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Abstract

In this paper, we propose a new face hallucination frame-
work based on image patches, which integrates two novel
statistical super-resolution models. Considering that im-
age patches reflect the combined effect of personal char-
acteristics and patch-location, we first formulate a Ten-
sorPatch model based on multilinear analysis to explicitly
model the interaction between multiple constituent factors.
Motivated by Locally Linear Embedding, we develop an en-
hanced multilinear patch hallucination algorithm, which ef-
ficiently exploits the local distribution structure in the sam-
ple space. To better preserve face subtle details, we derive
the Coupled PCA algorithm to learn the relation between
high-resolution residue and low-resolution residue, which
is utilized for compensate the error residue in hallucinated
images. Experiments demonstrate that our framework on
one hand well maintains the global facial structures, on the
other hand recovers the detailed facial traits in high quality.

1. Introduction

For face identification, especially by human, it is
desirable to render a high-resolution face image from
the low-resolution one, which is called face halluci-
nation or face super-resolution. A number of super-
resolution techniques have been proposed in recent years
[1][2][3][5][6][7][9][10]. They can be categorized into two
representative approaches: the first is to produce a super-
resolution image from a set of low-resolution ones based on
learning [5][7][10]; another approach is to model the texture
as a Markov Random Field (MRF) [3][6][7]. These meth-
ods are mainly applied to generic images. However, for face
hallucination the utilization of the special properties of the
faces is conductive to generate the high-resolution face im-
ages.

Baker et al. [1][2] develop a hallucination method under
a Bayesian formulation. In the method, it infers the high fre-
quency components from a parent structure with the assis-
tance of training samples. Liu et al. [9] propose a two-step
approach integrating a parametric global models with Gaus-
sian assumption and linear inference and a nonparametric
local model based on MRF. Both methods rely on explicit
resolution-reduction-function, which is sometimes unavail-
able in practice. In [15], Wang and Tang develop an ef-
ficient face hallucination algorithm using an eigentransfor-
mation algorithm [12]. However, the method only utilizes
global information without paying attention to local details.
Inspired by a well-known manifold learning method, Lo-
cally Linear Embedding (LLE), Chang et al. [4] develop
the Neighbor Embedding algorithm based on the assump-
tion that the local distribution structure in sample space is
preserved in the down-sampling process, where the struc-
ture is encoded by patch-reconstruction weights.

Face image is influenced by multiple factors. Modelling
of the contribution of these factors is crucial to face analysis
and synthesis. Recently, Vasilescu et al. introduce Multilin-
ear Analysis to face modelling [13][14] and demonstrate its
promising application in computer vision. In the method,
equipped with tensor algebra, the multiple factors are uni-
fied in the same framework with the coordination between
factors expressed in an elegant tensor product form.

In this paper, we propose a novel patch-based face hallu-
cination framework, where the entire low-resolution image
is partitioned into overlapped patches, and high-resolution
patches are inferred respectively and then fused together to
form a high-resolution image. For patch-based inference,
two novel methods TensorPatches and Coupled Residue
Compensation are integrated. First, TensorPatch model is
developed to learn the relation of multiple constituent fac-
tors including identity and patch-locations, based on which,
factor parameters can be solved to represent the local struc-
ture of the sample space. Based on the assumption that



the low-resolution space and high-resolution space share
similar local distribution structure, the solved parameters
are used for synthesizing high-resolution images. To fur-
ther enhance the quality of the hallucinated image, we de-
velop a coupled residue compensation algorithm based on
a new statistical model called Coupled PCA. which infers
the residual from low-resolution residue to high-resolution
residue. Comparative experiments are conducted, which
show the remarkable improvement achieved by our frame-
work over other state-of-the-art algorithms.

2. TensorPatches

2.1. Theory of Multilinear Analysis

First of all, we briefly review the multilinear analy-
sis framework[8][13][14]. The mathematical foundation
of multilinear analysis is tensor algebra. Tensor, can be
regarded as multidimensional generalization of conven-
tional matrix. We denote an N th-order tensor as A ∈
RI1×I2×···×IN with each element denoted as Ai1···i2···iN or
ai1···i2···iN , where 1 ≤ in ≤ In. In multilinear algebra
terminology, each dimension of tensor is called a ”mode”.
Mode-n vectors can be acquired by varying the nth-mode
indices while keeping the indices of other modes fixed. All
mode-n vectors constitutes a matrix, which is called mode-
n unfolding matrix or mode-n flattening matrix of the tensor
A, denoted as A(n) ∈ RIn×(I1···In−1In+1···IN ). The mode-
n vectors are just the column vectors of A(n). The tensor
can be restored by mode-n folding of the matrix A(n).

Suppose we have a tensor A ∈ RI1×I2×···×IN ,
and a matrix U ∈ RJn×In , the mode-n product, de-
noted by A ×n U, is also an N th-order tensor B ∈
RI1×···×In−1×Jn×In+1×···×IN , whose entries are

(A×nU)i1···in−1jnin+1···iN =
In∑

in=1

ai1···in−1inin+1···inujnin .

(1)
In addition, we have a generalized counter part of SVD

for tensor, called high-order SVD (HOSVD), which was
first proposed by Lathauwer et al. [8]

A = C ×1 U1 ×2 U2 · · · ×n Un · · · ×N UN . (2)

Here C, is the core tensor satisfying sub-tensor-
orthogonality and norm-ordering. U1, . . . ,UN are all
orthonormal matrices.

In a real application, the appearance variations of an vi-
sual object are always caused by diverse factors, like illumi-
nation, deformation and pose. Traditional linear methods,
which treat factors of different aspects in additive manner,
lack the ability of modelling the complexity of reality. As a
generalization of linear analysis, multilinear analysis mod-
els the interaction between different factors in a modulating

manner, and thus offers a more flexible and sophisticated
framework for processing multi-factor problems.

In multilinear models, each factor has its own parameter
space. The sample vector space and parameter spaces are
connected by the following form

D = C ×1 U1 ×2 U2 · · · ×n Un · · · ×N UN , (3)

where D is an ensemble tensor obtained by grouping sam-
ples according to associated factors in all contributive as-
pects [13]. C is the core tensor which is responsible for con-
trolling the interaction between different factor parameters.
U1, · · · ,UN−1 are mode matrices capturing the variation
patterns of different aspects. UN is the prototype matrix
storing the orthogonal vectors encoding the major variation
patterns in the sample space which serve as bases for linear
combination.

Eq (3) gives the representation for the whole ensemble
in multilinear model. Followed this model, we deduce the
representation for any individual sample as follows

x = C ×1 vT
1 ×2 vT

2 ×3 · · · ×N−1 vT
N−1 ×N UN . (4)

2.2. Formulation of TensorPatches

Here we present a new mathematical approach, called
TensorPatches, to explicitly account for local constituent
factors of faces. TensorPatches applies multilinear image
analysis and representation in a new way.

In our model, we employ a face database from m sub-
jects with each facial image formed by a set of l small over-
lapped image patches. The number of pixels within each
patch is assumed to be d.

Considering that each patch is affected by two major de-
terministic factors: the characteristics of the person and the
position of the patch in the image, a 3rd order tensor model
is built to coordinate the interaction of these two constituent
factors. The model is formulated as below

D = Z ×1 Upeople ×2 Upatches ×3 Upixels, (5)

where the data tensor D is the patch ensemble obtained by
grouping the patches in training samples. Z governs the in-
teraction between the two parametric factor space and the
reconstruction bases. The two factor space are encoded in
the two factor mode matrices: the m × m mode matrix
Upeople spanning the space of personal parameters and the
l × l mode matrix Upatches spanning the space of position
parameters, while the patch bases are stored in the d × d
mode matrix Upixels spanning the patch space.

In conclusion, the TensorPatch model explicitly accounts
for the two major factors: identity and patch position. Be-
sides, the variations yielded by inter-personal difference and
position difference are combined in a mutual modulation
manner, which is more powerful and flexible in modelling
the reality.



2.3. Patch-based Reconstruction

Figure 1. Illustration of multilinear patch syn-
thesis. W i

j are weights assigned to different
persons, W p

j are weights assigned to differ-
ent positions.

Here we develop the algorithm for reconstruction of an
individual patch. At first, we examine the samples in the
training ensemble. For the jth patch of the ith individual,
the 1 × 1 × d subtensor Pi,j is denoted as

Pi,j = Z×3Upixels×1vT
1 ×2vT

2 = T P×1vT
1 ×2vT

2 , (6)

where vT
1 and vT

2 are the ith and jth row vector of mode
matrix Upeople and Upatches, respectively. Thus an image
patch pi,j in the training ensemble corresponding to the ith
person and jth position, can be extracted through mode-1(or
2) flattening the subtensor Pi,j as

pi,j = (Pi,j)T
(1) = (Pi,j)T

(2). (7)

Generalization of the analysis above follows that for
any patch with identity-related parameter v1 and position-
related parameter v2, it can be obtained by tensor product
in Eq.(6) ensued by flattening.

Considering that the row vectors capture the major vari-
ation patterns in two parametric spaces, we can assume that
the parameter vector vn exists in the row space of the mode
matrix Un. Thus, vn can be represented as a linear combi-
nation of row vectors of Un, i.e. vT

n = wT
nUn.

Motivated by [4], each patch should be reconstructed us-
ing the nearest neighbors. In our framework, the neighbor-
hood is defined as the patches residing in the adjacent po-
sitions and from the training images containing the most

similar patches in these positions. Concretely, we set N1 as
indices of nearest persons and N2 as indices of adjacent po-
sitions for each patch. Thus, for each patch, patches from m
nearest persons in the training set and l adjacent positions
are selected for reconstruction.

Then we can rewrite Eq.(6) employing tensor property

P = T P ×1 wT
1 Ũ1 ×2 wT

2 Ũ2

= (T P ×1 Ũ1 ×2 Ũ2) ×1 wT
1 ×2 wT

2

= T̃ P ×1 wT
1 ×2 wT

2 , (8)

where Ũn is a partial matrix of mode matrix Un, denoted
as Ũn = Un(Nn) and Nn is the indices set containing row
indices corresponding to nearest patches. A new Tensor-
Patches T̃ P is sub-TensorPatches, which is function of two
index set N1 and N2, denoted as T P(N1, N2).

Moreover, for consistency and stability, we impose the
normalized constraints

∑m
i=1 w1i = 1 and nonnegative con-

straint
∑l

j=1 w2j = 1, w2j ≥ 0 on the weight vectors.
In a real synthesis application, for a new patch sample

p (d-dimensional column vector) with its parameters un-
known, we are required to first extract the parameters before
reconstruction. Before developing the scheme for solving
parameters for a new patch sample, we examine the simplest
case where only mode-1 factor parameter (people identity)
is unknown, i.e. the vector w1 is unknown. Then we can
rewrite the formula (6) by applying commutative law

P = (T̃ P ×2 wT
2 ) ×1 wT

1 = S1 ×1 wT
1 , (9)

where S1 is an N th-order tensor called mode-1 base tensor.
It can be seen that all samples with the same factor (except
for mode-1 factor) constitutes the space spanned by mode-n
vectors in S1. Look at it from another perspective, we can
convert the expression in matrix form as follows

P(1) = wT
1 (S1)(1) =⇒ p = PT

(1) = (S1)T
(1)w1. (10)

Similarly, when parameters of n(n = 1, 2)th mode are un-
known, we have

p = (Sn)T
(n)wn, (11)

here, the multilinear model degenerates to linear model,
then we can solve the parameter vector in that mode by
constraint least square with the solution denoted as wn =
lsq((Sn)(n),p).

Then for the general case where all parameters are un-
known, we can solve all of them by a scheme called Con-
straint Alternate Least Square as follows (k = 1, 2, · · ·)

S(k+1)
1 = T̃ P ×2 (w(k)

2 )T

w(k+1)
1 = lsq((S1)

(k+1)
(1) ,p)

S(k+1)
2 = T̃ P ×1 (w(k)

1 )T

w(k+1)
2 = lsq((S2)

(k+1)
(2) ,p). (12)



Denote the optimal parameter vectors obtained in the final
step as w∗

1,w
∗
2 . Then the reconstructed version of an image

patch p can be acquired by T̃ P ×1 w∗T
1 ×2 w∗T

2 .
Figure 2 illustrates the reconstruction results compared

to traditional linear reconstruction methods. Multilinear
patch-based reconstruction on one hand maintains the local
features well, on the other hand basically keeps the inter-
patch continuity, thus improves the smoothness of the im-
age.

(b) PCA(a) Original (c) Local linear (d) Multilinear

Figure 2. Comparative results of reconstruc-
tion

2.4. TensorPatch Super-Resolution

As in Locally Linear Embedding(LLE), our hallucina-
tion algorithm is based on the assumption that small patches
in low resolution space and high resolution space form man-
ifolds with the same local structure, which is characterized
by the weights of neighboring patches. Accordingly we can
synthesize the high resolution patch employing the weights
infered from input low resolution patches.

In the training stage, two TensorPatch models are trained
on the low- and high-resolution image patch sets, denoted
as ({p(i)

L,j| p(i)
L,j ∈ I

(i)
L , 1 ≤ i ≤ m, 1 ≤ j ≤ l} and

{p(i)
H,j| p

(i)
H,j ∈ I

(i)
H , 1 ≤ i ≤ m, 1 ≤ j ≤ l}) respectively.

In the testing stage, we divide the whole image into a
set of small overlapped image patches as elements for hal-
lucination. For each patch, we first analyze each input low-
resolution patch using the low-resolution-TensorPatches to
produce the local weight vectors. Secondly the correspond-
ing high-resolution patch is rendered by high-resolution-
TensorPatches based synthesis using the learned parame-
ters. To assure local compatibility and smoothness between
the hallucinated patches, we superpose patches in adjacent
regions of one image and blend pixels in the overlapping
area.

The TensorPatch super-resolution algorithm is summa-
rized as follow:

• Step1. For each patch pL,j (j = 1, 2, · · · , l) in an
input low-resolution face IL:

– (a) Find K1-NNs of different people in the

training patch ensemble {p(i)
L,j}m

i=1, and find

K2-NNs for adjacent patches in the input im-
age {pL,t}l

t=1. Denote them as Npeople and
Npatches.

– (b) Compute the multilinear reconstruction
weights w1 and w2 based on the sub-
TensorPatches T PL(Npeople, Npatches) using
ALS procedure introduced in the previous sub-
section.

– (c) Synthesize the high-resolution patch pH,j

from mode-1 unfolding the high-resolution ten-
sor T PH(Npeople, Npatches) ×1 w1 ×2 w2.

• Step2. Concatenate and integrate the hallucinated
high-resolution patches {pH,j}l

j=1 to form a facial im-
age, which is the target high-resolution facial image,
with local compatibility and smoothness constraints.

The proposed algorithm can recover the global face
structure and main local features of the target high-
resolution face in the super-resolution image. We denote
the hallucinated result of TensorPatches as ITP

H .

3. Coupled Residue Compensation

-

+

High-frequency 
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Tensorpatches
-based

Hallucinate
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Figure 3. Architecture of Coupled Residue
Compensation.

In the TensorPatch model, by considering both iden-
tity and adjacent patches, multilinear synthesis can achieve
fairly good approximation. However, there still exist some
difference between down-sampled version of hallucinated
image and the original low-resolution image. Inspired by
the observation, we develop a scheme Coupled Residue
Compensation, which utilizes the difference to further en-
hance the hallucination quality by residue compensation.
Our residue compensation algorithm is based on a novel sta-
tistical model named Coupled PCA developed by us, which
is employed to learn the relation between the low-resolution
residue space and the high-resolution residue space. The



whole architecture of Coupled Residue Compensation is
shown in Figure 3.

3.1. Coupled PCA

In order to establish the relationship between two spaces,
we develop a model named Coupled PCA, which connects
two spaces by introducing a hidden space.

Suppose we have two spaces ΩX and ΩY . We use x
to denote the vector in space ΩX , and use y to denote the
vector in space ΩY . Assume there exists a linear relation
between the two spaces, then we can approximate y by Ax.

In statistics, multivariate regression is available for link-
ing two linear spaces. The multivariate linear regression
problem can be formulated as the following least-square op-
timization problem:

A = argmin
x

n∑
i=1

‖yi − Axi‖2. (13)

It can be easily shown that the solution is

A = YXT (XXT )−1, (14)

here, Y = [y1,y2, · · · ,yn] and X = [x1,x2, · · · ,xn].
However, in real application, it is always the case that

samples in ΩX or ΩY only distribute in subspaces captur-
ing the intrinsic variations shared by both low- and high-
resolution patch spaces. To effectively and robustly evaluate
the linear relation, we integrate the multivariate linear re-
gression and the well-known dimension-reduction method
PCA by explicitly introducing the concept Common Hidden
Space.

In our formulation, the vector xi in space ΩX and the
vector yi in space ΩY correspond to the same vector hi in
the hidden space. In ideal case without noise, we have

xi = BXhi BX ∈ Rdx×dh , (15)

yi = BYhi BY ∈ Rdy×dh . (16)

The dimension of common hidden space is smaller than
that of space ΩX and space ΩY : dh < dx, dh < dy . In
addition, the base matrices BX and BY are orthogonal ma-
trices. Then the linear relation between two spaces is as
below

y = BYBT
Xx. (17)

Combining the formula (17) and formula (13), the Coupled
PCA can be finally formulated as minimization of the fol-
lowing error energy function

E(BX,BY) =
n∑

i=1

‖yi − BYBT
Xxi‖2. (18)

The problem can be solved by Alternate Least Square
(ALS), where we alternately optimize BX and BY with the
other matrix fixed.

In summary, traditional multivariate regression model is
suitable for analyzing the coupled linear relation between
two spaces, however, it is unstable and inefficient for high-
dimensional spaces such as images; while standard PCA of-
fers a powerful approach to handle high-dimensional data
but lacks the capability of processing the coupled problem.
Our scheme integrates the advantages of both multivariate
regression and PCA to give a potent solution for analyzing
high-dimensional coupling spaces.

3.2. Residue Compensation using Coupled PCA

It is observed that there are still differences between re-
constructed patches and groundtruth patches. It is desirable
to utilize the information in low-resolution residue to fur-
ther enhance the quality of high-resolution hallucinated im-
ages by residue compensation.

In our face hallucination algorithm, the Coupled PCA
is applied to establish the relation between low-resolution
patch-residue and high-resolution patch-residue. In the
training stage, we hallucinate high-resolution patches from
a set of low resolution patches. Then low- and high-
resolution residue for each patch sample can be constructed
as below: one is obtained by subtracting the input low res-
olution image by a down-sampled version of the halluci-
nated image; the other one is obtained by subtracting the
groundtruth high resolution image by hallucinated image.
Then Coupled PCA can be trained on these two spaces
spanned by low- and high-resolution patch residue. In test-
ing stage, the high resolution patch-residue can be inferred
by low-resolution patch-residue and compensated to the
hallucinated image.

The process can be briefly described as below:
1. For an input low resolution image, the super resolution

image ITP
H is hallucinated by TensorPatch algorithm.

2. Construct the low resolution difference image IR
L by

subtracting the input image IL with down-sampled version
of the hallucinated image ITP

H .
3. Infer the super resolution residue IR

H by formula (17).
4. Add the inferred residue image IR

H to the super reso-
lution image ITP

H hallucinated by TensorPatches to acquire
the final result I∗H = ITP

H + IR
H .

Experiments show that using Coupled Residue Compen-
sation, the hallucination quality can be notably improved.

4. Experiments

Our experiments were conducted with a subset of
FERET dataset [11], which consists of about 1400 images.
Among all these samples, we select 600 samples for training
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Figure 4. The hallucinated results. (a) is the
low-resolution 24 × 32 input. (b) is the Ten-
sorPatch hallucinating result ITP

H . (c) is the
final result I∗H = ITP

H + IR
H . (d) is the original

high-resolution 96 × 128 image.

the TensorPatch model and another 600 samples for training
the Coupled PCA for residue compensation. Other samples
are for testing. As a necessary preamble steps, we perform
geometric normalization by affine transform based on coor-
dinates of eyes and mouth. After the transform, each image
is cropped to a canonical 96 × 128 grayscale image as the
high resolution one. The corresponding low-resolution im-
ages are obtained by smoothing and down-sampling, which
are 24 × 32 images.

In our experiments, we first train the TensorPatch model.
For each low resolution image, 682 overlapped patches are
extracted by sliding a small 3×3 window pixel by pixel. For
high resolution images, 682 12-by-12 patch are extracted as
well. The patches in low resolution image and high resolu-
tion image are in one-to-one correspondence. The training
process of TensorPatch model eventually gives two Tensor-
Patches: T PL ∈ R600×682×9 for low resolution images

and T PH ∈ R600×682×144 for high resolution images.
In the testing stage of TensorPatch hallucination, each

patch is hallucinated in analysis-by-synthesis manner. By
a series of experiments, we choose m = 5 and l = 9 for
K-NN schemes. That is, only the patches from the 5 near-
est persons and in the same position or 8 neighboring over-
lapped positions are taken into account. And the number of
iterations for each ALS procedure is set to 5. Our exper-
iments show that such configuration on parameters yields
the most satisfactory results.

Further, a second set containing 600 samples, which is
disjoint from the training set for TensorPatches, is used for
training the Coupled PCA for residue compensation.

The resultant images are shown in Figure 4. We can
see that only the TensorPatches can produce good halluci-
nated results, and the coupled compensation stage further
enhances the quality, which makes the final image approxi-
mate the groundtruth fairly well.

We compare our algorithm with other representative
ones, including Cubic B-Spline, Baker’s and Ce Liu’s al-
gorithms, in Figure 5. The quality of cubic B-Spline recon-
struction is rather rough. Baker et al’s method produces a
blurred face with important features lost. Liu et al’s method
though can hallucinate a super-resolution image of accept-
able quality, some subtle characteristics are blurred. Our
method has advantages over others in terms of preserving
both global structure and subtle details.

5. Conclusions

We have shown that the face hallucination framework in-
tegrating TensorPatch model and Coupled Residue Com-
pensation is capable of producing high quality super-
resolution images. Compared to other approaches, our
method has the advantages in preserving global structure
and local detail features by seamless incorporating multiple
factors and constraints. Our experiments clearly show the
efficacy of the new models.
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