 × 109 basic memory units. In
HGA, however, the memory requirement does not depend
on the number of MPFs, but on the sizes of the two largest
arrays to store chromosomes in P (t) and O(t), which to-
gether need a memory of less than

2 × Population × Max Length Of A Chromosome ×
Max Length Of A Circuit.

In our experiments, the maximum lengths of a chromosome
and a circuit are less than 50. Therefore, P (t) and O(t) to-

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

Building
35 faces in Building

Sheets 30 faces in Sheets

Figure 7. Two objects and their faces found.

gether take less than 2.5 × 105 basic memory units.
The last two rows in Table 1 give the times (in seconds)

taken by the two algorithms. It is obvious that the time con-
sumed by LLA grows exponentially. We do not give the
time for LLA to deal with Stairs 4 because it did not fin-
ish its job after running for one day. On the contrary, we
are very happy with HGA. It is much more efficient and its
computational time increases approximately linearly with
the number of edges of the stairs models.

Two more objects in Fig. 7 are used to test HGA and
LLA. HGA takes 0.35 second and 0.45 second to deal with
them, respectively, while LLA has to spend 96 seconds and
137 seconds, which again demonstrates the significant bet-
ter performance of HGA over LLA.

GAs are a stochastic global optimization technique. It
is not guaranteed that a GA will find optimal solutions to
a problem. Actually, GAs return only nearly optimal solu-
tions in most applications to combinatorial problems [9].
The likelihood of some GA finding optimal solutions de-
pends on factors like how hard a problem is, how well the
GA is designed, and the parameters chosen in the GA. For
HGA, given the set of the parameters (population = 50,
maximum generation = 15, mutation rate = 0.05, crossover
rate = 0.9), it can find the optimal solutions in a very high
probability. For all the line drawings in the experiments (in-
cluding those in [6], [7]), we ran HGA on each object more
than 500 times with random initializations, and did not find
that HGA failed once. This fact indicates that HGA is not
only efficient but also robust.

5. Conclusions

A hybrid GA for finding faces from single 2D line draw-
ings has been presented. The faces identified from a line
drawing provide important information for the reconstruc-
tion of its 3D geometry. Our strategy to conquer the com-

binatorial explosion in face identification is to combine the
standard GA with a novel local search scheme. The former
is well known for its good global search ability; the latter
has high likelihood to find faces on a line drawing based on
the maximum edge ranks, face adjacency theorem, and min-
imal edge face phenomenon. From the experiments, it can
be seen that HGA finds the same faces as the previous two
algorithms [6], [7] do, but exhibits significantly better per-
formance for objects with faces > 30, both in computational
time and memory requirement. The experiments also show
that HGA is robust in finding optimal solutions.

Acknowledgments

The work described in this paper was fully supported by
a grant from the Research Grants Council of the Hong Kong
SAR. (Project no. AoE/E-01/99).

References

[1] T. Marill, “Emulating the Human Interpretation of Line-
Drawings as Three-Dimensional Objects,” Int’l J. Computer
Vision, vol. 6, no. 2, pp. 147–161, 1991.

[2] Y.G. Leclerc and M.A. Fischler, “An Optimization-Based
Approach to the Interpretation of Single Line Drawings as
3D Wire Frames,” Int’l J. Computer Vision, vol.9, no.2,
pp. 113–136, 1992.

[3] H. Lipson and M. Shpitalni, “Optimization-Based Recon-
struction of a 3D Object from a Single Freehand Line Draw-
ing,” Computer-Aided Design, vol. 28, no. 8, pp. 651–663,
1996.

[4] K. Sugihara, “A Necessary and Sufficient Condition for
a Picture to Represent a Polyhedral Scene,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 6, no. 5,
pp. 578–586, 1984.

[5] J. Liu, Y.T. Lee and W.-K. Cham, “Identifying Faces in a 2D
Line Drawing Representing a Manifold Object,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 24, no. 12,
pp. 1579–1593, 2002.

[6] M. Shpitalni and H. Lipson, “Identification of Faces in a
2D Line Drawing Projection of a Wireframe Object,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 18,
pp. 1000–1012, 1996.

[7] J. Liu and Y.T. Lee, “A Graph-Based Method for Face Iden-
tification from a Single 2D Line Drawing,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 10,
pp. 1106–1119, 2001.

[8] L. Chambers, Practical Handbook of Genetic Algorithms.
Boca Raton: CRC Press, 1995.

[9] M. Gen and R. Cheng, Genetic Algorithms and Engineering
Optimization. New York: John Wiley & Sons, 2000.

[10] G. Chartrand and O.R. Oellermann, Applied and Algorith-
mic Graph Theory. New York: McGraw-Hill, 1993.

[11] J. Liu, “Efficient Search of Faces from Complex Line Draw-
ings,” Technical Report, The Multimedia Lab, Dept. of IE,
The Chinese University of Hong Kong, 2003.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04)

1063-6919/04 $20.00 © 2004 IEEE

	footer1:

