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Abstract— In this paper, we implement a random subspace based 
algorithm to classify the plankton images detected in real time by 
the Shadowed Image Particle Profiling and Evaluation Recorder. 
The difficulty of such classification is compounded because the 
data sets are not only much noisier but the plankton are 
deformable, projection-variant, and often in partial occlusion. In 
addition, the images in our experiments are binary thus are lack 
of texture information. Using random sampling, we construct a 
set of stable classifiers to take full advantage of nearly all the 
discriminative information in the feature space of plankton 
images. The combination of multiple stable classifiers is better 
than a single classifier. We achieve over 93% classification 
accuracy on a collection of more than 3000 images, making it 
comparable with what a trained biologist can achieve by using 
conventional manual techniques. 

I.  INTRODUCTION 

Plankton including phytoplankton and zooplankton form 
the base of the food chain in the ocean and are a fundamental 
component of marine ecosystem dynamics. The rapid mapping 
of plankton abundance together with taxonomic and size 
composition can help the oceanographic researchers understand 
how climate change and human activities affect marine 
ecosystems. 

Earlier researchers investigated the temporal and spatial 
variability in plankton abundance and composition by manually 
counting the samples collected using traditional methods (e.g., 
towed nets, pumps, and Niskin bottles), which is laborious and 
time consuming. To improve sampling efficiency, some new 
instruments such as the Video Plankton Recorder (VPR) [1], 
the HOLOMAR underwater holographic camera system [2], 
and the Shadowed Image Particle Profiling and Evaluation 
Recorder (SIPPER) [3] have been developed to continuously 
sample magnified plankton images in the ocean. 

The experimental data sets in this work come from the 
SIPPER system recently developed by University of South 
Florida. The SIPPER images differ from those used for most 
previous research in four aspects: 1) the images are much 
noisier, 2) the objects are deformable and often partially 
occluded, 3) the images are projection variant, i.e., the images 
are video records of 3D objects in arbitrary positions and 
orientations, and 4) the images in our experiments are binary 
thus are lack of texture information. 

Fig. 1 shows some typical examples to illustrate the 
diversity of the SIPPER images. To deal with these difficulties, 
we combine the general features [4] (e.g., moment invariants 
[5], Fourier descriptors [6], and granulometric features [7]) 
with some specific features [8] (e.g., circular projections, 
boundary smoothness, and object density) to form a more 
complete description of the binary plankton patterns. To 
remove redundancy and reduce noise, we use the Principle 
Component Analysis (PCA) to compact the combined feature 
vectors, with the eigenvectors corresponding to small 
eigenvalues removed in the PCA subspace [4][8]. Since these 
eigenvectors may encode some useful information for 
recognition, their removal may introduce a loss of 
discriminative information.  

To solve this problem, we propose an approach using 
random subspace [9]. The approach has been shown to be very 
effective for face recognition [11]. In the random subspace 
method, a number of low-dimensional subspaces are generated 
by randomly sampling from the original high-dimensional 
feature space. Finally, multiple classifiers constructed in the 
random subspaces are combined to make a powerful decision 
[10]. Using random sampling, the constructed classifiers are 
stable and multiple classifiers cover nearly the entire feature 
space without losing much discriminative information. Thus, 
good performance can be achieved. The experiments on seven 
classes of more than 3000 binary plankton images clearly 
demonstrate the efficiency and superiority of our algorithm. 

 

II. FEATURE EXTRACTION 

In order to form a more complete description of the binary 
plankton patterns, we combine the general features such as 
moment invariants, Fourier descriptors (FD and filled FD), and 
granulometries with some specific features such as circular 
projections (CMS, P1, P2, filled P1, and filled P2), boundary 
smoothness, and object density. In this work, we add three 
types of structure elements (square, disk, and rhombus) of 
increasing sizes to compute the granulometric features since 
granulometries are relatively robust to noise, occlusion, and 
projection directions. All the extracted features are translation, 
scale, and rotation invariants. A brief description of them is 
shown in Table I. Refer to [4]-[8] for details. 
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III. RANDOM SAMPLING ON COMBINED FEATURE VECTOR 

The combined feature vector has a high dimensionality. 
Normally the high-dimensional feature vector is projected to a 
low dimensional feature space using PCA to avoid classifier-
overfitting problem due to the relatively small training set. In 
order to construct a stable classifier, the eigenvectors with 
small eigenvalues are usually removed in the PCA subspace. 
However, eigenvalue is not an indicator of the feature 
discriminability. Their removal may introduce a loss of useful 
discriminative information. To solve this problem, we 
randomly sample a small subset of features to reduce the 
discrepancy between the training set size and the feature vector 
length. Using such a random sampling method, we can 
construct multiple stable classifiers. We then combine these 
classifiers to construct a more powerful classifier that covers 
most of the feature space, so less discriminative information is 
lost. 

As illustrated in Fig. 2, our random subspace based 
approach is designed as follows. 

At the training stage, 

1. Apply the first-stage PCA to all the long feature 
vectors (LVi, i=1, …, n1) such as P1, P2, filled P1, filled 
P2, CMS, FD, and filled FD to compute their 
eigenvectors Ui and eigenvalues λi, respectively. The 
eigenvectors with larger eigenvalues that preserve 
98% of the total energy are preserved. The 
eigenvectors with very small eigenvalues mostly 
containing noise are removed. 

2. For each training sample, project every long feature 
vector iLV  to the respective eigenvectors (PCA 

subspace) using ( )T
i i i iW U LV m= − , where im  is the 

mean of all the ith long feature vectors. 

3. Combine iW  (i=1, …, n1) with the short feature 
vectors (SVj, j=1, …, n2) such as boundary 
smoothness, object density, moment invariants, and 
granulometries to form a new combined feature 
vector. 

4. Normalize every component of the combined feature 
vector to the same scale. 

5. Apply the second-stage PCA to the combined feature 
vectors of all the training samples. The first M largest 
eigenvectors { }1,...,t MU u u=  that preserve 99% of 

the total energy are selected as candidates to construct 
the random subspaces. 

6. Generate K random subspaces { } 1

K

n n
S

=
. Each random 

subspace iS  is spanned by 0 1N N+  dimensions. The 

first 0N  dimensions are fixed as the 0N  largest 

eigenvectors in tU  and the other 1N  dimensions are 

randomly selected from the remaining 0M N−  

eigenvectors in tU . 

7. Construct K classifiers { } 1

K

n n
C

=
 from the 

corresponding K random subspaces. 

At the recognition stage, 

1. For each testing image, project its long feature vectors 
to their respective PCA subspaces. 

2. Combine the projected feature vectors with the short 
feature vectors to form a new combined feature 
vector. 

3. Normalize every component of the combined feature 
vector to the same scale. 

4. Project the normalized feature vector to the K random 
subspaces and fed them to the K classifiers in parallel. 

 

 
Fig. 1. Examples of seven plankton classes. (All images are rescaled for display purpose.) 

TABLE I. FEATURE DESCRIPTION. 

Features Feature length 
Boundary smoothness 1 
Object density 1 
Moment invariants 7 
Granulometries 21 
P1 50 
P2 50 
Filled P1 50 
Filled P2 50 
CMS 180 
FD 180 
Filled FD 180 



5. Combine the outputs of the K classifiers using a 
fusion rule to make the final decision. 

Compared with the traditional random subspace method 
that samples the original feature vector directly, our algorithm 
samples in the PCA subspace. The high dimension of the 
feature space is first greatly reduced without losing 
discriminative information. After doing PCA projection, the 
features on different eigenvectors are more independent. Better 
accuracy can be achieved if different random subspaces are 
more independent from one another. 

Second, the random subspace is not completely random. 
The random subspace dimension is fixed as 0 1N N+ , which is 
determined by the training set to make a single classifier stable. 
The individual classifier constructed in each random subspace 
has a satisfactory accuracy since the first 0N  dimensions 

encode much information. In addition, the 1N  random 
dimensions cover most of the remaining small eigenvectors. 
Thus, our approach makes use of nearly all the discriminative 
information in the feature space. 

Third, we use the first-stage PCA to compact every long 
feature vector by removing the redundant information. The 
noise within every long feature vector is removed as well. We 
then use the second-stage PCA to compact the combined 
feature vector by removing the correlative information among 
different types of features since they are all based on the same 
object shape. Furthermore, because the original feature vectors 
have different length and scale, the scale of the projected long 
feature vectors and the short feature vectors can be very 
different. One may overwhelm the other. We normalize all 
types of features in the combined feature vector to the same 
scale. Significant improvement can be achieved after 
normalization. 

IV. EXPERIMENTS 

We conduct experiments on seven classes of 3119 binary 
plankton images including 131 Acantharia, 172 Chaetognath, 

450 Doliolid, 485 Radiolaria, 529 Larvacean, 563 Calanoid, 
and 789 Trichodesmium. All the images were manually 
classified by marine scientists. In our experiments, the 
Gaussian minimum error classifier is adopted to classify the 
plankton images and the tenfold cross-validation scheme is 
employed to evaluate the performance of our algorithm. 

Fig. 3 shows the average accuracy of a single classifier 
constructed in the PCA subspace using different number of 
largest eigenvectors. We observe that a single classifier has the 
best accuracy of 91.05% using the largest 25 eigenvectors 
{ }1 25,...,u u , which seems to be suitable to construct a stable 

classifier for our data sets. In the following experiments, we 
choose 25 as the dimension of the random subspaces to 
construct a number of individual classifiers. 

In each random subspace, we fix the first 15 dimensions as 
the 15 largest eigenvectors, and randomly select the other 10 
dimensions from the remaining eigenvectors in Ut. As 
illustrated in Fig. 4, the individual classifiers constructed in the 
random subspaces are comparable to the single classifier using 
the largest 25 eigenvectors and have similar accuracies since 
much information is contained in the first 15 largest 
eigenvectors { }1 15,...,u u . The results also indicate that the other 

10 eigenvectors with large eigenvalues { }16 25,...,u u  are not 

more discriminative than those smaller eigenvectors. In 
addition, these individual classifiers are complementary to one 
another. Better performance can be achieved when they are 
combined. The result of combining 20 individual classifiers 
using majority voting is shown in Fig. 4. It demonstrates that 
the random subspace method has a superior performance than 
the results in [8]. 

Table II shows the confusion matrix of our approach from a 
tenfold cross-validation experiment. The overall average 
accuracy is 93.27%. We have over 90% accuracy on most 
plankton except for Acantharia and Chaetognath. The reason is 
that we have fewer samples of the two classes.  

 

 

Fig. 2. Multi-feature multi-classifier recognition system using random sampling. 



TABLE II. CONFUSION MATRIX OF RANDOM SUBSPACE METHOD FROM A 
TENFOLD CROSS-VALIDATION ON 3119 SIPPER IMAGES. THE SEVEN 

PLANKTON TYPES ARE NUMBERED FROM 1 TO 7 IN TURN. 

Class 
ID 

1 2 3 4 5 6 7 Accuracy 

1 115 0 4 2 0 10 0 87.79 % 
2 0 147 15 0 8 0 2 85.47 % 
3 0 5 416 19 8 0 2 92.44 % 
4 16 0 16 448 0 0 5 93.37 % 
5 1 3 25 0 491 1 8 92.82 % 
6 4 0 0 0 3 544 12 96.63 % 
7 0 1 9 10 10 11 748 94.80 % 

Average Accuracy 93.27 % 

V. CONCLUSION 

In this paper, we develop a random subspace approach for 
the integration of multiple features for binary plankton 
classification. Using random sampling, we construct a set of 
stable classifiers preserving nearly all the discriminative 
information in the high-dimensional feature space. The 
combination of multiple classifiers produces a better 
performance. Experimental results on a large data set show that 
the new algorithm can effectively classify plankton images 
with high accuracy acceptable for automatic plankton survey 
system. 
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Fig. 3. Average accuracy of single classifier using different number of largest 
eigenvectors in the reduced PCA subspace. The red circle marks the best 

accuracy of 91.05%. 
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Single classifier using the largest 25 eigenvectors
Individual classifiers in random subspaces
Combine 20 classifiers using majority voting

Fig. 4. Average accuracy of combining 20 individual classifiers constructed in 
the random subspaces using majority voting. 


