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Abstract—Single 2D line drawing is a straightforward method to illustrate 3D objects. The faces of an object depicted by a line drawing

give very useful information for the reconstruction of its 3D geometry. Two recently proposed methods for face identification from line

drawings are based on two steps: finding a set of circuits that may be faces and searching for real faces from the set according to some

criteria. The two steps, however, involve two combinatorial problems. The number of the circuits generated in the first step grows

exponentially with the number of edges of a line drawing. These circuits are then used as the input to the second combinatorial search

step. When dealing with objects having more faces, the combinatorial explosion prevents these methods from finding solutions within

feasible time. This paper proposes a new method to tackle the face identification problem by a variable-length genetic algorithm with a

novel heuristic and geometric constraints incorporated for local search. The hybrid GA solves the two combinatorial problems

simultaneously. Experimental results show that our algorithm can find the faces of a line drawing having more than 30 faces much

more efficiently. In addition, simulated annealing for solving the face identification problem is also implemented for comparison.

Index Terms—Three-dimensional object reconstruction, face identification, genetic algorithms, line drawing, minimal edge face

phenomenon, simulated annealing.
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1 INTRODUCTION

IN computer vision, an important research area is to

develop algorithms that can understand a single 2D line

drawing representing an object and reconstruct the

3D geometry of the object. This area belongs to the topics

shape from line drawings and shape from contours. One

application of this research is in CAD, where tools are
highly desirable that can convert a design sketch into a

3D model directly. An object consists of faces. If the face

configuration of an object is known, the complexity of the

3D reconstruction will be reduced significantly. Roughly

speaking, the conversion problem can be divided into two

subproblems: face identification and 3D geometry recon-

struction. In this paper, we study the face identification

problem only. For the 3D geometry reconstruction, the
reader is referred to references [1], [2], [3], [4], [5], [6], [7].

A 2D line drawing in this paper is defined as the projection

of a wireframe object where all the edges (including

silhouettes) and vertices of the object are visible and the

drawing can be represented by a single connected edge-

vertex graph. A line drawingwith hidden lines visiblemakes

it possible to reconstruct its complete 3Dmodel. Fig. 1 showsa

line drawing of a solid stair model together with its

10 individual faces. Note that crossing points of two or more

edges are not vertices and cannot be used to form faces. If the

three edges e1, e2, and e3 (hidden lines) are not shown, the

stair model is considered as a sheet object with seven faces.

Great effort has been made in the interpretation of line
drawings for the past two decades (see Section 3). The recent
work presented in [8] and [9] can handle a larger range of
objects than others in face identification. Both methods
include two steps: finding a set of circuits that may be
potential faces and searching for real faces from this set.
Given a set of circuits, Shpitalni andLipson used a tree search
scheme for finding the real faces [8], while Liu and Lee
developed a maximum weight clique finding algorithm for
the samegoal [9]. It needs to be emphasized that the two steps
in each of the two methods correspond to two combinatorial
problems. It is well-known that there have been no efficient
algorithms for general tree search and maximum weight
clique problems. The problems become even more difficult
owing to the fact that their inputs are circuits of a line
drawing, the number of which is generally exponential in the
number of edges of the drawing [10]. In Section 5, it can be
seen that the combinatorial explosion prevents the two
methods from handling a line drawing having many faces
(> 35) within feasible time.

Genetic algorithms (GAs) are a class of probabilistic
search algorithms that emulate natural evolutionary pro-
cess. GAs, if well designed, can often outperform traditional
optimization methods. Many successful applications of GAs
to various problems have been published in the literature
[11], [12], [13], [14]. In this paper, we design an efficient GA
with variable-length chromosomes to solve the face
identification problem. Geometric constraints on circuits
of a line drawing and a heuristic called minimal edge face
phenomenon are developed and incorporated into the
operations of the GA. The proposed hybrid GA simulta-
neously tackles the two combinatorial problems involved in
the previous methods [8], [9]. Our experiments show that
the new algorithm reduces the computational complexity of
face identification from exponential to linear with respect to
the number of edges in line drawings.
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The rest of this paper is organized as follows: In Section 2,
webrieflydescribe the technical terms thatwill beused in this
paper. The related work on line drawing interpretation is
described in Section 3. The proposed hybrid GA for the face
identification is presented in Section 4. Section 5 shows
experimental results and comparisons of computational
times andmemory requirements between the new algorithm
and the previous ones. In Section 6, we implement a
simulated annealing algorithm and compare it with the GA.
Finally, the conclusions are given in Section 7.

2 TERMINOLOGY

For easier understanding of the technical content of this
paper, we first summarize several terms that will be used in
the rest of this paper. More detailed descriptions for the
graph theory and topology terms can be found in [15], [16].

. Graph. A graph is defined to be a set of points
(vertices) that are interconnected by a set of lines
(edges). A graph G may be written as G ¼ ðV ;EÞ
with V and E being its vertex set and edge set,
respectively. The numbers of vertices and edges are
denoted by jV j and jEj, respectively.

. kkkk-connected. Agraph is called k-connected if at least k
of its vertices and the edges adjacent to themmust be
removed to make the remaining graph disconnected.

. Manifold. A manifold, or more rigorously 2-mani-
fold, is a solid where every point on its surface has a
neighborhood topologically equivalent to an open
disk in the 2D Euclidean space.

. Genus. The genus of a surface can be considered as
the number of holes that pass through it completely.
The genus of a graph G is the smallest genus of a
surface on which G can be embedded.

. Circuit. A circuit is a closed trail in a graph where all
its vertices except the end vertices are distinct.

. Potential face. A potential face is a circuit without
edges intersecting.

. Minimal potential face (MPF).AnMPF is a potential
face without a smooth (noncreased) edge (in the
drawing) connecting two of its nonadjacent vertices.

. Degree. The degree of a vertex v, written dðvÞ, is the
number of edges adjacent to v.

. Vertex rank. The rank of a vertex v, written RðvÞ,
denotes the number of circuits with boundaries
passing through v. The boundary of a circuit is the
set of vertices and edges of the circuit.

. Edge rank. The rank of an edge e, written RðeÞ,
denotes the number of circuits with boundaries
passing through e.

3 RELATED WORK

We may divide the related work on interpretation of line
drawings into three areas: line labeling, 3D reconstruction
from multiple views of wireframe models, and face identi-
fication and3Dreconstruction fromsingle linedrawingswith
hidden lines visible. Methods for line labeling focus on
finding a set of consistent labels from a line drawing without
hidden lines in order to test if it is legal and/or on
3D reconstruction based on such a labeled line drawing
[17], [18], [19], [20], [21], [22], [23]. Approaches in the second
area try to reconstruct a 3D CAD model from its multiple
(three, in general) orthographic projections [24], [25], [26].
More information can be found from three orthographic
views for the reconstruction task than from a single projected
view,which is thepremiseof the thirdarea.Ourworkbelongs
to the third area. We especially focus on face identification
from single line drawings with hidden lines visible.

The earliest work in face identification was done by
Markowsky and Wesley [27]. Their topologically-driven
algorithm can handle only wireframes with straight lines
and planar faces and requires the 3D coordinates of vertices
to calculate the normals of planes.

Hanrahan [28] and Dutton and Brigham [29] used purely
topologicalmethods to find the faces of adrawing.Adrawing
(graph) is embedded in the plane with a planar embedding
algorithm[15]. The resulting regions represent the faces of the
corresponding object. Their methods are suitable only for
objects of genus 0whosedrawings are 3-connected, due to the
requirement of a unique planar embedding for a drawing.
Another approach presented by Ganter and Uicker [30] also
uses concepts from graph theory. It is based on the spanning
tree of the graph of a drawing. The problem with this
approach is that it cannot handle objects with holes. Hojnicki
and White [31] improved Ganter and Uicker’s algorithm by
employing better cycle reduction schemes. However, if the
number of faces of an object of genus > 0 is unknown in
advance, their algorithms still fail when dealing with it.

Agarwal and Waggenspack’s method [32] employs a
divide-and-conquer strategy to remove stars (tetrahedra,
N-sided pyramids, or multiply connected stars) from a
drawing. The faces of the drawing are obtained by
combining triangles that are created from the stars. Based
on a number of properties implied in line drawings
representing manifold objects, Liu et al. [33] used a tree
search scheme to find the faces of manifolds.

The abovementionedmethods for face identification were
designed basically for dealing with solid objects, compared
with which the following two methods can handle a larger
range of objects (e.g., the manifold shown in Fig. 1 and the
nonmanifold in Fig. 2a). Because these twomethods aremost
related to the work in this paper, we give more detailed
descriptions of them in the following sections.

3.1 Shpitalni and Lipson’s Method

Shpitalni and Lipson’s face identification method [8] is built
upon an observation on face configuration and a basic
theorem called the face adjacency theorem. The observation,
serving as the criterion for the problem, is that, given a line
drawing, human beings tend to choose a face configuration
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Fig. 1. A line drawing with 10 faces.



in which there are as many edges as possible. The face

adjacency theorem states that two adjacent planar faces may
coexist in the same object if and only if their common edges

are collinear. This theorem can be extended to allow
nonplanar, smooth faces. The extended theorem states that
two adjacent smooth faces may coexist in the same object if

and only if their common edges are smooth. The method
can be formulated as the following optimization problem:

Definition 1. Given nMPFs (minimal potential faces) generated
from a line drawing, the upper bounds (maximum ranks)RþðeÞ
and RþðvÞ of all the edges and vertices of the drawing, and a
binary matrix B ¼ ½bij�n�n (obtained according to the face
adjacency theorem) with bij ¼ 1ð0Þ denoting that faces i and j
can (cannot) coexist in the same object, the face identification
problem is to search for subsets xs of the MPFs such that1

minimize : gðxÞ ¼
X
½RþðeÞ �RðeÞ� þ

X
½RþðvÞ �RðvÞ� ð1Þ

subject to : RðeÞ � RþðeÞ; 8e ð2Þ
RðvÞ � RþðvÞ; 8v ð3Þ
bij ¼ 1; i 6¼ j; i; j 2 x; ð4Þ

where RðeÞ and RðvÞ are the respective actual edge and vertex
ranks corresponding to x.

In this formulation, (1) implies the criterion and (4)
reflects the geometric constraint imposed by the face
adjacency theorem. Shpitalni and Lipson calculated the
maximum ranks RþðeÞ and RþðvÞ from a line drawing
through an iterative procedure.

The ranks play an important role in Shpitalni and Lipson’s
method. Since they are also used in the implementation of our
GA,we discuss them inmore detail. Themaximum edge and
vertex ranks impose twoof the three constraints. Based on the
face adjacency theorem, when no two edges meeting at a
vertex are collinear, Shpitalni and Lipson gave the following
three inequalities and an equation for finding the maximum
edge and vertex ranks of a line drawing:

RþðvÞ � fdðvÞ½dðvÞ � 1�g=2 ð5Þ
RþðeÞ � minfdðv1Þ; dðv2Þg � 1 ð6Þ
RþðvÞ ¼

�
½
X

RþðeÞ�=2
�
; for all edges meeting at vertex v ð7Þ

RþðeÞ � minfRþðv1Þ; Rþðv2Þg; ð8Þ

wherev1 andv2 are twoend-verticesofedgee in (6)and(8);bac
denotesthelargest integer� a; all theranksare integers.These
relations are derived from the local analysis of a general edge
and its two end-vertices. Because a face boundary passing
throughvertexvmustpassthroughtwoedgesmeetingatv, the
largestnumberof facespassing through v cannot exceedC2

dðvÞ,
the possible combinations of edge pairs at v, which leads to
(5). Similarly, since a face passing through edge e also passes
throughoneof theotheredgesmeetingat its end-verticesv1 or
v2, we haveRþðeÞ � dðv1Þ � 1 andRþðeÞ � dðv2Þ � 1; thus (6)
follows. After the ranks of all the edges meeting at vertex v
havebeenobtained, (7) followsfromthefact thatafacepassing
through v also passes through two of these edges. Because a
face passing through an edge e also passes through its two
end-vertices v1 and v2, we have RþðeÞ � Rþðv1Þ and
RþðeÞ � Rþðv2Þ, which lead to (8). Shpitalni and Lipson used
(5) and (6) to compute the preliminary estimation of the
maximumedge and vertex ranks and then applied (7) and (8)
iteratively until all the ranks satisfy (5)-(8).

For better understanding of the ranks, potential faces
and MPFs, Fig. 2 shows a line drawing having three
faces. In this simple example, there are only five potential
faces, among which the last four are MPFs, as shown in
Fig. 2c. Circuit ð1; 2; 5; 7; 3; 4; 1Þ is not an MPF because
there exists an edge connecting vertices 2 and 3 in the
drawing. The last three circuits are real faces.

When two edges meeting at a vertex are collinear in a
line drawing, two or more faces may share the two edges in
a smooth entity chain. For example, for the smooth entity
chain ð1; 2; 3; 4Þ in Fig. 3, there are three faces passing
through edge ð2; 3Þ. To accommodate this case, Shpitalni
and Lipson extended (6) to

RþðeÞ � min
X

dðvLÞ � 2nL;
X

dðvRÞ � 2nR

n o
þ 1; ð9Þ

where nL (nR) is the number of vertices on the left (right) of
edge e, and vL (vR) denote all the nL (nR) vertices along the
smooth entity chain on the left (right) of edge e. Then, (9) is
used to replace (6) to find the maximum ranks in their
iterative procedure.

3.2 Liu and Lee’s Method

In [9], Liu and Lee used the same criterion and face
adjacency theorem as those in [8] to formulate the problem.
They indicated that the maximum ranks of a line drawing
can be calculated by

RþðeÞ ¼ minfdðv1Þ; dðv2Þg � 1 ð10Þ

and (7). When there are smooth entity chains in a line
drawing, (10) is replaced by
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1. In [8], Shpitalni and Lipson presented the objective function in this

form gðxÞ ¼
P
jRþðeÞ �RðeÞj þ

P
jRþðvÞ �RðvÞj: The two absolute signs

are removed in (1) because of the two constraints in (2) and (3).

Fig. 3. A smooth entity chain ð1; 2; 3; 4Þ where three faces pass through
edge ð2; 3Þ.

Fig. 2. (a) A 3-face drawing with its maximum ranks shown where
RþðvÞs are denoted by underlined numbers and RþðeÞs by the other
numbers. (b) The same drawing with vertices labeled. (c) The potential
faces of the drawing with the last four being MPFs.



RþðeÞ ¼ min
X

dðvLÞ � 2nL;
X

dðvRÞ � 2nR

n o
þ 1: ð11Þ

We will use (10) and (11) to compute the maximum edge
ranks of a line drawing in the GA implementation. The face
identification in [9] is formulated as follows:

Definition 2. LetwðiÞ be the number of edges of a face i. Given an
edge-vertex graph of a line drawing and the set, denoted by
SMPF , of the MPFs generated from the graph, the objective of
face identification is to find all the sets x1; x2; . . . ; xs, where s is
the number of sets and xk � SMPF , 1 � k � s, such that, for
every xk, the sum ofwðiÞ, i 2 xk, is maximal and the faces in xk

satisfy the face adjacency theorem. In short, the problem is:

maximize : fðxÞ ¼
X
i2x

wðiÞ; x � SMPF ð12Þ

subject to : bij ¼ 1; i 6¼ j; i; j 2 x: ð13Þ

The two formulations in Definitions 1 and 2 are proven to
be equivalent in [9]. Based on Definition 2, Liu and Lee
developed a much faster algorithm to find the faces in a
drawing.

3.3 Combinatorial Explosion Problem

Each of the two methods in [8] and [9] involves two
combinatorial problems. Shpitalni and Lipson generated
the MPFs by a circuit space approach and used the
A* algorithm to search for the optimal solutions (see
Definition 1) on a tree constructed by the MPFs. Liu and Lee
employedadepth-first search algorithm to find theMPFs and
developed a maximum weight clique finding algorithm to
solve the problem in Definition 2.

In general, the number of circuits in a drawing is
exponential in the number of edges [10]. For example, the
simple 3-step stairs shown in Fig. 1 presents 312 circuits. If the
stairs are expanded by only one more step, the number of
circuits will increase to 1,114! Although usually only a small
fraction of the circuits are MPFs, the number of MPFs still
grows exponentially with the number of edges of a line
drawing.What isworse is that these exponentially-increasing
MPFs are the input of the second combinatorial search
algorithms for both methods. There are no known efficient
algorithms for general tree search and maximum weight
clique problems. Our experiments show that neither method
works for line drawings with more than 35 faces within
feasible time.

4 A HYBRID GA FOR FACE IDENTIFICATION

In this section, we develop a GA with variable-length
chromosomes and a local search heuristic for the face
identification. Incorporated into the local search algorithm
are the maximum ranks, geometric constraints imposed by
the face adjacency theorem, and a novel heuristic called
minimal edge face phenomenon. The hybrid GA is designed
to find solutions by direct search on a line drawing.

4.1 Outline of Standard GAs

Standard GAs generally have these five basic compo-
nents [13]:

1. a genetic representation of solutions to a problem,
2. a scheme to create an initial population of solutions,
3. a fitness function to evaluate how good a solution is,

4. genetic operators used to generate offspring during
reproduction, and

5. parameters of GAs.

A GA searches some solution space by maintaining a
population P ðtÞ of chromosomes in each generation t. A
solution is encoded into a chromosome. The main advantage
of maintaining a population is that, with many different
solutions available, the search has a greater chance of finding
global optima. The overall quality (fitness) of the solutions is
improved generation after generation. In each generation,
some individuals are selected to undergo stochastic trans-
formations through genetic operators to create new indivi-
duals called offspring,OðtÞ. Based on survival of the fittest, the
better an individual fits its environment, the greater is the
likelihood of it being selected. Two commonly used
operators are crossover and mutation [14]. A new generation
is formed by the selection of fitter individuals from P ðtÞ and
OðtÞ. It is expected that the GA converges to the best
solutions after a number of generations. The standard GA is
summarized in Algorithm 1.

Algorithm 1. (Standard GA [13])

1. t 1
2. Initialize P ðtÞ randomly
3. Evaluate P ðtÞ
4. repeat
5. Select individuals from P ðtÞ
6. Perform mutation and crossover on the selected

individuals to generate OðtÞ
7. Form P ðtþ 1Þ from P ðtÞ and OðtÞ
8. t tþ 1
9. until the termination condition is satisfied

The framework of the standard GA is rather general. A
simple GA, however, does not usually give satisfactory
results for a difficult optimization problem. In the follow-
ing, we will design a GA to meet the nature of the face
identification problem and to solve it efficiently.

4.2 Genetic Representation and Fitness Function

The first step to designing a GA is to encode a solution into a
chromosome. A chromosome consists of a number of genes.
For the face identification, we use a gene to represent an
MPF. The gene stores the number of vertices and the ordered
vertex labels of the MPF. Unlike fixed-length chromosomes
in most GAs, here the length of a chromosome is variable
since the number of the faces of an object is unknown in
advance. Fig. 4 shows a chromosome having m genes
(MPFs) at some generation.

Given a line drawing with all the edges visible, human
beings tend to choose a face configuration in which there are
asmanyedgesaspossible. This is the criterion forour solution
to the face identification problem (which is also the criterion
in Shpitalni and Lipson’s and Liu and Lee’s methods [8], [9]).
The MPFs kept in a chromosome give a possible solution to
the problem. Therefore, we define a fitness function to
evaluate how fit a chromosome is as follows:
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Fig. 4. A chromosome having m genes (MPFs).



Definition 3. The fitness of a chromosome k is evaluated by

fkðxÞ ¼
X
i2x

wðiÞ; ð14Þ

where x is the set of compatible MPFs currently stored in the
chromosome, and wðiÞ denotes the number of edges of a MPF i.

Here, maximizing fkðxÞ implies the criterion and the
term compatible imposes a constraint on the MPFs. Ob-
viously, the more MPFs are added into a chromosome, the
higher its fitness is. However, whether or not a new MPF
can be added into the chromosome is determined by the
geometric constraint, the face adjacency theorem. In other
words, all the MPFs in a chromosome must be able to
coexist in the same object. We call these MPFs compatible.

The goal of the GA is to evolve chromosomes to be fittest
(with the highest fitness value). Comparing Definitions 1, 2,
and 3, it is not difficult to see that both the objectives and
constraints of them are the same. In Definition 3, the term
compatible implies the same constraint as that in (13). These
equivalentbutdifferent formulations lead todifferentways to
solve the face identification problem with very different
efficiency.

We need MPFs to form chromosomes. From the
discussion in Section 3.3, it has been known that the
number of MPFs increases exponentially with the number
of edges in a line drawing. Therefore, we do not want to
generate all the MPFs in a drawing before the GA runs.
Instead, we design the GA to have a local search operation
to find the MPFs that are most likely to be faces directly
from the drawing.

4.3 Minimal Edge Face Phenomenon

A face of an object corresponds to a circuit constructed by
some edges in a line drawing. For an edge of a line drawing
with all the vertices of degree> 1,we can always find a circuit
passing through the edge and having fewest edges. Such a
circuit is called a minimal edge circuit. Through extensive
observation,we have found that it is very likely for aminimal
edge circuit to stand for a face. Among all the 1,772 edges of
the line drawings given in the experiments in this paper and
in the twopapers by Shpitalni andLipson [8] andLiu andLee
[9], there are only 75 edges, passing through which the
minimal edge circuits are not faces. For these examples, the
percentage of aminimal edge circuit being a face is as high as
95.7 percent. We call this the minimal edge face phenomenon.

Consider the edge ð2; 3Þ of the line drawing shown in
Fig. 2b. There are two minimal edge circuits, ð2; 1; 4; 3; 2Þ
and ð2; 5; 7; 3; 2Þ, passing through it. These two circuits
represent two faces. In fact, this phenomenon applies to all
the edges of the line drawings in Figs. 1, 2, and 3. However,
not all such circuits are faces of an object. An example can be
seen in the drawing shown in Fig. 5 depicting a block with a
hole passing through it. From edge ð3; 4Þ, we can find a
minimal edge circuit ð3; 2; 1; 6; 5; 4; 3Þ in the drawing, but it
is not a face. Is it possible to find all the faces in any drawing
simply by searching among minimal edge circuits? The
answer is no, since not all faces are minimal edge circuits.
For example, the two faces each with eight edges in Fig. 1
cannot be found by this approach, neither can the face
ð1; 7; 8; 9; 10; 4; 5; 6; 1Þ in Fig. 5.

Although there are exceptions, the minimal edge face
phenomenon can apply to most cases. This heuristic leads

to a very effective local search scheme. Together with the
GA, it efficiently solves the two combinatorial explosion
problems involved in the previous methods. This local
search scheme is described in the next section.

4.4 A Local Search Scheme

Enumerating all the circuits in a drawing ensures that all
the faces can be explored. However, doing this will lead to
the combinatorial explosion which is what we try to avoid.
In order for the GA to form its chromosomes with higher
and higher fitness values, we propose a local search scheme
to assist the GA’s exploration on a line drawing.

Given a set of MPFs stored in a chromosome, the local
search scheme tries to extend the chromosome by adding
into it as many MPFs as possible. However, a new MPF, if
added into the chromosome, has to be compatible with all
the existing MPFs in it. Thus, the following two conditions
will be used in the local search algorithm.

Condition 1. The new MPF does not cause the rank of any
edge e in the line drawing to exceed the maximum edge
rank RþðeÞ.

Condition 2. It can coexist in the line drawing with all the
MPFs stored currently in the chromosome.

Both of the conditions are geometric constraints for the
new MPF to be compatible with all the other MPFs. The first
condition requires that the edge ranks obtained from the
group of MPFs should not exceed their corresponding
maximum edge ranks. The second condition comes from
the face adjacency theorem.

It should be emphasized that Condition 2 implies
Condition 1, which was proven by Liu and Lee in [9]. The
use of both is for the purpose of making the search algorithm
more efficient. Given a line drawing, the maximum edge
ranks RþðeÞ can be calculated conveniently by (10) and (11)
and be used directly during the local search for MPFs, while
Condition 2 is tested after an MPF has been found.

In Condition 1, we consider only the maximum edge
ranks RþðeÞ, ignoring the maximum vertex ranks RþðvÞ. In
Definition 1, both edge and vertex ranks are used. At first
glance, it seems that if both are used, the search algorithm
would be more efficient with one more constraint. How-
ever, the following theorem shows that if all the RþðeÞ are
not exceeded by the edge ranks obtained from a set of
circuits, all the RþðvÞ will not be exceeded either by the
vertex ranks from the same set. Thus, testing whether a
maximum vertex rank is exceeded is redundant. It only
reduces the efficiency of the algorithm if used.

Theorem 1. Given a set x of circuits in a line drawing. If the
circuits in x satisfyRðeÞ � RþðeÞ; 8e; thenRðvÞ � RþðvÞ; 8v.
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Fig. 5. A block with a hole, where hidden edges are shown in dashed
lines for easier observation. The circuit ð3; 2; 1; 6; 5; 4; 3Þ is not a face.



Proof. As shown in Fig. 6, let all the edges meeting at a
vertex v be e1; e2; . . . ; en. As mentioned in Section 3.2, the
maximum vertex rank can be obtained by

RþðvÞ ¼
�
1

2

Xn
i¼1

RþðeiÞ
�
: ð15Þ

Recall that bac denotes the largest integer � a. A circuit

in x passing through v also passes through two of these

edges. Thus, we have 2RðvÞ ¼
Pn

i¼1 RðeiÞ, which leads to

2RðvÞ �
Xn
i¼1

RþðeiÞ: ð16Þ

If
Pn

i¼1 R
þðeiÞ is even, then, from (15), 2RþðvÞ ¼Pn

i¼1 R
þðeiÞ. Hence, RðvÞ � RþðvÞ. If

Pn
i¼1 R

þðeiÞ is odd,
again from (15), 2RþðvÞ ¼

Pn
i¼1 R

þðeiÞ � 1. Since 2RðvÞ is
even, we have, from (16), that 2RðvÞ �

Pn
i¼1 R

þðeiÞ � 1.

Thus,RðvÞ � RþðvÞ. tu
Let us see an example of how edge ranks are used.

Consider the drawing shown in Fig. 2b and the MPFs in
Fig. 2c (the last four circuits). Suppose a chromosome now
contains two MPFs C1 ¼ ð1; 2; 3; 4; 5Þ and C2 ¼ ð2; 5; 7; 3; 2Þ.
If a newMPF C3 ¼ ð1; 2; 5; 6; 1Þ is found, we can verify that it
satisfies the two conditions. For example, for edge
ð2; 5Þ ¼ e1, its rank Rðe1Þ ¼ 2 satisfies Rðe1Þ � Rþðe1Þ ¼ 2.
However, if the new MPF is C4 ¼ ð1; 6; 5; 7; 3; 4; 1Þ, we will
find that many edge ranks obtained by C1, C2, and C4

exceed their upper bounds. For example, for edge
ð1; 4Þ ¼ e2, we have Rðe2Þ ¼ 2 > Rþðe2Þ ¼ 1. In this case,
C4 cannot be added into the chromosome.

Now, we discuss how to search for MPFs in order to fill a
chromosome. We define a new term first, which will be
used in Algorithm 2.

Definition 4. Given a set x of MPFs currently stored in a

chromosome, RRðeÞ ¼ RþðeÞ �RðeÞ is called the remaining

edge rankof anedgee,whereRðeÞ is obtained fromtheMPFs inx.

When x ¼ ;, all the remaining edge ranks are equal to
their corresponding maximum edge ranks. In this case, any
MPF is allowed to appear in the chromosome. For an edge e,
when RRðeÞ ¼ 0, no new MPF can pass through this edge.

A new MPF is searched from a line drawing based on

both the minimal edge face phenomenon and the remaining

edge ranks. This local search strategy, when combined with

the GA, forms an efficient and effective solution to the face

identification problem. Algorithm 2 describes the pseudo-

code of the local search algorithm.

Algorithm 2. (Extending a chromosome)

[To add more minimal edge MPFs into the set x of MPFs

currently stored in the chromosome by searching on the line

drawing G ¼ ðV ;EÞ with the edges numbered from 1 to jEj,
given the remaining edge ranks, RRðeÞ; e ¼ 1; 2; . . . jEj.]

1. procedure ExtensionðxÞ
2. Generate a random permutation ðr1; r2; . . . ; rjEjÞ,

where ri 6¼ rj for i 6¼ j, and ri; rj; i; j 2 f1; 2; . . . ; jEjg
3. for i ¼ 1 to jEj do
4. if RRðriÞ > 0 then
5. begin
6. Call FindingMinimalEdgeMPF ðriÞ
7. if there exists a new MPF and it can coexist

with all the MPFs stored currently in the
chromosome then

8. Add it to x and update RR
9. end

In the algorithm, the search for more MPFs is done by
examining the edges one by one, but not in some fixed edge
order. Instead, the order is randomly generated in Step 2
when the procedure is called each time. The goal is to
reduce the risk for the algorithm to get trapped in local
maxima. Step 6 calls another procedure to search for one
MPF passing through edge ri if the remaining rank
RRðriÞ > 0. When there exists such an MPF, we have to
test whether Condition 2 is satisfied (Step 7). If yes, the MPF
is added into the chromosome and the remaining edge
ranks recorded in the array RR must be updated (Step 8).

FindingMinimalEdgeMPF ðÞ is a modified version of
Moore’s efficient breadth-first search algorithm for finding
a shortest path in a graph [15]. Given an edge e, it searches
for a MPF passing through e and having minimal edges,
which reflects the idea of the minimal edge face phenom-
enon. The detail and explanation of this algorithm can be
found in [34].

4.5 Mutation and Crossover

In this section, we will discuss how to incorporate the local
search algorithm into the standard GA. Mutation and
crossover are two commonly used operators in GAs. It is
worth noting that, after an operation on a chromosome, the
MPFs in the chromosome must still be able to coexist with
each other in the line drawing.

The process of mutation makes the genes of a selected
chromosome undergo random changes with a small
mutation rate. The motivation behind it is to introduce a
diversity of solutions into the population. In our application
of the GA, mutation is performed by simply deleting some
genes (MPFs) in a chromosome with a small rate.

Crossover is the main operator in the GA. Its goal is to
mate good chromosomes to generate better offspring. With a
crossover rate, it operates on two selected chromosomes by
combining the genes of the two. We use a single point
crossover to produce two children, O1 and O2, from two
parents, P1 and P2, as shown in Fig. 7a. However, the MPFs
in O1 or O2 may not be able to coexist in the same line
drawing. Let us take O1 as an example. Suppose each of the
threeMPF pairs,C2 andC05,C2 andC07, andC4 andC07, cannot
coexist in the drawing. To maintain valid children, some
MPFs must be deleted. Two valid children O1

1 and O2
1 from

O1 are shown in Fig. 7b which are shorter and have most
compatible MPFs in O1. Similarly, we may obtain two valid
children O1

2 and O2
2 from O2.

It is common inGAs that twoparentsproduce twochildren
in order to maintain the same population size. Here, we keep
the two best children out of O1

1, O
2
1, O

1
2, and O2

2. From the
hybridGAgivenin thenextsection, it canbeseenthat, inorder
to obtain fittest chromosomes, we always try to extend every
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chromosome so that it contains as many MPFs as possible,
with the help of the local search algorithm. Therefore, before
evaluating O1

1, O
2
1, O

1
2, and O2

2, we extend each of them by
calling the procedure Extension listed in Algorithm 2. Then,
the two extended children with the highest fitness values
remain and the other two are discarded.

4.6 The Hybrid GA

Combining the standard GA with our local search scheme,
we formulate the hybrid GA in Algorithm 3, where
MaxGeneration denotes the maximum generation the
algorithm will reach and PopulationSize is an even integer
denoting the size of the population P ðtÞ. The local search
procedure Extension (Algorithm 2) is incorporated into the
standard GA, always trying to add more faces into
chromosomes to make them fitter.

Algorithm 3. (Hybrid GA)

1. t 1
2. Initialize P ðtÞ by calling ExtensionðxÞ with x ¼ ; for

each chromosome in P ðtÞ
3. Calculate the fitness value of each chromosome in

P ðtÞ
4. while t �MaxGeneration do
5. begin
6. Rank the chromosomes in P ðtÞ linearly based on

their fitness values
7. for i ¼ 1 to PopulationSize=2 do
8. begin
9. Select two chromosomes P 01 and P 02 from

P ðtÞ based on the ranking
10. Perform mutation on P 01 and P 02 with a

mutation rate, producing two
chromosomes P1 and P2

11. Perform single-point crossover on P1 and
P2 with a crossover rate, producing another
two chromosomes O1 and O2

12. Delete incompatible MPFs in O1 and O2,
producing four valid children O1

1, O
2
1, O

1
2,

and O2
2

13. Call Extension to extend O1
1, O

2
1, O

1
2, and

O2
2 and keep the best two in OðtÞ

14. end
15. Form P ðtþ 1Þ by keeping PopulationSize=2 best

chromosomes in P ðtÞ and PopulationSize=2 best
chromosomes in OðtÞ

16. t tþ 1
17. end

5 EXPERIMENTAL RESULTS

In this section,weconductasetof experiments todemonstrate
that our hybrid GA can identify faces from line drawings
efficiently. We also compare the efficiency between the GA
and Liu and Lee’s algorithm [9]. We do not compare with the
algorithm proposed by Shpitalni and Lipson [8] because Liu
and Lee’s algorithm is already faster than Shpitalni and
Lipson’s. Inwhat follows, LLAandHGAare short forLiuand
Lee’s algorithm and the hybrid GA, respectively.

All the algorithms are implemented using Visual C++,
running on a 1 GHz Pentium III PC. In the HGA, the
parameters, population size, maximum generation, muta-
tion rate, and crossover rate, are set to be 50, 15, 0.05, and
0.9, respectively. They are fixed in the experiments unless
mentioned otherwise. How these parameters affect the
HGA will be discussed at the end of this section.

GAsarea stochastic global optimization technique. It isnot
guaranteed that a GA will find optimal solutions to a
problem. In fact, GAs return only nearly optimal solutions
inmost applications to combinatorialproblems [11], [12], [13],
[14]. The likelihood of some GA finding optimal solutions
depends on factors like how hard a problem is, how well the
GA is designed, and the parameters chosen in the GA. In the
following,whenwe say that theHGAcan identify the faces of
a line drawing, we mean that, given the above set of
parameters, the HGA has an extremely high probability of
obtaining the optimal solutions. The rate of failure is
negligibly small in practical applications (see more discus-
sion later).

The first set of line drawings for testing the HGA come
from all the objects given in the sections of experimental
results in the two papers by Shpitalni and Lipson [8] and Liu
andLee [9]. TheHGAfinds the same faces in eachobject as the
other two algorithms and takes about 0.25 second each. It is
not necessary to compare the computational times between
the HGA and LLA on these objects with less than 30 faces
because the LLA is also fast enough to handle them.

Next, we will show another set of objects each with more
than30 faces. InFig. 8, four stairsmodelswith increasing faces
are shown. The 32 faces in Stairs 1 found by the HGA are also
shown. There is one solution for the first three models. But,
there are two in Stairs 4. One solution contains MPF 1 and
MPF 2 and the other contains MPF 3 and MPF 4 (see Fig. 8).
The other 37 faces common in the two solutions are omitted.
For the face identification, theremaybemultiple solutions ina
linedrawing likeStairs 4. In [8] and [9],whencasesofmultiple
solutions appeared, they used some image regularities to
select the most plausible one; for Stair 4, the solution
containing MPF 1 and MPF 2 is chosen.

When the HGA is applied to a line drawing having
multiple solutions, we find that, in most cases, the most
plausible one is found out in the population. In order not to
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miss it, however, after the execution of the HGA, we run a
postprocessing procedure to look for multiple solutions. By
examining MPFs 1 and 2 (or MPFs 3 and 4) in Fig. 8, it is not
difficult to see that the two MPFs share more than one
common edge (here they are edges ð1; 2Þ and ð3; 4Þ). With
this observation, even if the solution containing MPFs 1 and
2 is not found out by the HGA, it can still be obtained from
the solution containing MPFs 3 and 4 in the following way:
Look at MPFs 3 and 4. The two common edges, (1,2) and
(3,4), separate them into four sets of edges:

S1 ¼ fedgeð2; 7Þ; edgeð7; 8Þ; edgeð8; 3Þg
S2 ¼ fedgeð4; 9Þ; edgeð9; 10Þ; edgeð10; 1Þg
S3 ¼ fedgeð2; 5Þ; edgeð5; 6Þ; edgeð6; 3Þg
S4 ¼ fedgeð4; 12Þ; edgeð12; 11Þ; edgeð11; 1Þg;

where S1, S2, and the two common edges formMPF 3, while
S3, S4, and the two common edges form MPF 4. By
exchanging S1 and S3, we can obtain two MPFs: One formed
by S2, S3 and the two common edges and the other formed by
S1, S4, and the two common edges. These two MPFs are
exactly MPFs 1 and 2. Similar analysis applies to more
complicated cases. This postprocessing successfully deals
with all the line drawings having multiple solutions in the

experiments (including those in [8] and [9]). Like [8] and [9],
whenmultiple solutions areobtained froma linedrawing, the
most plausible one is selected by the image regularities.

Table 1 summarizes the results for the four stairs. It is
obvious that the number of MPFs grows exponentially with
the number of edges, which causes both memory and
computational time taken by the LLA to increase exponen-
tially. Let us consider the memory requirement first. In the
LLA (also in Shpitalni andLipson’s algorithm),mostmemory
consumption is due to the generation of the matrix
B ¼ ½bij�n�n, with n being the number of MPFs (see
Definitions 1 and 2). When there are 48,126 MPFs in Stairs 4,
the LLA needs at least 48; 126� 48; 126 ’ 2:3� 109 basic
memoryunits.Thus, theLLAhas toallocateahugememoryof
2.3G units to handle Stairs 4. In the HGA, however, the
memory requirement does not depend on the number of
MPFs. The two largest arrays are used to store the chromo-
somes in the populationP ðtÞ and the offspringOðtÞ.P ðtÞ and
OðtÞ together need a memory of less than

ð2� Population�Max Length Of A Chromosome

�Max Length of A CircuitÞ:

In our experiments, the maximum length of a chromosome
and the maximum length of a circuit are less than 50.
Therefore, P ðtÞ and OðtÞ take less than 2:5� 105 basic
memory units.

The last two rows in Table 1 give the times (in seconds)
taken by the two algorithms. It is obvious that the time
consumed by the LLA grows exponentially. We do not give
the time for the LLA to deal with Stairs 4 because it takes
too much time to find the solution (we could not obtain the
result after the LLA ran for one day). On the contrary, we
are very happy with the HGA. It is much more efficient and
its computational time increases approximately linearly
with the number of edges of the stairs models.

Fig. 9 displays a convergence process of the HGA when
it is run to handle Stairs 4. The average fitness value is
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computed by considering all the chromosomes in P ðtÞ at
each generation t. For this example, every chromosome
contains a best solution beginning from generation 9.

Fig. 10 shows five desk models, all of which have a hole
passing through them. Desks 1-5 have two, three, four, five
and six slots on them, respectively. Each of them has four
solutions. Our algorithm can find all the solutions. The most
plausible one for Desk 1 is also shown in Fig. 10. Table 2
summarizes the results for the five desk models. Again, we
see that the combinatorial explosion caused by the number of
MPFs takes the LLA 740 seconds to find the faces of Desk 2.
For each model of Desks 3-5, the LLA has to spend so much
time thatwe cannotwait for the result. On the other hand, the
HGA again exhibits excellent performance both in computa-
tional time and memory requirement. Fig. 11 shows the

approximately linear relation between the time taken by the
HGA and the number of edges for the Desk models.

Two more objects in Fig. 12 are used to test the HGA and

LLA. There is one solution for each of the two objects. The

faces found by the HGA (or LLA) are also given in the

figure. The results are summarized in Table 3, which again

demonstrates the significant better performance of the HGA

over the LLA.
As we mentioned before, given the set of parameters,

(population ¼ 50, maximum generation ¼ 15, mutation
rate ¼ 0:05, crossover rate ¼ 0:9), the HGA can find the
optimal solutions in a very high probability. In fact, for all the
line drawings given in the experiments (including those in
the twoprevious papers [8], [9]), theHGAwouldnot fail once
if we run theHGA on each object 1,000 times. Now, we study
how the success probability varies when some of the
parameters are changed.

At first, we find that the HGA is not sensitive to the
mutation rate and crossover rate (usually, the former is
small and the latter is large). For example, if they are chosen
to be 0.1 and 0.8, respectively, the success probability is
almost the same. Thus, we consider in the following the
changes of the population size and maximum generation
only. Here, we use Stairs 4 as the test subject.

Fig. 13 shows how the success probability goes to 1.0 as
the population size increases from 10 to 50. For each of the
population size, the HGA is run 500 times for Stairs 4 with
the maximum generation set at 15. When the population
size is set at 10, 20, 30, 40, and 50, the numbers of times that
the HGA fails to find the optimal solutions are 186, 70, 43, 2,
and 0, respectively. Fig. 14 shows the relation between the
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TABLE 2
Results for the Five Models in Fig. 10

Fig. 11. Time (second) taken by the HGA versus the number of edges

for the desk models.

Fig. 12. Two objects and their faces found.

TABLE 3
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success probability and the maximum generation. For each
of the maximum generation, the HGA is also run 500 times
with the population size set at 50. When the maximum
generation is set at 5, 7, 9, 11, 13, and 15, the numbers of the
HGA failure are 101, 35, 22, 12, 5, and 0, respectively. These
two examples show that, when the population size and
maximum generation are chosen to be 50 and 15, the HGA
can have a very high probability of finding the optimal
solutions for Stairs 4.

Is it possible for the HGA to fail when dealing with a line

drawing? The answer is yes for complex line drawings such

as Desk 5. We do find that the HGA gets into local optima at

an approximate rate of 0.00025 when handling Desk 5. In

other words, if the HGA is executed 4,000 times for Desk 5,

it would fail once. This very low rate of failure is negligible

in practical applications. It demonstrates that the HGA is

not only efficient in computational time and memory

requirement, but also robust in obtaining optimal solutions.

6 COMPARISON WITH SIMULATED ANNEALING

While the HGA performs very well on the face identifica-

tion problem, we may wonder whether there exist other

optimization methods that can reach similar performance or

better. We have implemented a simulated annealing (SA)

algorithm and made comparisons between the two algo-

rithms. The new ideas presented in Section 4 are the key to

the efficient implementations of SA, just as they are the key

to the HGA.

SA is a well-known heuristic optimization technique and

has been successfully applied to many optimization

problems [35]. It simulates the slow cooling process of

material from over its melting point to its solid state where

the lowest energy configuration is expected. In order to

implement SA in the traditional minimization framework,

we define the following energy function

fðxÞ ¼ �
X
i2x

wðiÞ; ð17Þ

where x is the current solution (a set of compatibleMPFs) and

wðiÞ denotes the number of edges of a MPF i. In fact, fðxÞ is
simply the negative of the fitness function of a chromosome

defined in (14). The detailed description of the theory and

various modifications of SA can be found in [35]. Here, we

present a SA algorithm (SAA) tailored for face identification.

Algorithm 4. (SAA)

1. Construct an initial solution x0 by calling
ExtensionðxÞ with x ¼ ;

2. t T0

3. while t > Tmin do
4. begin
5. i 1
6. while i �Mt do
7. begin
8. Call Neighborðx0Þ to obtain a neighbor x

of x0

9. if � ¼ fðxÞ � fðx0Þ < 0 then x0  x else
10. begin
11. Randomly generate r 2 ð0; 1Þ
12. if r < e��=t then x0  x
13. end
14. i iþ 1
15. end
16. t �ðtÞ
17. end

In the SAA, T0 (Tmin) is an initial (final) temperature high
(low) enough,Mt defines the number of iterations executed at
each temperature t, and �ðtÞ is a temperature reduction
function. The final solution stored in x0 is obtained when the
algorithm ends. All the steps except 1 and 8 are similar to
those in the general SA algorithm [35]. Step 1 calls
Algorithm 2, Extension, described in Section 4.4 to generate
a random initial solution. The key of the SAA is in Step 8:
randomly selecting a neighbor of the current point x0 in the
solution space. The procedure is given in the following
algorithm.

Algorithm 5. (Randomly selecting a neighbor x of x0)

1. procedureNeighborðx0Þ
2. Randomly select an edge e with RRðeÞ > 0
3. Randomly search the line drawing for one MPF that

passes through e
4. Delete the MPFs in x0 that are not compatible with

the newly-found MPF and put it into x0, forming a
new set x0 of MPFs

5. Call Extensionðx0Þ to extend x0, resulting in x

From the above algorithm, it can be seen that Extension
is called again, in which the idea of the minimal edge face
phenomenon is embedded to help find faces.

To make an SA algorithm work well in solving an

optimization problem, the parameters T0, Tmin, Mt, and the
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function �ðtÞmust be chosen carefully, and they are usually

problem-dependent.Aftermanytrial-and-error experiments,

we find that the SAA with T0 ¼ 300, Tmin ¼ 0:001, Mt ¼ 10,

and �ðtÞ ¼ 0:9t can give very good results both in computa-

tional efficiency and in finding optimal solutions. With these

parameters and the temperature reduction function, the

performance of the SAA is close to that of theHGA. If the SAA

is executed on each line drawing in the experiments

1,000 times, it would not fail once and each execution takes

less than 1 second. More specifically, let us consider the line

drawing Desk 5 that has the most faces. The SAA gets into

local optima approximately at a rate of 0.00033, that is, it

would fail only once if it is run 3,000 times. This rate of failure

is low enough in practice. Besides, the time the SAA takes in

each execution for Desk 5 is 0.85 second on the average.

Our experiments show that the performance of theHGA is

slightly better than that of the SAA. Both algorithms can

efficiently find faces froma linedrawingwithvery small rates

of failure. The key tomaking these algorithms performmuch

better than the previous algorithms in [8] and [9] comes from

the local search scheme where the minimal edge face

phenomenon and the geometric constraints are incorporated,

as well as from the algorithmic designs that avoid the search

of all MPFs from a line drawing.

7 CONCLUSIONS

A hybrid GA for finding faces from single 2D line drawings

has been presented. The faces identified from a line drawing

provide important information for the reconstruction of its

3D geometry. From the experiments, it can be seen that the

HGA finds the same faces as the previous two algorithms do,

but exhibits significantly better performance for objects with

faces > 30, both in computational time and memory

requirement. The obstacle for the two previous methods to

handle such objects is that each of them involves two

combinatorial problems: searching for all MPFs from a line

drawing and then searching for faces from the MPFs. This

combinatorial explosion makes it difficult, if not impossible,

for the two algorithms to handle objects with faces > 30.

Our strategy to conquer the combinatorial explosion is to

combine the standard GA with a novel local search scheme.

The former is well-known for its good global search ability;

the latter has a high likelihood of finding faces directly froma

line drawing based on the maximum edge ranks, face

adjacency theorem, and minimal edge face phenomenon.

The amount ofmemory allocated in ourHGAdepends on the

sizeof thepopulation, themaximumlengthof a chromosome,

and the maximum length of a circuit. These quantities do not

increase much with the increase of edges in a line drawing.

For all the line drawings in the experiments, the HGA takes

less than one second to deal with each of them on a 1 GHz

Pentium III PC. From the two sets of objects given in Figs. 8

and 10, we can see that the computational time of the HGA

growsapproximately linearlywith thenumberof edgesof the

drawings, presenting excellent computational performance.

The experiments also demonstrate that the HGA is robust in

finding optimal solutions.

We have also implemented a simulated annealing

algorithm for face identification based on the local search

scheme. Similarly to the HGA, the SSA is designed without

the need to search for all the MPFs from a line drawing. The

HGA works slightly better than the SSA.
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