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Abstract 
 

Relevance feedback (RF) schemes based on Support 
Vector Machine (SVM) have been widely used in content-
based image retrieval (CBIR). However, the performance 
of SVM based RF is often poor when the number of 
labeled feedback samples is small. In order to solve this 
problem, we propose a RF algorithm using the Random 
Subspace Method. The algorithm can overcome the 
classifier unstable and over-fitting problems that are 
common to the SVM based RF. Through extensive 
experiments on 17, 800 images, the proposed algorithm is 
shown to outperform existing algorithms significantly. 
 

1. Introduction 
 

Relevance feedback (RF) [1] is an important tool to 
improve the performance of content-based image retrieval 
(CBIR) [2]. Many RF methods have been developed in 
recent years. One approach [1] adjusts the weights of 
various features to adapt to the user’s perception. Another 
approach [3] estimates the density of the positive 
feedback samples. Discriminant learning has also been 
used as a feature selection method for RF [4]. These 
methods all have some limitations. The method in [1] is 
only heuristic based. The density estimation method [3] 
loses information contained in negative samples. The 
discriminant learning [4] often suffers from the matrix 
singular problem. 

Recently, classification-based RF [5-7] becomes a 
popular technique in CBIR and the Support Vector 
Machine (SVM) based RF (SVMRF) has shown 
promising results owing to its good generalization ability. 
However, when the amount of positive feedbacks is small, 
the performance of SVMRF becomes poor. This is mainly 
due to the following reasons. First, SVM classifier is 
unstable for small size training set, i.e. the optimal hyper-
plane of SVM is sensitive to the training samples when 
the size of the training set is small. Moreover, the size of 
the training set is much smaller than the dimension of the 
feature vector in RF, thus may cause the over fitting 
problem. Because of the existence of noise, some features 
can only discriminant the marked positive and negative 
feedbacks but cannot discriminant other relevant or 
irrelevant images in the database. Therefore, the learned 

SVM classifier cannot work well for the remaining 
images in the database. 

In order to overcome these problems, we aggregate 
several SVMs using the Random Subspace Method 
(RSM), one of the Classifier Committee Learning (CCL) 
[8-10] methods, for RF in CBIR. Since each classifier has 
its own unique ability to classify relevant and irrelevant 
samples, the CCL can pool a number of weak classifiers 
to improve the recognition performance. CCL works well 
when the original classifier is not stable, which is exactly 
the case for the SVM based RF. 
 

2. SVM in CBIR RF 
 

To better understand the proposed SVM based RF 
scheme, we first give a brief review of SVM. SVM [11] is 
an effective binary classification algorithm. Consider a 
linearly separable problem: 

1{( , )}N
i i ix y =

 and { }1, 1iy = + − ,                             (1) 
where ix  is an n-dimension vector and iy is the label of 
the class that the vector belongs to. SVM separates the 
two classes of points by a hyper-plane, 

0Tw x b+ = ,                                                      (2) 
where x is an input, w is the weight vector, and b is the 
bias. 

SVM finds parameters w and b for the optimal hyper-
plane to maximize the geometric margin 2 w , subject to 
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The solution is a Wolfe dual problem with iα : 
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In the dual format, the data points only appear in the 
inner product. To get a potentially better representation of 
the data, the data points are mapped into the Hilbert Inner 
Product space through a replacement: 

( ) ( ) ( , )i j i j i jKφ φ⋅ → ⋅ =x x x x x x ,                (5) 
where ( ).K is a kernel function. We then get the kernel 
version of the Wolfe dual problem: 
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Thus for a given kernel function, the SVM classifier is 
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( ) ( )( )sgnF f=x x ,                                 (7) 

where ( ) ( )
1

,
l

i i i
i

f y K bα
=

= +∑x x x  is the output of SVM.  

( )f x  can be used to measure the similarity [5,6] 
between a given pattern and the query. 

 
3. Ensemble SVMs by RSM for CBIR RF 
 

RSM [9] benefits from the bootstrapping and 
aggregation. Bootstrapping is based on random sampling 
with replacement on the training features. Because each 
weak classifier generated by bootstrapping is unique in 
terms of classification capability, the aggregated classifier 
may give better results than any individual classifiers. So 
RSM can be used to build a strong classifier with a set of 
weak classifiers, which are trained on different randomly 
sampled features. 

For SVM based RF, the constructed single SVM 
classifier is unstable. Moreover, over fitting happens if 
the training set is relatively small compared to the high 
dimensional feature vector. In order to avoid these 
problems, we can use RSM to sample the training feature 
to reduce the discrepancy between the training data size 
and the feature vector length. Using such a random 
sampling method, we construct a multiple number of 
SVMs free of the over fitting problem. We then combine 
these SVMs to construct a more powerful classifier 
solving the unstable problem by the majority voting rule 
(MVR). The RSM based SVM (RSMSVM) algorithm is 
described in Table 1.  
 

Table 1: Algorithm of RSMSVM. 

Input: feature set F , weak classifier I (SVM), integer T  
(number of generated classifiers), x  is the test sample. 
1. For 1=i  to T  { 
2.      =iF bootstrap feature from F . 
3.      ( )ii IC F=  
4.   } 
5. ( )*

: ( )
arg max 1

i Ci yy Y
C

=∈
= ∑

x
x . 

Output: classifier *C . 
 

For CBIR, the similarity measure is required. For a 
given pattern, we first utilize the MVR to recognize it as 
query relevant or irrelevant. Then we measure the 
dissimilarity between the pattern and the query using the 
output of the individual SVM classifier, which gives the 
same label as the MVR with the highest confidence (the 
absolute value of the output of the SVM). 

We now compare the computational complexity of the 
SVM and RSMSVM algorithms at the training and testing 
stages. From [11], the computational complexity to train a 
SVM is ( ) ( )3 2

s s s fO SVM O N N L N N L= + + , where sN  is the 

number of support vectors, fN  is feature dimension, and 
L  is the size of the training set. From the formula of the 
output of SVM, the number of the support vectors sN  
determines the computational complexity in the testing 
stage. We denote the computational complexity for a 
multiple and addition of two real values as ⊗  and ⊕ , 
respectively. Then the computation complexities of SVM 
and RSMSVM are given in Table 2. Because the size of 
the training set is very small compared to the database, 
the overall computational complexity is mainly 
determined by the testing stage. Because ~ r

f f fN T N≈  and 
r

s sN N≈ , where fT  is the number of RSM classifiers, r
fN  

and r
sN  are the number of features and support vectors of 

a RSM classifier, respectively. The computational 
complexities of SVM and RSMSVM are similar. 

 
Table 2: Comparison of computational complexity. 

 Training Testing 
SVM ( )O SVM  ( )s fN N⋅ ⋅ ⊗ + ⊕  

RSMSVM ( )fT O SVM⋅  ( )r r
f s fT N N⋅ ⋅ ⋅ ⊗ + ⊕

 
4. Experimental Results 
 

We compare our new algorithm with existing 
algorithms through experiments on 17, 800 images of 90 
concepts from the Corel Photo Gallery. Three main 
features, color, texture, and shape, are used to represent 
the corresponding image. For color, we select the color 
histogram [12] in HSV color space. Hue, Saturation, and 
Value are quantized into 8, 8, and 4 bins respectively. 
Texture is extracted by 3-level pyramidal wavelet 
transform (PWT) with Haar wavelet of the Y component 
in YCrCb color space. The mean value and standard 
deviation are calculated for the sub-bands at each 
decomposition level. Edge histogram [13] is also 
calculated on Y component in YCrCb. Edges are grouped 
into four classes, which are horizontal, 45 diagonal, 
vertical, and 135 diagonal. We combine the color, texture, 
and shape features into a feature vector (284 dim), and 
then we normalize it to a normal distribution. 

The experiments are simulated by the computer 
automatically. First, 300 queries are randomly selected 
from the data, and then RF is automatically done by 
computer as: the first 5 query relevant and irrelevant 
images are marked as positive and negative feedbacks in 
the top 48 images, respectively. Precision and Standard 
Deviation (SD) are used to evaluate the performance of a 
RF algorithm. Precision is the percentage of relevant 
images in the top N retrieved images. The precision curve 
is the averaged precision values of the 300 queries, and 
SD curve is the SD values of the 300 queries’ precision. 
The precision curve evaluates the effectiveness of a given 



algorithm and SD curve evaluates the robustness of the 
algorithm. In the precision and SD curves, the maximum 
feedback iteration is 6, with 0 feedback referring to the 
retrieval based on Euclidean distance measure without RF. 

We compare the proposed algorithm with the original 
SVM based RF [5], the constrained similarity measure 
SVM (CSM) based RF [7], and the biased discriminant 
analysis (BDA) based RF [4], which are all current state 
of the art. We chose the Gaussian kernel ( )

2

,K e ρ− −= x yx y  
with 1=ρ  (the default value in the OSU-SVM [14] 
MatLabTM toolbox) for all algorithms. The performances 
of all the SVM algorithms are stable over a range of ρ  
values. 
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Figure 1. Compare the original SVM method with each 
individual RSM generated SVM classifier. 

 
Experimental results are summarized in Fig. 1 and 2. In 

Fig. 1, we compare the original SVM method with each 
individual RSM generated SVM classifier. We can see 
that even before multiple classifier integration, each RSM 
generated classifier with short feature vector is already 
better than the original classifier. In Fig. 2 (a-d), we test 
the aggregation performances using different number of 
weak SVM classifiers. The results show that 5 weak 
SVMs is already enough for CBIR RF. Further increasing 
the number of classifiers to be aggregated does not 
improve the performance. Finally, we compare our 

algorithm with existing methods in Fig. 2 (e-h). For 
RSMSVM, we randomly sample 30 features from the 
original feature vector. When we compare the RSMSVM 
with SVM, CSM, and BDA, we select 5 weak SVMs, and 
the computational complexity of RSMSVM is similar to 
SVM and CSM based RF. The results clearly show the 
superiority of the new algorithm over existing state-of-
the-art algorithms. 
 
5. Conclusion 
 

In this paper, we constructed a SVM based RF model 
using the random subspace method. The proposed 
algorithm can overcome the classifier unstable and over 
fitting problems effectively. The new algorithm shows 
significant improvement on both the effectiveness and 
robustness of the relevance feedback without increasing 
the computational complexity. This is demonstrated 
through extensive experiments on the Corel Photo 
database. 
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(g)                                                                                                                           (h) 

Figure 2. (a-d) test the aggregation performance with different number of weak SVM classifiers. (a,b) show precision curves. (c,d) are 
the corresponding SD curves. (e,f) compare the precision curves for different RF algorithms. (g,h) are the corresponding SD curves. 
 


